
CS174 Lecture 2 John Canny

Monte-Carlo vs. Las Vegas

A random algorithm isLas Vegasif it always produces the correct answer. The running time
depends on the random choices made in the algorithm. Random Quicksort (where pivot elements
are chosen at random) is a Las Vegas algorithm. It always sorts the elements correctly, but its
running time depends on the choices of pivot.

A random algorithm isMonte Carlo if it can give the wrong answer sometimes. The running
time usually doesn’t depend on the random choices, but for some Monte Carlo algorithms it does.

A useful mnemonic that someone proposed is “Las Vegas will never cheat you”. Why they
thought that Las Vegas is more trustworthy than Monte Carlo is a mystery.

From the definitions, you can see that a Las Vegas algorithm is also a Monte Carlo algorithm
(Monte Carlo is a broader definition because nothing is guaranteed). To turn a Monte-Carlo
algorithm into a Las Vegas algorithm, you need to add a means for checking if the answer is
correct and retrying if it isn’t.

Random Permutations
Recall that a permutationπ is one-to-one and onto function

π : {1, . . . , n} → {1, . . . , n}

A permutation defines a reordering of the elements1, . . . , n. It can be specified by the new
values. e.g.(2 4 3 5 1) specifies a permutation whereπ(1) = 2, π(2) = 4, π(3) = 3, π(4) = 5 and
π(5) = 1.

There aren! permutations ofn elements. That’s too many to generate them by numbering them
all and choosing one at random. Random permutations are quite useful in randomized algorithms.
So its helpful to have efficient algorithms for generating them. But more than this, certain
algorithms give us good characterizations of random permutations for use in proofs. An algorithm
breaks a calculation down into small steps. Those steps can be convenient to use in proofs of
correctness for randomized algorithms. We’ll see a concrete example of this shortly.

Generating a random permutation is like “unsorting”. A sort program can make an arbitrary
permutation of elements to place them in ascending order. If the swaps in a sorting program are
replaced by random swaps in a consistent way, we obtain a random permutation generator. If
done carefully, we can generate random permutations with the uniform distribution.

One such algorithm which gives a uniform distribution on permutations, we can use the following
method. Assume an arrayA with n elements, initialized to the identity permutation so that
A[i] = i for all i.

1



RandomPerm(A, n)
for i = 1 to n-1

choose j uniformly at random from [i,...,n]
swap A[i] and A[j]

Claim 1: This algorithm can produce any permutation of{1, . . . , n}.

Suppose The arrayA is initialized with elements that are the representation of a permutation, that
is A[i] = π(i). If we sort the arrayA with selection sort, let the final contents of array beA′. The
contents ofA′ are just1, . . . , n sorted, soA′[i] = i. The permutation we have just made on the
elements ofA is exactlyπ, because we have moved the element in positioni to π(i). To put it
another way,A[i] = A′[π(i)].

Now observe that whatever the initial order of the elements in the arrayA, the random
permutation algorithm might sort them in increasing order. It will do this if every random choice
of j happens to pick the smallest element in the sequenceA[i], . . . , A[n]. In that case, the
permutation algorithm is actually implementing selection sort. The permutation algorithm doesnt
look at the contents ofA when it runs. The contents ofA might represent the permutationπ (in
other wordsA = A′ as defined earlier). If it is, the random permutation algorithm might sort the
array in increasing order. As we saw above, this corresponds to applying the permutationπ to the
elements ofA. In summary, for any permutation , the random permutation algorithm has non-zero
probability of applying the permutationπ to the elements ofA. QED

Claim 2: Every permutation of{1, . . . , n} is generated with equal probability1/n! by algorithm
RandomPerm.

Proof:
There is exactly one set of choices of the randomj values that will produce any given
permutation. To see that, notice first that there are

n(n− 1)(n− 2) · · · = n!

possible combinations of randomj values. Since there aren! permutations ofn elements, there is
a one-to-one correspondence between the algorithm’s permutations and all the permutations of
1, . . . , n.

The probability of a particular choice ofj on the first iteration is1/n, then1/(n− 1) on the
second iteration. So the probability of particular tuple ofj values which defines a unique
permutation is:

1/n× 1/(n− 1)× 1/(n− 2) · · · = 1/n!

That’s the uniform distribution on permutations of1, . . . , n. QED

Fixed Points in a Permutation
Here’s the first application of “the probabilistic method” that’s a theme of the course. We first
define a random variableX which counts the quantity we are interested in:

X = number of fixed points in the permutationπ , which is the cardinality of the set{i|π(i) = i}

2



Sinceπ is a random permutation, we are interested in the expected value ofX. We could try to
computeE[X] directly, but there is a simpler way. Define

Xi =

{
1 if π(i) = i
0 otherwise

Then notice that

X =
n∑

i=1

Xi

Now we can apply the linearity of expected value that we proved last time to show that

E[X] =
n∑

i=1

E[Xi]

There is obvious symmetry between permutations that fix particular elements, so all theE[Xi] are
equal. Therefore

E[X] = nE[Xi]

and computingE[Xi] is easy because its an indicator (0-1-valued) random variable:

E[Xi] = 0× Pr[Xi = 0] + 1× Pr[Xi = 1]

= Pr[Xi = 1]

which is just the probability thatπ(i) = i. This is easy to figure by counting permutations that fix
i and dividing by all permutations:

Pr[Xi = 1] = (n− 1)!/n! = 1/n

so
E[X] = nE[Xi] = n× 1/n = 1

So we get the rather surprising fact that the expected number of fixed points in a random
permutation is 1, independent of how many elements are being permuted.

Counting cycles in a random permutation
A harder and more interesting question is the following: What is the expected number of cycles
for a random permutation?

As before, we use a random variable:

Y = number of cycles in the permutationπ

Defining indicator random variables is trickier this time. We can’t count 1 for each point in each
cycle, or we will just get a total ofn. We would be counting points rather than cycles.

Since a cycle of lengthk is shared amongk points, the logical thing to do is to have each point
contribute1/k. Then the total contribution from all points in the cycle of lengthk is 1. Hence we
define:

Yi = 1/k wherek is the length of the cycle containing pointi

3



Check for yourself that theYi are not independent. Luckily we wont need independence in this
analysis.

Now verify that

Y =
n∑

i=1

Yi

and using linearity of expected value, we have that

E[Y ] =
n∑

i=1

E[Yi]

Now all theE[Yi] are equal, therefore

E[Y ] = nE[Yi]

and

E[Yi] =
n∑

j=1

1/jPr[i is in a cycle of lengthj]

We can now use our random permutation algorithm. wlog assumei is 1. Theni is in a cycle of
length 1 iff RandomPerm choosesj = 1 on the first iteration. The probability of this choice is just
1/n, so:

Pr[i is in a cycle of length 1] = 1/n

We can use the same idea for cycles of length two. The permutation algorithm must mapi to
some point different from itself, (prob.= (n− 1)/n) and then map that point back toi, (prob.
= 1/(n− 1)). Therefore:

Pr[i is in a cycle of length 2] = (n− 1)/n× 1/(n− 1) = 1/n

similarly

Pr[i is in a cycle of length 3] = (n− 1)/n× (n− 2)/(n− 1)× 1/(n− 2) = 1/n

and in general
Pr[i is in a cycle of lengthj] = 1/n for anyj

This is a surprising result: the length of the cycle containing the point has the uniform
distribution! i.e. any point is equally likely to be in a cycle of any length up to n.

Going back to the expected number of cycles and substituting for this probability, we get:

E[Yi] =
n∑

j=1

1/j × 1/n = (1/n)Hn

whereHn = (1 + 1/2 + 1/3 + ... + 1/n) is thenth harmonic number. So

E[Y ] = nE[Yi] = Hn

Now Hn is approximately the natural log ofn, ln n. So the expected number of cycles in a
permutation grows as the natural log of the number of elements.

4


