CS174: Lecture 15

Alistair Sinclair, October 1998

Randomized Data Structures

We look at the role of randomization in building data structures that are elegant and efficient.

Example 1: Universal Hash Functions

Many applications call for a dynamic dictionary, i.e., a data structure for storing sets of keys S that supports the operations INSERT, DELETE and FIND. We assume that the keys are drawn from a large universe $U=\{0,1, \ldots, m-1\}$.
We will hash the keys in S into a hash table $T=\{0,1, \ldots, n-1\}$ using a hash function $h: U \rightarrow T$. I.e., we store element $x \in S$ at location $h(x)$ of T. Typically, we will want n to be much smaller than m, and comparable to $|S|$, the size of the set to be stored.

We assume that each location of T is able to hold a single key. If h maps several elements of S to a single location, we store them in an auxiliary data structure (say, a linked list) at that location. The time to perform any of the above operations is proportional to the time to evaluate h (to find the location $h(x))$ plus the length of the list at $h(x)$ (since the operation may have to search the entire linked list). So good performance depends on having few collisions in the table.
Traditionally, people have developed hash functions that give a small expected number of collisions assuming that the sequence of operations is random. But such schemes based on a deterministic hash function h are bound to be very bad for some sequences (see the next two exercises).

Ex: Show that any fixed hash function $h: U \rightarrow T$ must map at least $\frac{m}{n}$ elements of U to some location in T. Deduce that, if m is much larger than n, then there will be sets $S \subseteq U$ that are all mapped by h to a single location in T.
Ex: A hash function h is said to be perfect for a set $S \subseteq U$ if it causes no collisions on S. Show that, for any particular set S of size $\overline{\leq n, \text { it }}$ is possible to construct a hash function that is perfect for S, but that it is not possible to construct a hash function that is perfect for all S of this size. Show also that, for any fixed hash function h, the maximum possible number of sets S of size n for which h is perfect is $\left(\frac{m}{n}\right)^{n}$. Compare this with the total number of such sets S.
Instead, we will use a random hash function chosen from a suitable family. Building randomization into the hash function will mean that there will be no bad sequences.

Definition: A family \mathcal{H} of hash functions $h: U \rightarrow T$ is 2-universal if, for all $x, y \in U$ with $x \neq y$, and for h chosen u.a.r. from \mathcal{H}, we have $\operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{n}$.
Note that the functions in a 2-universal family "behave at least as well as" random functions wrt collisions on pairs of keys. The following fact illustrates why this is an appropriate definition:

Theorem: Consider any sequence of operations with at most s INSERTs performed using a hash function h chosen u.a.r. from a 2 -universal family. The expected cost of each operation is proportional to (at most) $1+\frac{s}{n}$.

Proof: Consider one of the operations, involving an element x. The cost of this operation is proportional to $1+Z$, where Z is the number of elements currently stored at $h(x)$. What is the expectation $\mathrm{E}(Z)$? Well, let S be the set of all (at most) s elements that are ever inserted, and for each $y \in S$ let Z_{y} be the indicator r.v. of the event that y is currently stored at $h(x)$. Thus $Z=\sum_{y \in S} Z_{y}$ and $\mathrm{E}(Z)=\sum_{y \in S} \mathrm{E}\left(Z_{y}\right)$. Since h is chosen from a 2-universal family, we have $\mathrm{E}\left(Z_{y}\right) \leq \operatorname{Pr}[h(x)=h(y)] \leq \frac{1}{n}$. Hence $\mathrm{E}(Z) \leq \frac{s}{n}$. This completes the proof.

So what? Well, choose a table size n that is at least as large as the largest set S we will ever want to store, so that $n \geq s$. Then the above Theorem ensures that the expected cost per operation is (proportional to) at most 2. I.e., we have constant expected time per operation, for any sequence of requests: there are no bad sequences.

Q: How do we construct a 2-universal family?
A: Simply make $\mathcal{H}=$ set of all functions $h: U \rightarrow T$
Ex: Verify that this family is indeed 2 -universal.
But is this a good choice? Actually no, because there are n^{m} functions in the family, and so it takes $O(m \log n)$ bits to represent any of them. (Check you understand this.) Since the universe size m is assumed to be huge, this is impractical. What we need is a 2-universal family that is small and that is efficient to work with.

A 2-universal family

Let p be a prime with $p \geq m$. Since for any m there exists a prime between m and $2 m$, we can assume that $p \leq 2 m$.
Our hash functions will operate over the field $\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$, which includes our universe U. (So if we get a family that is 2 -universal over \mathbb{Z}_{p}, it will certainly be 2 -universal over U also.)
For $a, b \in \mathbb{Z}_{p}$, define the function $h_{a b}: \mathbb{Z}_{p} \rightarrow T$ by

$$
h_{a b}(x)=((a x+b) \bmod p) \bmod n
$$

Our hash family will be $\mathcal{H}=\left\{h_{a b}: a, b \in \mathbb{Z}_{p}, a \neq 0\right\}$.
The key point here is that \mathcal{H} contains only $p(p-1)$ functions (why?), and specifying a function $h_{a b}$ requires only $O(\log p)=O(\log m)$ bits. (Compare the $O(m \log n)$ bits required for a purely random function.) To choose $h_{a b} \in \mathcal{H}$, we simply select a, b independently and u.a.r. from $\mathbb{Z}_{p}-\{0\}$ and \mathbb{Z}_{p} respectively. Moreover, evaluting $h_{a b}(x)$ takes only a few arithmetic operations on $O(\log m)$-bit integers.
So this hash family is very efficient. But is it "random enough"? Surprisingly it is, as we now see:
Claim: The above family \mathcal{H} is 2 -universal.
Proof: Consider any $x, y \in \mathbb{Z}_{p}$ with $x \neq y$. We need to figure out $\operatorname{Pr}\left[h_{a b}(x)=h_{a b}(y)\right]$, where $h_{a b}$ is chosen u.a.r. from \mathcal{H}.
For convenience, define $g_{a b}(x)=(a x+b) \bmod p$, so that $h_{a b}(x)=g_{a b}(x) \bmod n$.
How can $h_{a b}(x)=h_{a b}(y)$? For this to happen, we must have

$$
\begin{equation*}
g_{a b}(x)=g_{a b}(y) \bmod n \tag{*}
\end{equation*}
$$

So let's focus first on $g_{a b}$. Let α, β be any numbers in \mathbb{Z}_{p}. I claim that

$$
\operatorname{Pr}\left[g_{a b}(x)=\alpha \wedge g_{a b}(y)=\beta\right]= \begin{cases}0 & \text { if } \alpha=\beta \tag{**}\\ \frac{1}{p(p-1)} & \text { otherwise }\end{cases}
$$

To see this, note that if $g_{a b}(x)=\alpha$ and $g_{a b}(y)=\beta$ then we must have, in the field \mathbb{Z}_{p},

$$
a x+b=\alpha \quad \text { and } \quad a y+b=\beta
$$

But these two linear equations in the two unknowns a, b have a unique solution in \mathbb{Z}_{p}, namely $a=(\alpha-\beta)(x-y)^{-1}$ and a similar expression for b. (Check this.) And since $x \neq y, a$ is non-zero
if and only if $\alpha \neq \beta$. This means that there is exactly one function $g_{a b}$ that gives us the values $g_{a b}(x)=\alpha$ and $g_{a b}(y)=\beta$ (and no function when $\alpha=\beta$). Since there are $p(p-1)$ functions in all, and we are picking one u.a.r., we've verified ($* *$).
Now let's return to condition (*). This tells us that we'll get $h_{a b}(x)=h_{a b}(y)$ if and only if $\alpha=\beta \bmod n$, i.e., α and β must be in the same residue class $\bmod n$. And from ($* *$) we see that all such pairs with $\alpha \neq \beta$ have probability $\frac{1}{p(p-1)}$. So we have

$$
\begin{equation*}
\left.\operatorname{Pr}\left[h_{a b}(x)=h_{a b}(y)\right]=\frac{1}{p(p-1)} \times \mid\{(\alpha, \beta): \alpha \neq \beta \text { and } \alpha=\beta \bmod n\} \right\rvert\, \tag{***}
\end{equation*}
$$

How many pairs (α, β) are there which satisfy $\alpha \neq \beta$ and $\alpha=\beta \bmod n$? Well, there are p choices for α, and for each one the number of values of β is one less than the size of the residue class of α. Each residue class mod n clearly has size at most $\left\lceil\frac{p}{n}\right\rceil$. So the number of such (α, β) pairs is $\leq p\left(\left\lceil\frac{p}{n}\right\rceil-1\right) \leq \frac{p(p-1)}{n}$.
Plugging this into ($* * *$) gives

$$
\operatorname{Pr}\left[h_{a b}(x)=h_{a b}(y)\right] \leq \frac{1}{p(p-1)} \times \frac{p(p-1)}{n}=\frac{1}{n},
$$

which is exactly the condition for 2-universality.
Ex: Why did we work with \mathbb{Z}_{p} for a prime $p \geq m$, rather than directly with $\mathbb{Z}_{m}=U$?
Ex: Consider the family $\mathcal{H}^{\prime}=\left\{h_{a b}: a, b \in \mathbb{Z}_{p}\right\}$ (i.e., we have removed the restriction that $a \neq 0$). Is this family also 2 -universal?

