
CS174 Lecture 14

Data-Punctuated Token Trees (Berlekamp)

Fingerprints provide a fast and communication-efficient way to check whether two strings are
identical or not. Rather than sending S and T over a network, you can send the fingerprint f(S)
from one processor to the other, where it can be compared to f(T). But if two strings are slightly
different (through editing or version changes) what do we do?

Data-punctuated token trees provide a storage and communication-efficient way to compute and
transmit the difference between two strings. The idea is to construct a tree with the characters of
the string as leaves and such that each internal node holds the fingerprint of the subtree below it.
Then comparing nodes gives a fast way to compare large substrings.

Fingerprint trees: First try

The most naïve way to build fingerprint trees is shown below. The characters of S are numbered
in order S1S2…Sn.

Each non-leaf node contains the fingerprint of the substring below it. The tree is a complete
binary tree (assuming n is a power of two). For the fingerprint functions discussed so far, it is
easy to compute the value at a node from only the values of the two children. That is, if the
fingerprint function is

Then we can combine fingerprints for the concatenation S+T of two k-byte strings S and T as

S1 S2 S3 S4 S5 S6 S7 S8 Sn

f(S1S2) f(S3S4) f(S5S6) f(S7S8)

f(S1…S4) f(S5…S8)

f(Sn-1Sn)

…

f(S1…S8)

f(Sn-3Sn)

…

…

)(mod),...,(
1

1 pSBSSf
n

i
i

i
n ∑

=
=

)(mod)(pTSBTSf k +=+

Then if we have fingerprint trees for identical strings S and T, all the internal nodes will have the
same values. Now suppose we change one character Sj of S. The only changes occur in nodes
that are ancestors of Sj.

So to find the changed nodes, we start by comparing the roots of the two trees. Since they are
different, we check all their children. In the example above S4 has been changed and is now
different from T4. The left child of the top node in the tree above is different, so we check its
children etc. We have shown two times of bold edges in the figure. The lighter bold edges
indicate nodes that were checked. The heavy bold edges show nodes that were checked and
found to be different. Eventually, we arrive at all the changed leaves. The time to find k changed
nodes is O(k log n).

But there is a big problem with this scheme. If we add or delete a node Sj, all the nodes to the
right of Sj and all their ancestors will need to be changed. That is, we will need to change Ω(n)
nodes of the tree. The problem is that the alignment of nodes in this tree is derived strictly from
the numbering of the characters in the sequence, and that can be changed by an insert or a delete.

The solution is to use a data-punctuated fingerprint tree. We build a tree whose structure is
determined by the data objects (characters) themselves. To do this, we need a binary-valued
parity function on characters. The parity function doesn’t have to be the usual parity function
(i.e. 1 for an odd, 0 for even), but any binary function that is 1 on about half the inputs and which
has a “random” character. By this we mean that it is hard to predict the value of the parity
function on any given input.

To be more precise, we will assume that B = {0,…,2b-1} is the range of a b-bit character, and
that

fk: B
k → B is a k-argument fingerprint function (which returns a character) and

P: B → {0,1} is the parity function for characters.

S1 S2 S3 S4 S5 S6 S7 S8

f(S1S2) f(S3S4) f(S5S6) f(S7S8)

f(S1…S4) f(S5…S8)

f(S1…S8)

T1 T2 T3 T4 T5 T6 T7 T8

f(T1T2) f(T3T4) f(T5T6) f(T7T8)

f(T1…T4) f(T5…T8)

f(T1…T8)

Data-punctuated Trees

After we apply the parity function to the input characters, we get a stream of bits:

We use these bits to determine the alignment of the tree. First, we draw boundaries wherever
there is a transition from a 1 to a 0. That is we draw vertical lines at those transitions

In between the vertical bars, the parity bits consists of a sequence of (at least one) 0’s and (at
least one) 1’s. Each group becomes the set of children of a new node:

The new nodes themselves have character values, and are denoted as S2
k where 2 indicates that

they are at the second level of the tree, and k is their left-right position at that level.

We then apply the parity function to the string S2 = (S2
1,S

2
2,…) producing a new binary

sequence. We partition this sequence as above and compute the fingerprint of each group,
producing the next level of the tree, S3 = (S3

1,S
3
2,...). We continue moving up until there is a

single node, at which point we have built a fingerprint tree. Each node contains the fingerprint of
its children, but the number of children is variable. There must be at least two children (at least
one 0 and one 1), but there is no upper limit.

In order to analyze these trees, we make a couple of assumptions:

1. The parity function is “pseudo-random” that is, it always produces the same output on a
given input, but that output is irregular and hard to predict given the output. So the sequence
of outputs on a sequence of distinct inputs looks like a random bit string.

2. The input data does not contain long substrings of duplicate characters. Because the parity
function must produce the same output on the same input, a long string of identical input

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

 1 0 1 0 0 0 1 1 0 1 0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

 1 0 1 0 0 0 1 1 0 1 0

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

 1 0 1 0 0 0 1 1 0 1 0

S2
3 =

f5(S4,…,S8)
S2

4 =
f2(S9,S10)

S2
2 =

f2(S2,S3)

characters produces a long string of identical bits, which is clearly not random. We could
guarantee that the input string satisfies this property by using run-length coding or some
other compression scheme (we must be careful that the compression scheme preserves
similarity, i.e. changing a few characters of the uncompressed string should change only a
few characters of the compressed string).

Expected number of children

Because of the partitioning, the expected number of children is the expected number of bits
between consecutive 1-to-0 transitions in a random binary string. Let this number be Z, we can
express this number (carefully) as a sum of two geometric random variables X and Y. X equals
the length of the sequence of contiguous zeros between the 1-to-0 transition and the 0-to-1
transition, and Y is the length of the sequence of contiguous ones between the 0-to-1 transition
and the second 1-to-0 transition:

Note that for the usual definition of geometric r.v., X must start with the second zero (the first is
zero by definition) which is a random choice, and it must finish with the first one. Similarly, Y
starts with the second one (if there is one) and finishes with the next zero. But the result is the
same as if we shifted X and Y one place to the left.

Since X is a geometric random variable with p = 0.5 its expected value E[X] = 1/p = 2. Similarly,
E[Y] = 2. So the expected number of children is

E[Z] = E[X] + E[Y] = 4

The probability Pr[Z=k] = (k-1)2-k, so it falls off sharply with increasing k. e.g. The probability
that the number of children is 8 or greater is about 0.0625.

Since the degree is at least two (except for the first and last nodes at each level), the height of a
fingerprint tree with N nodes is O(log N), and on average about log4 N.

Edits to Data-punctuated Token Trees

The important property of self-aligning fingerprint trees is that local changes to the input string
cause local changes to the tree. That is, a change, insert or delete to a leaf affects only the
ancestor nodes (and a few nodes nearby). The number of changes is O(log N) where N is the
length of the string. We give a simplified proof here:

 <------Z------>
1 0 0 0 1 1 0 1
 __ ___/ _ _/
 \/ \/
 X Y

Lemma

Let Sk
j-1,S

k
j,S

k
j+1 be a sequence of three consecutive nodes at level k. Then any change to these

nodes (including removing any of them, or if all three are inserts) requires changes to at most
three consecutive nodes at level k+1.

Proof

We note simply that there are at most 3 consecutive nodes at level k+1 whose values depend on
Sk

j-1,S
k
j,S

k
j+1. Denote them Sk+1

i-1,S
k+1

i,S
k+1

i+1. Then Sk+1
i must be the parent of two or three nodes

from Sk
j-1,S

k
j,S

k
j+1, while Sk+1

i-1 and Sk+1
i+1 must include neighboring nodes as well as (possibly)

nodes from among Sk
j-1,S

k
j,S

k
j+1.

We cannot tighten this result. There are situations where changing the values of 3 nodes at level
k does indeed change the values of 3 nodes at level k+1. For example, suppose we have the
following setup before changes to the level k nodes (bit values are for the level k nodes):

And then when we make changes to the three level k nodes, the new picture is:

Both the 1-to-0 boundaries have moved, and that is why both Sk+1
i-1 and Sk+1

i+1 have changed. In
other cases, we may end up with fewer than 3 nodes at level k+1. That is fine, the lemma states
that at most 3 nodes at level k+1 can change.

When we insert or delete or change a leaf node (i.e. we modify the original string), then this is a
special case of changing 3 consecutive nodes at level 1 of the tree. In fact a single change can
only cause two changed nodes at the next level, but there may be three at the level above. Thus
the total number of changed nodes is at most 3 times the height of the tree, which is O(log N). In
fact, 3 changed nodes at each level is quite pessimistic. More typically, changing one or two
nodes at level k will lead to only one or two changed nodes at the next level, so the expected
number of changed nodes per level in somewhere in between one and two.

In operation, data-punctuated token trees work like the fingerprint trees discussed earlier. We
transmit first the root, then if it differs, we transmit its children, and then the children of child
nodes that differ etc. Thus, if there are k changes between documents, we need to transmit O(k
log N) nodes, and fewer if the changes are localized in the documents.

Sk+1
i-1 S

k+1
i S

k+1
i+1

 1 0 1 0 0
 Skj-1 S

k
j S

k
j+1

Sk+1
i-1 S

k+1
i S

k+1
i+1

 1 1 0 1 0
 Skj-1 S

k
j S

k
j+1

