
CS174 Lecture 13 John Canny

Testing Equality of Strings

Testing equality of strings has a number of applications in networked computing environments.
A common problem in a distributed environment is that multiple copies of documents exist in
different places (e.g. in the cache of your web browser, on your PC’s local disk etc). Any one of
these copies may be modified, and then the others will need to be updated. But first you must find
out whether the two documents are the still the same or not. Time stamps are a partial solution, but
a more general technique is to use fingerprinting.

Suppose you have two documents in different parts of the network, and you would like to check
if they are the same without sending an entire copy of one of them. Instead you can use a finger-
print. One way of computing fingerprints uses ideas you have already seen (testing polynomial
identities).

Polynomial method 1

Let the two strings consist ofn characters each (or there isn’t much point in checking equality).
Let one stringa = a1a2 . . . an, and the otherb = b1b2 . . . bn. You can think of a string as a
polynomial:

a(x) =
n∑

i=1

aix
i

And similarly forb(x). Now you can check ifa(x) = b(x) by choosing a randomr and computing
α = a(r) andβ = b(r). You only need to transmitα or β across the network, and with a little more
work we can make sure that they are much smaller than the stringsa or b, which haven bytes.

As we have already seen, ifr is chosen in the range{0, . . . ,M − 1} and if a(x) andb(x) are
different, then the probability thatα = β is at mostn/M (n is the degree of the polynomials here).
So by choosingM > 2n, we can be confident that we have a reasonable chance (better than even)
of detecting a difference. And we can make the probability of not discovering a difference between
a andb exponentially small by using more bits forr. Even if we pickr of say1024n, we need only
O(log n) bits for r.

But then we run into a snag. Even thoughr itself has onlyO(log n) bits, the polynomialsa(x)
andb(x) include a term of the formxn and when we compute thenth power ofr, we will get a
number withO(n log n) bits. That’s actually longer than the original strings.

The solution is to work over a finite field (modulo a prime) instead of over the integers. That
is, we do all calculationsmod p, which guarantees that we never need more thanO(log p) bits.
The value ofa(mod p) is the remainder whena is divided byp. Thusa(mod p) is always in
{0, . . . , p − 1}, so mod controls the size of expressions. The mod operation has the important
property that it commutes with other arithmetic operations. That is,a(mod p) × b(mod p) =
(ab)(mod p), etc. This means that we can use mod in the middle of calculations to reduce the size

1



of intermediate expressions, and the result is the same as if we had applied it only once at the end.

To figure out how largep needs to be, notice that there are onlyp distinct possible values for
r(mod p). So to get enough distinct choices forr to make the random choice part work, we need
p > M .

Method 1: n = length ofa or b

1. LetM be “somewhat larger” thann, say1024n or more

2. Pick a primep > M (actually pick random numbers until one is prime).

3. Choose a randomr from {0, . . . ,M − 1}
4. Computeα = a(r)(mod p) and transmitα, p, r across the network (allO(log n) bits)

5. At other end of network, receiveα, p, r and compareα with β = b(r)(mod p)

Which will detect a difference between a and b with probability at least1 − n/M . Note that
sincep doesn’t need to change it does not need to be transmitted if the two parties agree on it ahead
of time.

The running time depends on the time to computea(r)(mod p). If we assume each arithmetic
step has unit cost, that takes onlyO(n) time. But that is a little bit loose because each arithmetic
step involvesO(log n) bits. However, its rare to get strings with more than220 characters (1 MB),
and 32 bits is plenty to hold the results for smaller strings, so its not unreasonable to make that
assumption in practice.

Polynomial Method 2

This method is very similar to the first method. Only instead of using a fixedp and a randomly
chosenr, we use a fixedr, and a randomly chosen primep. First of all, we want to find anr
such thata(r) andb(r) are always different ifa andb are different strings. Assuming each string
contains 8-bit bytes, then it suffices to taker = 256 = 28. Why?: Prove this for yourself.

Now we computeα = a(256)(mod p) and transmit it. The recipient compares it toβ =
b(256)(mod p). Those two will be the same ifα = β(mod p), that is, if(α− β) is divisible byp.

Now if we choosep from a “large enough set” then the probability that(α− β) is divisible by
p will be low. To specify how large a set, we need to know a little more about prime numbers:

Prime Number TheoremLet π(k) = number of distinct prime numbers less thank. Then

π(k) ≈ k/ ln k

where the approximation symbol≈ means “asymptotically approaches”, i.e.

lim
k→∞

π(k)

(k/ ln k)
= 1

2



Corollary: Let N be the product of the firstm distinct primes, thenm < 2 ln N/ ln ln N .

Proof: Let k be the median prime factor ofN . Half the factors are bigger thank, so

N > km/2 or (m/2) ln k < (ln N)

Now half the factors are smaller thank, so

m/2 = π(k) ≈ k/ ln k

and substitutingm/2 ≈ k/ ln k in the inequality above it

(k/ ln k) ln k < ln N or k < ln N

and then substituting this bound onk in the formulam/2 ≈ k/ ln k gives:

m < 2 ln N/ ln ln N QED

Note: the identitym < 2 ln N/ ln ln N holds for any product ofm distinct primes, because they
and their product will be larger than for the firstm primes. Going back to the string comparison, if
α−β = N , thenN has at most8n bits forn-character string comparisons. The maximum number
of factors ofN is 2 ln N/ ln ln N , or O(n/ log n).

When we choose a primep, we will fail if p dividesα − β. By the above argument, there are
at mostO(n/ log n) bad choices forp. So we should pickp in a range{2, . . . ,M} which contains
substantially more thann/ log n primes. i.e. we want

π(M) ≈ M/ ln M >> n/ log n

and choosingM = Ω(n) or say1000n will do this.

Method 2: n = length ofa or b

1. LetM be “somewhat larger” thann, say1000n or more.

2. Pick a random primep from {2, . . . ,M}.
3. Computeα = a(256)(mod p) and transmitα, p across the network (bothO(log n) bits).

4. At other end of network, receiveα, p and compareα with β = b(256)(mod p).

So to contrast the two methods: both comparea(r)(mod p) and b(r)(mod p). Method 1
uses a fixedp and a randomr with O(log n) bits each. Method 2 uses a fixedr = 256, and a
randomp with O(log n) bits. Computing the primes for method 2 involves generating random
numbers and then testing them for primality. This takes time polynomial inlog n, but the constant
is high in practice. So instead it is better to precompute some primes, and pick one at random. For
n-character strings, you would needO(n/ log n) primes on the source machine.

3


