
CS174 Lecture 1 John Canny

Randomized Birthday Search

From the table below, copy the number under the month of your birthday onto a piece of paper.

Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec
323 106 261 13 75 137 354 292 230 168 44 199

Now if your birthday is in the first half of the month, use this table to lookup a second number:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
104 137 168 200 232 264 296 328 112 144 176 208 240 272 304 336

Or if your birthday is in the second half of the month, use this table:

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
120 152 184 216 248 280 312 344 128 160 192 224 256 288 320

Now add the two numbers. If the total is bigger than 372, subtract 372 from it, to get a number in
the range 1-372. This is a very simple hash function of your birthday.

The next step is a survey of how many people have numbers in the following intervals:

1-31 32-62 63-93 94-124 125-155 156-186
187-217 218-248 249-279 280-310 311-341 342-372

In a typical class, its usually possible to find one of these groups with at least 9 people in it. Such
a group has a good chance (prob. better than 73%) of having a shared birthday in it. The large
group exists because the number of students in each group is a random variable with a mean
(which is number of students/12) but a “tail” of larger and smaller values which is quite probable.

Question: The protocol given in class allows the rest of the class to notice which two students had
the same birthday. Come up with a variation where the two students can discover this, but the rest
of the class cannot. Hint: the process is the same except in the student’s choice of what number
they announce. You can suppose this hash function were more complicated, and difficult to invert.

This example illustrates several points:

• Probability implies that its very likely certain things happen (two people in class have the
same birthday).

• We can use the “tail” of a random variable (number of birthdays in one bucket) to show that
what we’re looking for is likely somewhere.

• We can use random analysis as a fast “filter” to hone in on a likely solution.

• One step of the algorithm is fast and probably correct. We can also modify it to be correct
(exhaustive) at the expense of speed.
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• We can use encryption to hide information from onlookers.

• We can use randomization to selectively share information.

Definitions

Experiment: perform an action once, e.g. toss a 6-sided die.

Sample Space:The set of possible outcomes, consisting of individual outcomes or sample points
with known probability. e.g. for the dice experiment,S = {1, 2, 3, 4, 5, 6} and each of1, 2, 3, . . .
is a sample point. For a fair die, the probability of any sample point is1/6.

An Event E (subset of S): Is a subset of sample points, e.g. even die tosses{2, 4, 6}.

Random Variables: A random variableX is a functionX : S → R from a sample space toR,
the real numbers. A random variable assigns a real value to every possible outcome of an
experiment. e.g.

X1 = i, wherei is the number on the die.

X1 has domain and range{1, . . . , 6}.

X2 =

{
1 if the die comes up even
0 otherwise

X2 has domain{1, . . . , 6} and range{0, 1}.

The second random variable is called anindicator random variable , because it is 0-1 valued. A
0-1 valued random variable naturally describes an event, which is the set of sample points where
the variable is 1. In this case,X2 describes the event that the die toss is even.

Random variables inherit a probability distribution from the sample space. The probability
Pr[X = i] is the sum of the probabilities for all sample points whereX = i. So for the examples
above:

Pr[X1 = i] is 1/6 for i in {1, . . . , 6}

Pr[X2 = 0] = Pr[X2 = 1] = 1/2

It follows that if we take the sum
∑

Pr[X = v] with v ranging over the range ofX, we are
summing the probabilities of all the sample points. So∑

v∈range(X)

Pr[X = v] = 1 always

We can also have a random variable with an infinite domain, e.g.Pr[X = i] = 1/2i for
i = 1, 2, 3, . . . and we still have:

∞∑
i=1

Pr[X = i] = 1

Joint probability
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We will often want to talk about the probability of two events happening at the same time. For
example, the probability that a die toss is both even and a multiple of 3. The notation for this is
Pr[X1 = u, X2 = v] and it is called a joint probability. It means the probability of the set of
outcomes where bothX1 has valueu andX2 has valuev. So you can think of the comma as an
AND operator.

Arithmetic on Random Variables
Since random variables are real-valued functions, we can do arithmetic on them. The result is
another random variable. For example, if we writeZ = X + Y , thenZ is a random variable. Its
value at any point in the sample space is the sum of the values ofX andY at that sample point.
Similarly, W = X × Y is a random variable whose value at a sample point is product ofX andY
at that point.

A Caution About the Sample Space
Sometimes random variables are defined on different sample spaces. For instance, letX be the
value on the top of a fair die toss. LetY be the value on the top of adifferenttoss. There are
actually two different sample spaces. But we can think of them being part of a larger sample
space that contains both experiments. That is, an experiment is a pair of throws of the die. Then
X depends only on the first toss, andY depends only on the second. If we do this, we are able to
defineZ = X + Y . The table below shows the probability distribution ofZ. The first row is the
value ofZ, the next row is the probability, and the last row is the corresponding pairs of(X, Y )
values.

Z 2 3 4 5 6 7 8 9 10 11 12
Pr[Z] 1/12 2/12 3/12 4/12 5/12 6/12 5/12 4/12 3/12 2/12 1/12
(X,Y) (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

(2,1) (2,2) (2,3) (2,4) (2,5) (3,5) (4,5) (5,5) (6,5)
(3,1) (3,2) (3,3) (3,4) (4,4) (5,4) (6,4)

(4,1) (4,2) (4,3) (5,3) (6,3)
(5,1) (5,2) (6,2)

(6,1)

Independence
A very important concept for this course is independence of RV’s.X1 andX2 are independent
random variables ifPr[X1 = u, X2 = v] = Pr[X1 = u]Pr[X2 = v] for all u andv in the ranges of
X1 andX2.

Example 1
For a single toss of a fair die, letX1 = 1 if the number on the die is even,X1 = 0 otherwise. Let
X2 be 1 if the same die toss gives a4, and 0 otherwise. ThenX1 andX2 arenot independent. We
need only disprove the identity in one place, e.g.Pr[X1 = 1, X2 = 1] is the probability that the
die toss is even and a four, in other words a four. ThusPr[X1 = 1, X2 = 1] = 1/6. But
Pr[X1 = 1] = 1/2 andPr[X2 = 1] = 1/6 and the product of these two does not equal
Pr[X1 = 1, X2 = 1].

Example 2
Now suppose we toss a fair die twice, and letX1 = 1 if the number on thefirst die is even,
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X1 = 0 otherwise. LetX2 be 1 if theseconddie toss gives a4, and 0 otherwise. In this caseX1

andX2 are independent. The outcomes whereX1 = X2 = 1 are the pairs of tosses(2, 4), (4, 4)
and(6, 4). The total number of outcomes is 36, so thePr[X1 = 1, X2 = 1] = 3/36 = 1/12. This
does match the product ofPr[X1 = 1] = 1/2 andPr[X2 = 1] = 1/6. You can check yourself that
probabilities for other values ofX1 andX2 match also.

Examples 1 and 2 appear to have the same definitions for their R.V.’s. But the sample spaces are
different. Be careful when using random variables. Make sure you understand both the definition
of the variableandthe sample space on which it is defined.

Conditional Probability and Independence
The conditional probability thatX1 = u givenX2 = v is writtenPr[X1 = u|X2 = v] and is
defined as:

Pr[X1 = u|X2 = v] =
Pr[X1 = u, X2 = v]

Pr[X2 = v]

it means the probability thatX1 = u within the smaller sample space whereX2 = v. Because we
are in the smaller sample space, we divide by the probability of that spacePr[X2 = v].

Conditional probability gives an alternative definition of independence: Random variablesX1 and
X2 are independent if and only if:

Pr[X1 = u|X2 = v] = Pr[X1 = u] for all u, v

In other words,X1 andX2 are independent if conditioning byX2 has no effect on the probability
of X1 = u.

Expected Value
Associated with a random variable is its expected valueE[X], defined by

E[X] =
∑

v∈Range(X)

vPr[X = v]

Linearity
Another important idea for this course: Expected value is linear, i.e. it satisfies
E[X1 + X2] = E[X1] + E[X2] or more generally:

E[
n∑

i=1

Xi] =
n∑

i=1

E[Xi]

Note: Linearity of expectation doesnt require independence. It is always true.

Proof:
We do the proof only forn = 2. The general case follows easily by induction onn. To compute
the value for the random variableY = X1 + X2, we would ordinarily compute its range. But in
fact its equivalent to work separately over the ranges ofX1 andX2. That is, what we actually
want is

E[Y ] =
∑

w∈Range(Y )

wPr[Y = w]
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But since thePr[Y = w] is the sum ofPr[X1 = u, X2 = v] for all pairsu, v such thatu + v = w,
the above sum is equivalent to:

E[X1 + X2] =
∑

u∈Range(X1)

∑
v∈Range(X2)(u + v)Pr[X1 = u, X2 = v]

=
∑

u

∑
v uPr[X1 = u, X2 = v] +

∑
u

∑
v vPr[X1 = u, X2 = v]

=
∑

u u
∑

v Pr[X1 = u, X2 = v] +
∑

v v
∑

u Pr[X1 = u, X2 = v]

=
∑

u uPr[X1 = u] +
∑

v vPr[X2 = v]

= E[X1] + E[X2]

QED, and nowhere did we use the independence property

Products
The rule for products of RV’s is what you might expect. However, it requires independence of the
RV’s.

Theorem:
If X1 andX2 are independent, thenE[X1X2] = E[X1]E[X2]

Proof: We can start like we did for sums:

E[X1X2] =
∑

u∈Range(X1)

∑
v∈Range(X2)

uvPr[X1 = u, X2 = v]

We can moveu, but we get stuck here unless we use independence:

E[X1X2] =
∑

u

u
∑

v

vPr[X1 = u, X2 = v]

applying the independence rule will allow us to go further:

E[X1X2] =
∑

u

u
∑

v

vPr[X1 = u]Pr[X2 = v]

Now we have a “constant” (Pr[X1 = u]) that can be moved outside the sum overv:

E[X1X2] =
∑

u

uPr[X1 = u]
∑

v

vPr[X2 = v]

which we recognize as:

E[X1X2] =
∑

u

uPr[X1 = u]E[X2] = E[X1]E[X2]

QED
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