CS174 Sp2001 Homework 12 Solutions out: May 3, 2001

1. Each secret shase of a secret is a pairz;, y; wherey; = p(z;) and
p(z) = rxr’ + -+ + rir + s(mod p)

is a polynomial whose coefficients, ..., are chosen independently and uniformly at
random fromZ,. As we did for addition, assume that all secrets are shared at the same
evaluation points,...,z,. Then we can drop references to the and write (by slight
abuse of notationy; = ;.

Suppose then that secretandb are shared as, . . ., a,, andby, ..., b,. The reconstruction

functionh is:
t+1

S = h(Sl, ey 8t+1) = ZSZLZ
i=1
and the Lagrange polynomial coefficieiat (which we wrote ad.;(0) before) is

Hj;éi T
Hj;éi(xi — ;)

the question asks to compare the valuek(@fb,, . . ., a;+1b:11) andab, and from the above:

L=

t+1

h(albh S at+1bt+1) = ZaibiLi
i=1

to prove that this is not equal td we need only a counter-example. Pick 1, z; = —1,
Ty =1, WhenceL1 =Ly, = 1/2 Thereforeh((llbl, agbg) = 1/2(0/1()1 + azbg). Butab is the
product ofl/2(a; + as) and1/2(b; + by). Clearly:

1/2((11[)1 + agbg) 75 1/4(0,1 + a2)(1)1 + bg)

2. Noticethati(sy,..., s;11) is alinear function from the formula above, thatii§As;, ..., As;11) =
A(s1,. .., 8i11)(mod p). Soh(kay,...,ka;1) = ka(mod p). Therefore multiplication
by a public scalar works with secret-sharing.

3. Letu andwv be two numbers bit-committed a = ¢*h* and B = ¢Yh". We give two
ZKPs, one thatu = 1) vV (v = 1) and the other that: = 0) V (v = 0). If both conditions
hold, then exactly one of the numbers is zero, and the other is one. First, for the proof that
(u=1) Vv (v = 1). In reality, it will be the case that either = 0, v = 1 or vice versa.
Suppose the first case holds, then we will need a simulation of a proaf that and a real
proof thatv = 1, and we will combine them:

(a) Prover picks:; (for real proof thaty = 1) at random and sendg = ¢“'(mod p) to
verifier. Prover picks random, andw, and setsy, = ¢g*°(Ah 1) “(mod p), and
sendsy, to verifier (for phoney proof that = 1).
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(b) Verifier picksc(mod ¢) at random, and sends it to prover.

(c) Prover computes, = ¢ — ¢y, and thenw; = yc; + a;(mod ¢). Prover sendsy, c1,
andw, andw; to verifier.

(d) Verifier checks that = ¢y + ¢; and that

g¥° = ap(Ah™1)(mod p)
g“t = a;(Bh7 1) (mod p)

For the proof for the case whete= 1 andv = 0 is similar, we flip the correct and phoney
proofs:

(a) Prover picks, (for real proof that. = 1) at random and sends = ¢*(mod p) to
verifier. Prover picks randomy andw; and setsy; = ¢“*(Ah!)"“*(mod p), and
sendsy; to verifier (for phoney proof that = 1).

(b) Verifier picksc(mod ¢) at random, and sends it to prover.

(c) Prover computeg, = ¢ — ¢y, and thenwy = ycy + ag(mod ¢). Prover sendsy, ¢y,
andw, andw; to verifier.

(d) Verifier checks that = ¢y + ¢, and that

g”° = ag(Ah~1)(mod p)
g¥t = oy (Bh71) (mod p)

To construct a proof that = 0 or v = 0, we repeat the above proofs, but replagé )
with (A) and(Bh™!) with (B).

Second MethodThis method is a little simpler. Notice that if exactly onexgf is one and
the other zero, them + v = 1. Use the proof given in class to show thaits either zero or
one. Then by enforcing the constraint that v = 1, we forcewv to be either zero or one. To
enforce the constraint, note that

ABh—l — gazhugyhvh—l — g(az—l—y)h(u—i-v—l)

and then we can give a zero-knowledge proof that we know the discrete lggpivt Bh 1.
That proves thati Bh ! is a pure power of (assuming we dont know the log 6J, or in
other wordsu + v — 1 = 0. This proof is just Shamir’s discrete log proof:

(a) Prover picks: at random, and sends= ¢“(mod p) to verifier.
(b) Verifier picksc at random fronf, and sends to prover.

(c) Prover sends = c¢(z +y) + a(mod q) to verifier.

(d) Verifier checks thag” = a(ABR™')¢(mod p).



