
CS174 Midterm 2 Solutions Spring 99

1. (20 points) Give brief answers to the following:

(a) (4 points) In the byzantine agreement algorithm, do all good processors set their
output bits permanently on the same round?

No, if bad processors send different outputs to different good processors, some
processors will havetally > G while others will have tally � G. The processors
with tally > G will halt in that round, while the others will run for one more
round.

(b) (4 points) The data-punctuated token trees from class don’t work on a string of the
same character repeated many times. How would you fix that?

Method 1: use run-length coding. Replace the subsequenceaaaa � � � with #Na
where N is an integer, and# is a special character. Method 2: use redundant
encoding, where there are more than one representation for each char. e.g. in
ASCII, the 8th bit isnt used, so we can set it to one or zero. Then replaceaaaa � � �
with a0a1a1 � � � wherea0 has the 8th bit set to 0 anda1 has the 8th bit set to 1. The
sequence ofa0s anda1s should be pseudo-random and repeatable.

(c) (4 points) In the fingerprint algorithms from class, the sequence of characters is
converted to a polynomial, evaluated, and then reduced modulo a prime. Why is a
prime used rather than a non-prime modulus?

The integers mod p form a field. That guarantees that a polynomialP (x) of
degreed has� d roots. If p is not prime, there may be more thand roots for P (x).

(d) (4 points) What is the minimum number of edges in a spanning forest onn vertices?

A spanning forest must touch every vertex in the graph. Each edge in the forest
can touch two vertices, so the minimum number of edges isn=2.

(e) (4 points) In choice coordination with two processors, do all processors halt in the
same round?

No, One processor that writes ap halts immediately, while the other runs for
one more round.

2. (20 points) Suppose we run the randomized routing algorithm from class on a hypercube
with N = 2n processors. We use bit-fixing, so that at theith step, theith bit of a packet’s
addressa1a2 � � �an is set to the destination address.

(a) (4 points) What is the expected number of collisions during the second time step?
(note: there are no collisions during the first time step, but more than one packet may
arrive at the same processor in the first time step)

The answer isN=8. At the start of the first time step, every packet has a unique
address. In order to have a collision, two packets must arrive at the same vertex
in the first time step andtry to leave via the same edge in the second time step.
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The only packets that can arrive at the same processor during step 1 are pairsvi,
vj whose starting addressesi and j differ only in the first bit. If the first bit of
their final destinations agree, they will move to the same processor. The
probability that this happens is 1=2. If this pair of packets also has the same
second bit of destination address, then a collision occurs. The probability that
this happens given that they are at the same processor is1=2. The expected
number of collisions in the second time step is(N=2)� (1=2)� (1=2) = N=8,
which is the number of pairs which could collide(N=2) times the probability
(1=2) that a pair moves to the same processor at step 1, times the probability that
the pair tries to leave via the same edge(1=2) at step 2.

(b) (4 points) What is the probability that two randomly chosen routes share at least one
edge? Give an upper bound.

This is the expected value of the random variableHij defined in lecture. By that
analysis, the expected value of the sum ofHij over all j, which isNHij, was
� n=2. ThereforeE[Hij] = Pr[Hij = 1] � n=(2N) which is the answer we want.

(c) (8 points) LetXij be a random variable that counts the number of edges shared by
routes of packetsvi andvj giventhat these two routes share an edge, soXij > 0.
What is the distribution ofXij? You can assume the destination addresses forvi and
vj are random bit strings.

This is a geometric random variable. Given that two packets arrive at the same
processor and then leave along the same edge, their subsequent routes are given
by the bits of their destinations, which are assumed to be random bit strings. The
probability that they agree on each additional edge is 1/2. So the distribution is
given byPr[Xij = k] = 1=2k for k � 1.

(d) (4 points) What isE[Xij] for Xij as defined in the last question?

The expected value is 3. For a normal geometric random variable, the expected
value is1=p. Here p = 1=2, but the random variable Xij is at least 1, so strictly
speaking, it is 1 + a geometric random variable. Its expected value is
1 + 1=p = 1 + 2 = 3.

3. (20 points) Consider the caching problem where the cache holdsk items. Assume memory
items are identified with positive integers. Let the following sequence of N requests occur:
(1; 2; 3; : : : ; 2k; 1; 2; 3; : : : ; 2k; : : :), that is, the sequence(1; : : : ; 2k) repeated until there are
N requests (assumeN >> k).

(a) (15 points) How many misses will the optimal offline algorithm MIN make on this
sequence as a function ofN?

It makes� N=2. For the first k requests,1; : : : ; k the items simply fill the cache.
Then each request fromk + 1; : : : ; 2k causes eviction of the page that was added
one step earlier, which has its next request the furthest in the future. After this,
the cache contents is1; : : : ; k � 1; 2k. Then the nextk � 1 requests cause no
misses. The requestsk; : : : ; 2k each cause a miss and successively occupy the last
cache location. This process repeats for ever. During each cycle we havek � 1
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hits and k + 1 misses. The number of cycles isN=(2k), so the total number of
misses isN(k + 1)=2k � N=2.

(b) (5 points) Is there a sequence of requests for2k distinct memory items that would
produce more misses for MIN?
This is the worst possible sequence, so there is no other sequence that produces
more misses.

4. (20 points) In the algorithm for computing minimum cuts from class, we used contraction
to simplify the graph. We showed that the probability that a randomly-selected edge lies in
the minimum cut is� 2=n.

(a) (8 points) Suppose we pickn=2 edges independently and at random without
contracting any of them. What is the probability that none of them is in the min-cut?
Assumen is very large, and simplify your answer.
Since we are takingn=2 independent samples, and each has probability(1� 2=n)
of being “good” (not in the cutset), our overall probability of success is

(1� 2=n)n=2 � e�1

(b) (6 points) Suppose we now contract all of those edges. Give lower and upper bounds
on the number of vertices in the contracted graph.
Well, we might pick the same edge every time (or there may be only one edge in
the graph), so the upper bound on the number of vertices after contraction is
n� 1. For the lower bound, we suppose that every edge reduces the number of
vertices by one. Then we would haven=2 vertices after contraction.

(c) (6 points) What is the expected number of vertices in the contracted graph after (b)
above? Hint: the MIN-CUT algorithm from lecture samples edges randomly from a
contracted graph. That’s the same as sampling as in part (a) above, and discarding
redundant edges, i.e. edges that join vertices that have already been contracted. So
you can assume that edges were sampled from the contracted graph. Then use the
formula derived in class (or derive it yourself) for the probability of avoiding the min
cut as a function of the number of verticest remaining in the contracted graph.
The observation here is that there are two different but equivalent methods for
sampling edges, one with repeats and redundant edges and one without. For each
method, we can compute the exact probability of never picking an edge in the
cutset. We can equate the two probabilities and determine how many edges were
contracted in the method from class. That tells us how many vertices remain in
the graph. From part (a), the probability is e�1. This must equal the probability
t2=n2 as a function of the number of verticest after contraction for the method
from lecture. So

t2=n2 = e�1

and therefore t = ne�0:5 = 0:6065n is the expected number of vertices after
contraction.
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