A Suite of Programs for Document Structuring and Image Analysis using Lisp

DRAFT DRAFT

Richard J. Fateman*
Taku Tokuyasu
Computer Science Division, EECS Department
University of California at Berkeley

1 Introduction and Motivation

As part of an effort to incorporate printed material into a
digitally stored library, we were faced with digitizing and
(generally) analyzing substantial quantities of printed tech-
nical documents. For reasons that will become apparent,
it appeared that commercially available optical character
recognition (OCR) programs were not adequate to all parts
of the task. We have vacillated to some extent in deciding
exactly how much of the analysis could be done by com-
mercial software, and have currently settled into a shared
arrangement where we attempt to partition documents into
sections that can ordinarily be processed by commercial pro-
prietary software, and other sections that need special care.

We begin our processing given two-level images of (mostly)
text, and assume that some gross page processing (removing
obvious half-tone images) has been done.

Even after such filtering, the text we are concerned with
may still be unconventional from the perspective of pack-
aged business-oriented OCR software. Our major interest
has been material that includes two-dimensional mathemat-
ical notation, with the sprinkling of unusual symbols, that
goes with it. We have not been concerned with tables, lo-
gos, or diagrams, but at least some of our programs should
be applicable to diagrams with non-linear layouts. Prior to
our involvement in the digital library project at Berkeley, we
had begun a small project on the recognition of mathemati-
cal text — specifically tables of integrals — into a semanti-
cally useful encoding for automated computer lookup. This
task required parsing documents in a domain that can be
categorized loosely as “advanced calculus equations”. Al-
though the techniques developed for this domain can be
carried over into the recognizing the patterns of ordinary
documents, (after all, a text word is a special case of a math-
ematical formula), we expect that the more general nature
of our techniques would result in overall less accuracy on
ordinary business documents, where words occur fairly re-
liably on lines in paragraphs (etc.) Our tools would have
some advantages in unusual (non-text) circumstances.

*This work was supported in part by NSF Grant number CCR-
9214963 and by NSF Infrastructure Grant number CDA-8722788, and
NSF Digital Library grant IRI-9411334.

Before discussing the particular attributes of the pro-
grams we’ve developed, we wish to review a few questions
relevant to our overall project.

1.1 How should scanned text be stored?

The cost of (especially tertiary) storage has dropped to the
point where it is economically feasible to base document-
handling systems on storage and retrieval of pages as com-
pressed bit-maps. Indeed, some business workflow applica-
tions are fundamentally data-base retrieval systems for such
pages where externally imposed keys are used for indexing,
but the pages themselves are essentially opaque to process-
ing.

On the other hand, for many applications, including ours,
it is useful and sometimes critical to be able manipulate the
contents of the scanned material as though it were text. To
be most useful, this content should be structured or “parsed”
80 it can be subjected to indexing, search, reformatting, edit-
ing (including cutting and pasting), computation, and eco-
nomical re-transmission. Such a recognized document can
be stored as a bitmap plus a structure. These combinations
(in the Berkeley digital library project we call them multi-
valent documents) have become very attractive. They look
like especially good solutions for a corpus of widely varying
materials subjected to flexible search, retrieval and process-

ing. [8].

1.2 Why not use off-the-shelf solutions?

Typical commercial OCR programs are quite properly tar-
geted at their most likely source material: business-letter
text. Programs can sometimes succeed on other page recog-
nition task as well. Some can handle columnar data. Some
programs are especially successful for forms recognition from
pre- “zoned” documents. They are best used for high vol-
umes of essentially similar documents. In some cases consid-
erable effort has been devoted to dealing with lower-quality
scanned images in a variety of fonts. The commercial pro-
grams are commonly packaged for efficient distribution and
ease of use in common cases. Their effectiveness can some-
times be improved if the user specifies particular known
qualities of the material (e.g. fixed-width fonts, “noisy” etc.)

The commercial designs appear to substantially preclude
using and refining component tools to gain higher levels of
recognition on unconventional material (e.g., mathematics).

Along another dimension, most systems appear to take
insufficient advantage of certain contextual information that



may be available: for example, we can get much higher accu-
racy on a corpus if we are given material known to be highly
structured and “very” stereotypical: for example pages that
one can depend upon to be all in a particular known font.
Such a specialized recognizer could maintain its relatively
high accuracy in the face of much noisier data.

As discussed in more detail below, we also require, for
some of our applications, a keyed recognition result where
the words refer back to their positions on the original scanned
page. Entry-level packages do not provide such results. Typ-
ical API “development” packages offer this level of data.
Because there are no standards here, the data is provided
in some proprietary vendor format (e.g. XDOC for Xe-
rox/Scansoft Textbridge, PDA for Caere).

Our experiments with several commercial OCR programs
used on our initial data of mathematical text suggested that
available monolithic commercial products would just not
perform adequately. Accuracy, even in recognizing con-
stituent characters was low. After discussions with the ven-
dors, it was apparent that systems of that time (1994) were
not built in a form enabling us to extract “modules” for
re-use’. Therefore we embarked, reluctantly at first, on a
project to design and implement our own OCR programs.
The routines described in this document are the early fruits
of this effort.

Naturally, not all commercial OCR-related activities are
subsumed by the OCR programs available (now) at modest
cost “over the counter” or included with scanner hardware.
Businesses also provide custom OCR solutions tailored to
specific needs. These are, however, expensive and difficult
to obtain when the range of documents is not well defined.

2 Goals for our design

The modules described here are intended to be portable, re-
usable, reasonably efficient building blocks for optical char-
acter recognition and related document-structuring tasks.
They are based on straightforward designs, mostly mirror-
ing what has been shown to be effective in the literature. For
the most part, we have deviated from simplicity only when
the simplest solution was tried and found inefficient or in-
adequate. We expect that further development will follow
the same route.

The programs need not be used together as an end-to-
end package for recognition of bitmaps to ascii text-file. In
fact, our first digital library application has been to use
one or two modules solely to de-skew bitmaps, without any
recognition processing?. The de-skewing generally corrects
misalignment in the scanner/feeder mechanism, or earlier
production problems in the original corpus. We expect that
modules for input/output to different formats could be con-
structed and the modules for recognition and learning of
isolated characters easily replaced.

Another important goal for us is to provide, at a rea-
sonably accessible level, the correspondence between words
(or equations) and positions on the original page. Thus it

lSome systems are “open” through application program interfaces,
but this is not modular in the sense we were looking for. Five years
later, the same situation still prevails.

It may not be obvious, but de-skewing a scanned page, even by a
degree or two, helps in the manipulation of the bitmaps “by hand”.
That is, if one uses the traditional “rubber-band rectangle” aligned
to the computer-display X-Y axes to select a “line of text” or some
other rectangular section of a page, misalignment causes problem.
Straightening the page fixes this problem, and makes the multivalent
document processing much easier: selected picture rectangles corre-
spond to text blocks in the OCR format.

should be possible to see that a particular word occupies a
specified rectangle on a page image, or that a mathemati-
cal expression occupies a particular rectangle®. This level
of information is used in Berkeley’s multivalent document
system.

3 Non-Goals for our design

While we are willing to see more features added to this suite
of programs, we are not attempting to provide all the facili-
ties that have appeared elsewhere. For example, we are not
concerned at this time with:

e Providing as output, the input formats specific to the
many editors available for personal computers.

e Recording the font, style, and point-size of characters,
except as it matters for recognition. (In fact, we need
to know about italics for mathematics.)

e Recognition of reverse-video, cross-out, script, half-
toned or similar modified text.

o Automatic recognition of 90-degree rotated text.

We recognize that such capabilities may be valuable in
some contexts, and hope that others may find our tools use-
ful in building such capabilities, should they be necessary.

We also have made some efforts (1999) to integrate other
OCR programs (in particular, Scansoft/Xerox’s TextBridge)
into our system so that in the Windows environment a sub-
section of a page can be sent to a commercial “intelligent
character recognition” engine.

4 OQutline of OCR tasks

We are grateful to the many researchers in OCR who have
explored various options in approaching standard problems.
First we briefly outline the currently accepted wisdom on
the steps necessary for successful document understanding
([6]), In subsequent sections we show where our pieces fit in.

4.1 Pixel-level processing

Faced with an image scanned in to the computer, the first
group of processes deal with pixel-level transformations.

o Thresholding is the determination of whether a partic-
ular pixel position is to be treated as white or black,
given that it is actually perceived as some level of
color or gray: We don’t address this task in our pro-
grams, relying instead on the scanner (perhaps with its
low-level software) appropriately adjusted, to come up
with the (binary level) image. While such an arrange-
ment can be fooled by inverse-color printing, print-
ing on top of half-tones, etc., we have found that the
scanners we’ve used can generally be adjusted satisfac-
torily to produce 2-level images from our documents.
This decision to leave well enough alone could be re-
examined and we could either write our own thresh-
olding program or directly use a gray-scale. This latter
approach would seem to be far most costly than our
binary bitmap approach. We are willing to re-examine
this in the future since it seems especially plausible to
trade-off low-resolution gray-scale for high-resolution

3In-line math running over two or more lines require a more elab-
orate shape than a rectangle.



2-level images, and there is considerable evidence that
keeping gray-scale information in low-resolution pic-
tures makes them much easier for humans to under-
stand.

Noise reduction. This can include a host of trans-
formations attempting to modify or filter the shapes
represented, including morphological processing and
“kFill” filters. Initially we did not do this, but we
have added some morphological style processing for
half-tone detection, and a kind of smearing operation
for segmentation. (Crudely speaking, letters tend to
become words if you smear their bounding boxes hori-
zontally). While some kinds of morphological process-
ing are relatively clumsy to execute in our current run-
length-encoded representation (e.g. 2-D filtering op-
erations), horizontal smearing is easily accomplished.
And if an image is represented as a collection of bound-
ing boxes (as we do for segmentation), then vertical
and horizontal smearing is rather fast. We discuss this
in a subsequent section.

Thinning/skeletonization. This is a kind of higher-
level morphological concept that can be applied to im-
ages which appears especially useful in images that are
graphs, maps, etc. Although one could argue that it
would be useful also for character recognition, it ap-
pears to us that thinning loses some useful information
that we could use for recognition. We can easily do
naive horizontal thinning by shortening intervals in a
scan line. We can do vertical thinning most directly by
rotating the RLE encoding, doing horizontal thinning,
and reversing the rotation. Since a 90 degree rota-
tion takes a few seconds (in our representation) this
is hardly free, but not as expensive as we’ve seen it
in other programs. One would ordinarily try to avoid
repeated rotation operations. “Real” thinning is far
more sophisticated. We do none of this.

Chain coding and vectorization. We do not do ei-
ther of these per se, though run-length encoding on
a row-by-row basis serves some of the same needs: it
is easier to compute connectivity, and it is potentially
far more compact than bitmaps. RLE also makes use
of more easily (arithmetically) manipulated chunks of
information than bit-strings. Although we hesitate
to make a totally language- and machine-independent
judgment on this, in our programming environment
there is something of a performance penalty for oper-
ations which tend to require masking/shifting opera-
tions to extract, compare, and count bits from mem-
ory, versus doing integer arithmetic.

Connected components, region detection, feature-level
extraction. We provide support for connected com-
ponent extraction and some heuristic feature detec-
tion (e.g. The number of columns or lines of text can
be based on finding vertical or horizontal gaps of a
given width). Our current design deskews and find
connected components first, which seems somewhat at
odds with the ordering in O’Gorman [6], but is prob-
ably more a consideration of our premise: that we are
dealing with text, and prior processing has removed
other material.

If we are uncertain of the nature of the text/half-tone
mixture, then it makes sense to try to test for such
non-text features and remove them as a preliminary

to connected component extraction. Such an operation
on a sizable half-tone would be extremely slow.

4.2 Region detection

Detection of different text and other regions, combined with
reading-order segmentation seem to be important in achiev-
ing high quality results in the following sense: Regions detec-
tion, by which we typically mean identifying headers, foot-
ers, paragraphs, columns, displays, etc. is useful for

e Specializing recognition: Title fonts, mathematics, foot-
notes may benefit from different approaches. For ex-
ample, knowing that a section is entirely text means
that word/line/character heuristics can be applied for
better identification. Knowing that a section is math-
ematics (or that a text section contains math) means
one might expect lower success in looking for words.

e Computing or Indicating Order of Reading: The read-
ing order is just an attempt to impose a consistent
ordering for material that appears on the page so that
at least the flow of the words of continuous text is
given. Given a number of regions, one generally reads
them top to bottom. If there are several columns, the
left-most column is read first (etc.)

Beyond that, heuristics begin to play a larger role.
If the page is really a table with columns, horizontal
lines are more plausibly each “separate records”. Some
printed material has much fancier layouts. Popular
magazines might have large-font quotes pulled from
the article and splashed across the page, perhaps cross-
ing columns. Presumably the quotes are to be read
first — before or instead of reading the page. Some-
times it is not clear how to resume the reading order
below such a quote, and human readers are confused.
Humans may read captions on figures and tables be-
fore the text. Humans probably do not read the page
number at all unless there is a suspicion that pages are
out of order or missing.

How is this done? There are a variety of techniques that
have appeared in the literature, using textures, manipulat-
ing of connected components, and hand-correction. We be-
lieve that any automatic segmentation is going to be fallible,
and therefore to the extent that it must be done correctly, we
require tools to correct the segmentation. We have designed
and 1mplemented a program with a pleasant user interface
for zoning (CALZONE) [5]. This allows the user of our doc-
ument processing system to examine the result of our auto-
matic zoning and correct it by altering general parameters,
and to correct particular one-time errors. It also provides
a simple mechanism for identifying by hand those sections
which contain mathematical equations. While display equa-
tions can sometimes be identified, it is rather difficult to
identify automatically a brief in-line mathematical expres-
sion like  — yz, and especially tricky to define it as a zone if
it 1s split over two or more lines in a non-rectangular region.

In an attempt to solve some of these problem and bring
the manipulation into the Lisp model, in the summer of
1996, Richard Fateman implemented? an interactive zoning
program, described briefly here. See also http://http.cs.berkeley.edu/

1 We used Allegro Common Lisp and its Common Windows graph-
ics package, a medium-level object-oriented system that depends on
light-weight multiprocessing threads in the UNIX Lisp implementa-
tion. It seemed to us at the time to be the best compromise between
efficiency and utility. In the grand tradition of graphics packages, this
has subsequently become an “unsupported standard.” Although this



In order to enhance the manipulation of page images,
we developed a design for a user interface for panning and
zooming in and out”.

Acrobat scaling seems to be limited to .5 to 8.0 in certain
steps. To accommodate a 1-button mouse, it has a slightly
different detail in control. The program “Imaging” by Wang
Inc (for Windows NT), and distributed with Caere’s devel-
opment system is, in some dimensions, a simpler alternative
that allows one to view TIF files by panning and zooming;
it however also allows one to edit the image®.

Given:

e A huge picture P off-screen which is far too large to
display on a pixel by pixel basis. For example, P might
be 5100 by 6600 pixels, corresponding to an 8.5 by 11
inch page scanned at 600dpi.

o A large canvas L. on screen, filling much of the display.
This might be 800 by 1000 pixels.

Objectives:

e To see on the canvas a selected section of the large
picture for visualization, editing, selection etc.

e To scroll/pan the selection section around so that any
part of the picture can be seen.

e To change the magnification (positive or negative). At
one extreme, the whole picture (presumably greatly
shrunk) can be seen, displayed on the whole canvas.
At the other extreme, a small piece of the picture,
much enlarged, even a portion of a single character, is
enlarged to the size of the canvas.

The usual tools in a drawing program are scroll-bars hor-
izontal and vertical, and zoom boxes big/small. We found
this rather clumsy, requiring considerable “remote” hand
motion to get to another location on the page, and also re-
quiring fairly precise pointing within a scroll-bar. Instead
we implemented the following alternative tools:

We display a thumbnail image T of the whole page, with
a sub-rectangle S, the same proportions as T, superimposed
on it. The canvas L is also geometrically congruent to S
and T. At any given time, the sub-portion of T covered
by S is displayed on the large canvas. By moving S in T,
corresponding motions of L. on P are accomplished.

Shrinking S in the thumbnail magnifies the view in L.

Through experimentation, we found a variety of features
to enhance the user interface, although the primary interface
criterion emerged as fast interaction: the speed of redisplay.
The simplicity of the controls were important in our own
(admittedly self-evaluation) (extra features: warping mouse
cursors, changing cursor shapes).

These description pale in usefulness to a 15 second demon-
stration, but we will try to use text, nevertheless. In partic-
ular, to shrink/expand S, click/drag inside/outside S with
left mouse button. The cursor changes to NE arrow. The
mouse is warped to the closest corner of S. Motions of the
mouse are tracked with S changing proportionally. Moving

code was used by 3 or 4 Lisp vendors, in the interests of continued
maintainability, portions of the code have been moved to Allego Lisp
using Common Graphics (based on Windows graphics), and more of
it may be used in the future.

5 After thinking this through we have discovered an essentially sim-
ilar interface in Adobe’s Acrobat, so any minor originality we might
claim is probably of no consequence.

61 particularly like the stamp idea: you can stamp “REJECT” or
“DRAFT” on an image.

out of T terminates the tracking, as does releasing the but-
ton. At this point the newly determined size of S covers a
portion of the thumbnail picture T which is then re-scaled
and displayed to fill canvas L.

To move (pan) the displayed sub-picture, press the left
mouse button in the thumbnail window. The mouse cursor
warps to the center of the region S, from which the region
may be moved until the button is released.

Along with this interactive viewing, we implemented a
sequence of operations that guesses (with user input) at
zones in a page. The user can set shiders to change param-
eters that affect this automatic zoning as described below
in the section on automatic bottom-up segmentation; if no
fully-satisfactory automatic zoning can be attained, the user
can use mouse commands to break apart zones that are too
large, and join zones that are incorrectly separated. We ini-
tially implemented rectangular non-overlapping regions for
this purpose; for equations, especially in-line equations, we
allow zones that are nearly arbitrary regions. In fact they
are collections of small (always rectangular) bounding boxes
of connected components from the page.

Of the commercial OCR programs, we have found that
heuristics for zoning are not described, although sometimes
the user has the opportunity to suggest “one column” or
“multi-column”, or other basic parameters. In some pro-
grams, (e.g. TextBridge as supplied by Wang Imaging Pro),
the zoning results are not explicitly displayed; in other pro-
grams (e.g. FineWeb3.0 by ABBYY) the zones are available
and can be edited. Each of these programs allows the user
to define zones that are not to be handled as usual text.
These zones may be picture zones or (for FineWeb) table
zones' .

Zoning is not sufficient unto itself, except in the simple
case of a single column of text. If there are several columns,
or even small decorations like page numbers or headers, it
is useful to consider the read-order of zones on the page.

How should this proceed? The simplest mechanism is a
top-to-bottom reading of all the material on this page, ei-
ther treated as one large zone, or a vertical concatenation
of zones. When zones are horizontally adjacent, problems
appear. As a first step we have implemented an entirely “by
hand” specification of read-order; this was dictated by our
need to handle 2-column documents correctly. We are think-
ing about writing an “automatic” zoning program which
would take a collection of rectangular (or possibly more gen-
eral) regions and determine a heuristic read-order based on
(a) guessing a model and (b) fitting the model against the
found data.

4.3 Automatic Bottom-up Segmentation

Given a collection of connected components® (ccs) we can try
to group them into objects that approximate words, lines,
paragraphs, columns.

The basic idea® is to vastly reduce complexity overall by
change all cc’s to empty bounding boxes (bbs).

Let p be a list of boxes of cc’s on a page. If smear-x
is 10, then any two bbs within 10 pixels in the x-direction
of each other are combined to a single bb. This, in general,
expands to a superset of the two bb, and thus may make the
new box encroach within 10 pixels of additional bbs. This

"Each of these programs makes mistakes on one of our standard
examples (hal4.tif) because of either mathematics or footnotes (or
both) splitting or joining columns.

8 we explain this notion in detail in a later section.

%are give in file boxsmear.



operation 1is iterated until it ceases smearing boxes, result-
ing in some number of new “super” boxes. For example,
if there are about 2500 connected components on a page,
an appropriate choice of horizontal smearing tolerance (for
smear-x), iterated until it stops making changes might set-
tling in on about 500 connected components. These might
correspond with substantial, but not perfect accuracy, to
the words. Given such a collection of words one can smear
them into lines by increasing the smear-x tolerance. One
can (vertically) smear them into paragraphs. If we have say,
5-10 paragraphs, perhaps in two or more columns, we can go
back to a particular paragraph and repeat the processing to
get the line-separation and hence the typical text point-size
for that paragraph. This will help if paragraphs on the page
are in different fonts or sizes. A paragraph may also consist
of a title or a displayed equation, or (if we have not otherwise
removed it) a half-tone. These operations are fast because
they do not require any consideration of the the bit encod-
ing. Should it be necessary to fill the boxes back with the
contents, then stuff-boxes(bbs, src) restores the rectan-
gular bitmap encoding into the bounding boxes, given the
original source page src.

A program for interactively changing the smear param-
eters and watching the changes in groupings is hooked up
to our CALZONE program. Other parameters that can be
modified in CALZONE include the sizes (area, height) of
items that are too large to be used as boxes (typically these
are vertical or horizontal rules, figures, or pictures of page
bindings) or items that are too small to be used (typically
noise).

A plausible direction to follow is to determine, by the
changes in the statistics following the smearing, how many
words or lines there are on a page. We have not pursued
automatic determinations of this information, but an auto-
matic approach might look like this: if we start with 2500
ccs, gently increase the smear-x parameter until the num-
ber of distinct ccs drops precipitously. Maybe nudge it up
slightly to see how stable that smear-x parameter setting is.
If the number of ccs is now plausibly the number of words
on the page (say 500), compute some statistics: average or
median height of a word might be very useful. Continue
nudging that parameter up, and if one gets to a number of
ccs that is plausibly the number of lines on the page (say
60), take some comfort in the statistics there, as well. One
might even find columns this way.

We can propose to use vertical smearing to get para-
graphs in approximately the same way: perhaps first do
some horizontal smearing to get words or lines, and then
vertical smearing. If there is more space between para-
graphs that between ordinary lines, this may help. More
subtle recognition to deal with indented or “out-dented”
paragraphs may be appropriate.

Software tools: (smear-x bl tol) takes all cc’s in the
list of bounding boxes bl (presumably all in a particular
picture p’s coordinate system) that are within a horizontal
distance (border to border) in the x direction of tol, and
which overlap in y coordinates (that is, by the most liberal
measure possible, are next to each other), and merges them
into a single box. This process entirely ignores the “content”
of the pictures, and treats them as empty boxes. To do any
operations on the contents, you must go back to the original
data in the picture p.

(smear-y bl tol) is like smear-x except in the other
direction.

4.4 Classification of Regions: text, non-text

What is the point in doing this automatically? If we cannot
do it perfectly (and we cannot), we must be able to handle
the situation of a paragraph being identified as text when
it is really mathematics, or vice-versa. The actually options
may be more numerous: A map may be identified as a dia-
gram but it will also have text. Some text may look like a
half-tone texture, etc.

If every processing component must deal with whatever
it is given, even if it is wrongly characterized, then the only
advantage in a classification is an optimization in time (try
this first...), but if (say) the mathematics recognizer is pow-
erful enough to understand both mathematics and Roman
text (which it must anyway to deal with embedded words),
then one can argue: treat everything as math. The math
parser will then chew up text and say “Oh, by the way, you
might as well treat this as text in further processing, because
there is nothing very math-y about it!”

Unfortunately, the math recognizer is not yet, anyway as
robust for text as the polished commercial programs, and so
we do not really want to shove everything through the math
recognizer.

We have not included any automatic classification pro-
grams, but two indications are easily computed: “average
density” of a picture constituting a paragraph: displayed
math has a lower density; The distribution of large and small
characters (or connected components) is another. In a plot
of height vs. width, text has a tendency toward tighter clus-
tering than mathematics. We rely on human recognition in
CALZONE to pick out math.

We do not use any automatic read-ordering of zones at
this time. It is a plausible topic for research, although it
would be necessary to have a convenient interaction ‘“cor-
rection.”

4.5 Text Analysis

We include in this section

e Skew: This is the determination of the “slant” of the
page as scanned. For typewritten or typeset pages it
is usually possible and beneficial to detect (and some-
times) remove the skew by sliding bits. In some ver-
sions of skew removal, only text-lines are straightened:
individual characters remain unmodified. Our imple-
mentation deskews whole pages, and occasionally in-
troduces a slightly disconcerting single-bit shift in the
middle of a character.

e Page layout: detecting lines and paragraphs.

o Character Recognition: At the moment we provide
tools for isolated character lookup which is clearly not
as good as recognition in context. The result from this
stage is a collection of glyphs and locations.

e Interpretation: here we examine the positions of the
character to arrange them in text lines, or in one of our
primary tests, as mathematical equations. We parse
the mathematics into the language of a computer al-
gebra system.

5 Data representations for pictures, characters

If one has no a priori knowledge of what to expect from an
image, the first cut at computing with images is likely to
be based on dealing with an array of numbers representing



pixel values/colors. The value at a pixel location may be
an index into a color map, or some absolute quantity. In
the case of a 2-level black and white image, an array of zero
and one bits seems to suffice. Such an array can typically
be compressed substantially for secondary storage.

We found this initially appealing approach to be imprac-
tical for our objectives, at least given the computing at our
disposal, except for rather small images and/or low resolu-
tions. We are scanning at a minimum of 300, but often at
400 to 600 dots per inch. Displaying a 600dpi 8.5 by 11 inch
picture on a 72 dot/inch workstation screen means that we
would need a display lineally about 8.3 times larger than the
document size, or about 6 by 7.6 feet. It also means we are
using about 4.2 megabytes of RAM for the buffer, at 1 bit
per pixel. If we are forced to use 8 bits (or more) per pixel,
we are at 35 or more megabytes of RAM for one image.

We are not saying that one needs to display such full
pages at full resolution — just that this is a substantial
sized array — and computing with it on a bit-wise basis is
not something that one should do casually.

Normally, some substantially compressed data format is
used for raster images. Example:

One experimental data set we have been working with
is 6.tif, a black and white tiff (Tagged Image Format)
file representing a page approximately 8.2 by 5.7 inches in
size, scanned at about 600 dots per inch. (More details
of this are given in the appendix.) This image, comprising
3408 by 5064 bits, is delivered by our scanner and associated
software as a compressed tiff file of 72,592 bytes. In terms
of black and white bits, uncompressed, it would be 3408 -
5064 = 17,258,112 bits, or 2.16 megabytes. Thus the TIF
file represents a 30:1 compression.

At first blush it would seem that to do any processing, we
would have to unpack the image to bits, and it is certainly
possible to proceed on that basis.

Yet the raster image as an array is actually not so conve-
nient. A basic operation in character recognition and docu-
ment processing would seem to require access to successive
individual bits: one is routinely trying to find out the extent
of a uniformly-colored region. Yet access to the individual
adjacent bits in a word, one-by-one, may not be the ideal
access. A better result would be one that provided higher-
level groupings. Ideally, if we had one grouping of bits per
character, much of our processing would be done! In point
of fact, we have adopted as our representation a version of a
run-length encoding, and have found this to be enormously
advantageous in time and probably space.

Consider an image to be a sequence of (say, horizontal)
scan-lines. Each scan-line is a sequence of < s,e > pairs,
where s 1s an integer denoting the start of a section of black
bits, and e is the corresponding end index. The endpoints of
these intervals can be encoded in a modest number of bits:
For example, with 13 bits we can encode numbers up to 2'°:
assuming 600dpi this limits us to 54.6 inches across, which
is far wider than our scanners.

Converted into our picture data as intervals, 6.tif is
3408 lines of intervals. If we scan this along the long dimen-
sion (arguably the less efficient way if we wish to compress
horizontal lines efficiently) we find this particular page has a
total of 78,873 entries in the scan lines, where, as indicated
above, each entry is a pair of numbers. How much storage
does this take? Our current design uses a few words for
descriptive header information, and then:

1. An array of 3408 words (pointers) to the data struc-
ture for each scan-line;

2. A scan-line structure of variable length. The concep-

tually simplest Lisp'® structure would use 4 words for each
pair: two Lisp CONS cells: one for maintaining the “back-
bone” of the list, and another for the pair (s . e) of start
and end indexes. This would look like ((23 .

With this encoding, we would use a total of 315,492
words for the lists of pairs. Considering the array and the
pairs together we have a total of: 318,900 words or 1.275
megabytes for the representation of this picture.

This 1s somewhat wasteful: Since the indexes are num-
bers less than 2'° two can easily be stored as “immediate”
values in the same space as a 32-bit pointer: In particu-
lar in most Lisps on 32-bit word machines, numbers less
that 22° are easily packed into one “fixnum” (an encoded
immediate number form). So if we care to pack these in-
tegers two-per-word, we now have a linked list of fixnums
(not conses) of length 78873. Although the exact details
are irrelevant, we actually use two 16-bit fields (“short” in
C-language'! parlance) for storing the two parts. For many
computers extracting bits by loading half-words from a reg-
ister (or shifting) is much faster than following a pointer to
memory, so this is a savings in space and time. We now
have:

1. 3408 words, one for each line

2. 1 Cons cell (= 2 words each) for each of 78373 pairs =
157746 words. for total storage of 645 kilobytes.

This is the representation we use. Another step in storage
reduction would be to replace the lists by vectors, reducing
the storage to 1 word per pair, and the total storage to about
320 kbytes. But the use of linked lists, with the freedom to
add and drop links, is such a convenience that we are not
especially eager to trade that off for space.

6 Discussion of routines

Here we describe in brief the collection of our routines in-
tended to be used by experimenters in OCR. We do not doc-

10Why did we program in Lisp? Several reasons:
1. We like Lisp, especially for exploratory programming.
2. Natural data-structures are linked lists.

3. Memory leakages, a common problem in C or C++4, are elimi-
nated by automatic memory management.

4. There is a convenient built-in package (“Common Windows”)
for bit-map display. Interaction with the program for learning
and debugging have been substantially assisted by the easy
availability of this set of routines providing access to the X-
window interface. This is not essential for the running of the
core routines; however, a realistic model of recognizing text
may include a user-interface for spot-checking results, and for
quizzing the user about uncertain identification.

5. (After some work) convenient access to files as formatted from
the scanners.

6. Lisp programs tend to be quite portable: Portability to other
implementations of Common Lisp would require no alteration
except in the interface to libtif, a public domain package we use
for input and output of tiff format files. This alteration would
consist of a transcription of the foreign-function call mechanism
from the Allegro dialect to some other form.

11Partly in recognition of the popularity of C and C++4, and partly
to see how speed would be affected by other language implementa-
tions, two versions of the scan-line to encoding program were written,
one in Lisp and one in C. Somewhat to our surprise, while the C code
was faster by a factor of two in 1996, the 1999 compiler technology
and computer hardware has changed the balance: C is not particu-
larly faster now (1999). Furthermore, a cleverer algorithm suggested
by Reiner Staszewski easily coded in Lisp has made the Lisp code
twice as fast as C!

47) (102 . 131)



ument all the detailed algorithms here; considerably more
documentation is provided with the program text.

6.1 Input, conversion

tiff2pict ("filename") Given a string that is the name
of a file, tiff2pict reads that file in TIF form, presumably
a b/w binary scanned file, and returns a picture structure:
width, height, x-y coordinate of the lower left corner, the
collection of rows, the source filename, and some indication
of content. For a newly read-in picture, the (x,y) setting is
always (0,0). The height of the picture is exactly the number
of rows in the collection. The width of the picture is taken
as the width of the originating file. The content is the string
“a full page”. The (x,y) setting is in any case a pair of non-
negative integers. If it is, say (10, 100), this means that the
Oth row represents line 100 of the page, and that on that row
(and every row), the 0 mark is at column 10 of the page.

pict2tiff (p, "filename.tif") writes back out to the
file system the picture p as a tiff file with encoded name
filename.tif. The (x,y) coordinates in p are ignored, and
assumed to be (0,0).

pict2bit (p) converts a picture structure p into a bitmap
b. A bitmap is an official data structure used by the Com-
mon Windows package in Common Lisp. If WINis a Common
Windows window descriptor for a visible window, and p is
a picture then (bitblt (pict2bit p) 0 0 WIN O 0) trans-
fers (bitblt = bit-block-transfer) the image of the picture
p starting at its lower left, into the window WIN at its lower
left.

A brief digression on the topic of bitmaps and Common
Windows.

You might think that the provision of this structure im-
plies support for other operations. This is true in that it
extends to drawing lines on it. Analysis of bitmaps is not so
well supported; if it were, we would probably use it more.
In the interactive portions of our programs we use it heavily.

Bitmaps are restricted to a total size of 16,777,216 bits so
that arrays that are larger than 4096 by 4096 are too big to
handle. This is not usually a problem because conventional
display systems today handle about 1000 by 1000 pixels, or
1/16 of that bitmap. And there are probably better things
you’d like to do with your memory, as well as better ways
to represent data off-screen.

While a full page at 8.5 by 11 inches at a typical 300
dpi (dpi = dots per inch) CAN be converted to a bitmap,
in our processing experience this has seemed inadvisable.
We suggest you scale things down so you can see the whole
page using scaledpict2bit, (see below) or perhaps look at a
subsection of the page, using smallerpict (see below).

Why?

Simple: Most workstations display about at 72dpi. To
fully display every bit on such a bitmap would require a
screen about 3 by 3.8 FEET (or 4.8 foot diagonal). You can
display about 1/9 of it on your typical 1-million pixel screen.

At 600dpi, which is about the highest resolution for scan-
ning that is used at all frequently, the bitmap is far and away
too big for a workstation, which might display 1/33 of the
picture. In fact the array is 33 megabits; if we use color
for overlays or shading, this is expanded to 1-byte per pixel.
For 24 bits of color per pixel for a color display, this means a
LOT of memory. Fortunately, for document processing this
is much more than we need. Some color image processing
can require such expansion, and that’s why big machines are
recommended for that business.

Pict2bit actually has two sub-cases, the simple case in
which the (x,y) coordinates of the lower-left corner are given
as (0,0), and the case where some other location is given. In
this latter case, the program provides a bitmap that (never-
theless) starts at (0,0), and so may include big areas of blank
bitmap. In practice, it seems we generally “renormalize” our
picture encodings so that that they have origins of (0,0), and
if we want to produce a bitmap of a particular character in
(say) the upper-right corner of a page, we should separately
remember its (x,y) origin, extract and convert just that little
rectangular picture to a bitmap. We can paint it anywhere
on the screen, and if we want to put it in the “same” place
as it occurred on the picture, we will use its saved origin
to position it. A program that assists this is smaller-pict
described just below.

The final bitmap has the same height and width as the
picture.

smaller-pict (pict x0 x1 y0 y1) takes apicture pict
and 4 integers. It extracts from pict a picture starting at
x-coordinate x0 and continues up to but not including co-
ordinate x1. If x1 is too far to the right (off the page, so to
speak) then the smaller picture will be similarly truncated
at the border. The y-coordinate is treated the same way.
All the coordinates are re-adjusted so that (x0,y0) is now at
location (0,0) in the returned picture.

bit2pict (b) takes a bitmap b, as might be produced
by interactive editing, and returns a picture structure. Since
Common Windows programs use the bitmap structure as the
underlying support for its drawing canvas, pop-up menus,
etc, it is plausible to (for example) write character editing
or similar manipulation programs using bitmaps, and then
translate the results to a picture form. It takes the lower-left
corner of the bitmap as coordinate (0,0).

pict2tiff (pict, filename) takes asingle picture struc-
ture and writes it (fairly rapidly) to a file in a format that
is fast to read back in. This assumes the origin of the pic-
ture is at (0,0). This primitive routine is probably not of
substantial direct use except to rewrite a page that has just
been deskewed. Some of the encoding details (e.g. compres-
sion, etc.) are set to correspond to the last tiff image that
was read in. A careful programmer using this procedure
may look at it as a model rather than a complete module
for simple use.

writepicts2file(plist filename) In this program a
list of pictures plist is given, rather than a single picture.
The output is NOT in tiff, but in a form that is more quickly
read and written by lisp. The pictures are written out in the
order given in the list. Another file, filename.dic is written
to contain some dictionary-style material; a kind of symbol
table for the contents of the pictures.

Although we have not tested this extensively for effi-
ciency, assuming that the encoded file is a page of text, a file
written out in this way is only slightly larger than a tiff file.
It could, however, be much larger if the encoded material
consisted of random bits. The primary advantage of a file
produced in this way is that it can be indexed and accessed
in random order if necessary. Therefore it might be a better
representation for pages and pages of text where access to
individual picture components (e.g., characters or perhaps
words) over a whole document are useful.

The inverse operation for this output is readpicts(filename),

which returns a Lisp list of pictures from a file written by
writepicts2file. Our assumption is that this program
would be used as a model for a more elaborate program that
could (for example) read the pictures non-sequentially. For
purposes of multi-page document processing we can read/write



pages to/from disk at a fairly rapid clip. (on an HP 9000/715
workstation, .79 sec. to write, 1.1 seconds to read back in a
whole page of 3259 connected components. Access to partic-
ular character images would be yet faster. A normal lisp text
storage format rather than a byte stream, is about 30 times
slower. Using tiff as a disk format depends on compression,
but seems to take a minimum of 2.9 seconds to read, 4.2
seconds to write, and re-computing connected components
takes about 3.2 seconds, and doesn’t have the advantage of
keeping individual characters in place. The times on a 200
Mhz Pentium Pro computer using Allegro Common Lisp are
slightly faster than this, 2.2 and 2.9 seconds, June, 1998.)

6.2 Utility Programs

We have made substantial efforts in polishing code to pro-

duce a fast deskewing algorithm and a fast connected-components

program. We therefore describe these in much greater detail.

6.2.1 De-skewing

Pages scanned or printed by a mechanical device are ordi-
narily read at a slight angle. Humans do not usually have
difficulty reading such skewed pages. Indeed, small skew
may not not even be noticed. It is advantageous for com-
puter processing to remove skew when possible. The ma-
jor reason is that regions (lines, paragraphs, zones) of com-
mon text, tend to be more easily isolated in properly grid-
aligned rectangles. Such rectangles can be described by one
origin (x,y), a height and width. An unaligned rectangle
typically needs four full pairs of numbers, and the display
of un-aligned rectangles tends to show uncomfortable “jag-
gies”. While it is possible to deal with skewed text, and
some OCR programs do so quite well, we prefer to deskew
when possible.

Three programs are provided:

deskew-pic(p) given a picture p produces a deskewed
version of it. In fact, all this does is find the skew and
then unskews the picture by composing the two programs
described below.

find-skew (p) given a picture p computes heuristically a
skew angle d in degrees that the picture is tilted. Typically
the angle will be less than +10 degrees. A positive value for
d means the picture appears to be rotated clockwise by that
angle about a point at the lower right. A negative value sug-
gests a skew counter-clockwise around a point at the lower
left. Actually as many as 4 additional key-word parame-
ters can be provided to this program: find-skew(p :min
ml :mid m2 :max m3 :skip s) The minimum, maximum,
and midpoint of the angles expected can be set. By default
these are set to (-10, 0, 11). The skip parameter (default 1)
indicates how many lines should be skipped in testing skew.
Skip=2 uses every other line. This speeds analysis by about
a factor of 2. For high-density pages, skip=4 seems to work
about as well as skip=1.

Ul-skew (p d) given a picture and an angle d in degrees,
produces a new picture that is unskewed.

There are a number of recent papers (refs) written on
deskewing algorithms, but from our limited experience it
appears that a simple, fast and therefore useful approach
can be based on a simple observation. Compute the distri-
bution of black dots on a line-by-line basis in a page of text
(or mostly text). If the scan lines are aligned with the text
grid, there will be substantial numbers of blank or nearly-
blank lines, and substantial numbers of lines with consider-
able black density. In the case of horizontal lines (say as a

table-rule, underline, or mathematical fraction divide-bar),
the line may even be a majority of black bits.

On the other hand, if the scan lines are at an angle to the
text (think of it as 30 or 45 degrees), then the distribution
of white and black bits will be far more uniform: there will
be very few purely white or purely black lines.

A statistical measure of the variance of the distribution
of bit-counts is easy to compute: we, in effect, do a “ray
scan” of lines oriented horizontally (very easy and fast), or at
slight positive and negative angles, almost as fast. The scan-
ning angle that corresponds most closely to the skew angle
will have the highest variance. A short somewhat heuristic
search can try to identify the “best” angle.

Given our representation, scanning at a zero angle is
truly inexpensive, the cost increases, but slowly, as the angle
increases. Counting the number of black bits in a full row
is a simple operation, and we can compute the variance of
6.tif at zero degrees, examining 3400 lines, in less than 0.1
second. The cost at one degree is more than one second: to
scan a single “row” at one degree, one must scan and sum
up the count of black bits from some original row for bit
positions 0 to 56 bits, and then hop up one row and scan
bit positions 57 to 113 (etc.). The step-size for one degree is
approximately (1/tan(x/180)) = 57.29. Hoping up one row
and skipping to the interval that encloses the appropriate
bits can eventually become time-consuming'?.

Fortunately, the statistical computation need not rely on
looking at every scan-line, and therefore one can select every
kth row (perhaps with a random perturbation), to speed
up the calculation. In preliminary tests on a few scanned
pages, accuracy is relatively good even if 9 out of 10 lines
are skipped.

Finding the best angle, that is the one with the highest
variance, is done with a conventional numerical search. The
function being maximized typically has a global appearance
of a single maximum with a rather “flat” top. The detailed
local appearance at that top is more fractal in nature, and
so finding the precise maximum may be wasteful: an ap-
proximation good to 0.1 degrees should be achievable.

6.2.2 Correcting Skew

Each of the transformations is a shear: think of a stack of
dominos sitting on a table. Pushing it sideways so that each
domino is shifted a distance proportional to its height, is
a horizontal shear. This is a row-preserving transformation
we call a “slant.” If each row going upward progressively
moves further to the right as the row number increases, we
have “italicized” the picture. The second kind of shear is at
right angles to the first shear: a column-preserving trans-
formation we refer to as a “tilt”. A combination of the two
is nearly a rotation for small angles. An actual rotation
would require that in each of the two shears, the amount
of shifting varies as the row (or the column) changes ([4]
p. 829). In particular, their row-preserving transformation
is (z,y) = (z cos(f)—ytan(f), y) and the column-preserving
transformation is (z,y) — (=, zsin g + ycos§).

How far off is the maximum error in using our near-
rotation? The approximation we use is based on the fact
that sin(6) tan(f) and 8 (in radians) are approximately equal
for small 6, and that cos(§) is approximately one. We use
(z,y) = (x —y8,y) (z,y) = (z,28 + y) For an angle of one

12 0ur initial code required a constant step size, but we found this
too restrictive. Our current program allows for fractions: a step size
of one degree is not exactly 57 to 1, but a sequence: (57 58 57 57 57
5758 ..).



degree (.01745 radians) and an 8.5 by 11 inch page scanned
at 300dpi, or even at 1000dpi the true rotation point given
by the formula is off by one pixel at the worst. (A page with
such a slant might have been inserted in the copier offset
about 0.2 inches out of 11).

At 3 degrees, and 300dpi, the center of the page is dis-
placed (Az, Ay) = (1, 3) pixels, about 0.01 inches from the
true location, and the worst case, the upper right-hand cor-
ner is displaced by (4, 4) pixels, still less than 0.02 inch off
the correct position. Since this error is encountered at 3 de-
grees, how likely is this? In fact a 3 degree error represents
a displacement of about 0.58 inches out of 11; this would be
a quite noticeable skew in inserting a page into a copier or
scanner.

Nevertheless, what about more extreme angles? At an-
gles approaching 10 degrees, or about 2 inches out of 11, the
deviation of our formula from a true rotation is substantial,
with a (33, 47) erroneous displacement at the upper right-
hand corner, nearly 0.2 inches. A sequence of several smaller
shears, rather than just two, may be preferable in correcting
such a tilt.

Note that deskewing necessarily puts a jag into the data
at the point of the corrections. One alternative approach to

deskewing would be to maintain all intra-connected-component

relationships and only deskew BETWEEN such objects. This
keeps the letter shapes unchanged, but levels-out the base-
lines of text. For small letters this is fine, but presents a
problem for those connected components, the long divide
bar in fractions, for example, that we would also like to
deskew. For the present, we deskew full pages and suffer the
consequences of the occasional letter with a jag in it. An
alternative that may be easy to implement in one dimen-
sion is to avoid inserting a shift in a foreground color if one
can make a correction within a few pixels, in a background
color. Note that even a highly accurate deskewing calcula-
tion can have local discretization problems, resulting in a
re-alignment of the apparently tilted line of dots

Another approach for de-skewing adopted by some scan-
ning software is to not re-represent the page, but to keep the
information of the skew angle for following base-lines at an
angle across the page.

Occasionally papers are scanned either accidentally or
purposely at right angles (or occasionally upside down).
Scanning software can be adjusted for this, but sometimes
is not. We’ve written a program ( rot90 pic) to rotate a
single picture clockwise by 90 degrees. A rotation of a run-
length encoded full page at 300dpi takes about 2.8 seconds'®.
On a typical page, it may be better to separate the page
into connected components (1.6 seconds) and rotate each
of a few thousand small characters: this program requires
about another 0.55 seconds. The savings accrue by not hav-
ing to “rotate the white-space”. (This requires specifying
the page-width as a second argument to rot90 because the
axis of rotation cannot otherwise be deduced.) We also have
written (rot-90 pic) for a 1/4 rotation counter-clockwise
as well as (rot180 pic). For speed, the last of these changes
the data “in place” and hence destroys the data structure.
[t can be easily recreated by rotation of another 180 degrees.

1% Times reported in this paper are for a Hewlett-Packard 9000/715
workstation running Allegro Common Lisp 4.2.

6.2.3 Morphology and Half-tone removal heuristics

Morphology transformations on picture forms is easily
performed if they are “one dimensional” and correspond to
the run-length-encoding direction. That is, one can easily
write a program that takes each interval and dilates it. What

we programmed were two transformations: merge-close-intervals(line

n) which merges any two adjacent intervals of foreground
color (usually black) if they are separated by fewer than n

bits of background (white). We also programmed remove-narrow-interva

n) which erases any interval of width less than n. These
programs can be “mapped” over the lines in any picture by
map-over-pict (pic, function). If we wish to run these
transformations in the vertical direction, we can rotate the
picture by 90 degrees, run the transformation, and then ro-
tate by -90 (or +270) degrees.

We programmed a “blotching” operation on a picture to
join, by horizontal or vertical mergings, half-tones images.
The objective is to produce a single (or a few) large blob(s)
that can be easily dismissed as “not text”, and wiped out
wholesale. (in fact, it appears that all large objects that do
not fit into a horizontal or vertical line model might as well
be deleted along with noise.

6.2.4 Connected Components

con-pict (p) produces a Lisp list of the connected compo-
nents of the picture p. Each one of the components is itself
a picture structure of a rectangular element of the origi-
nal large picture, with an (x,y) origin at the lower left of
the bounding box of that component. In many cases these
components correspond to the characters on the page image,
although they can be both character fragments or artificially
merged characters. The components are not necessarily dis-
joint. Indeed, the bounding boxes of adjacent italic charac-
ters can easily overlap. Each component picture includes,
however, only those bits that are connected. The current
version of this program (including Lisp garbage collection
times) finds about 2000 components per second on the file
6.tif mentioned earlier. This is probably not an entirely
typical example since many of the components are small
pieces of the binding and page edges.

Another, probably more typical sample: an 8.5 by 11
inch typed page in courier typeface was found to have 2134
connected components in 1.6 seconds, a rate of 1334 chars/sec.

We believe this program is quite fast, even though this
speed could be improved substantially by using lower reso-
lution, and hence smaller, images. Halving the linear reso-
lution should speed the processing by a factor of two '*.

A program to compute the reversal of con-pict is avail-
able: manypict2one(plist) takes a list plist of (perhaps
many) pictures, possibly overlapping, and returns one pic-
ture structure. This is an especially useful operation if you
believe that the connected component breakup of a large pic-
ture is wrong, and one should reconnect some of the pieces.
In constructing the single resultant picture, an x,y origin is
computed that is the minimum x and minimum y origin of
any of the component pieces.

Our initial enthusiasm about the usefulness of con-pict
has been tempered somewhat by several realizations:

a. We must also manage the fairly common situation
where a connected component is not a complete single

141f we were using pixel arrays, we would expect the processing
time to decrease by a factor of four. In own representation, while the
number of rows would be halved; we would not expect the number of
intervals per row to halve as well. Intervals would be lost only when
details were lost to the decreased resolution.



character. (We can reassemble them viamanypicts2one,

though).

b. The underlying assumption seems to be that one can
identify each component in isolation. By taking a
connected component out of its context, we miss the
nearby pieces that might be critical to enable us to
identify the piece.

c. It is advantageous to take into account as a definition
of a character, not only the black bits, but also the
space about the bits: Part of the identity of a letter
is its spacing relationship with respect to other letters
(e.g. in the same word).

Thus unless one is quite sure of an identification, one may
have to in some sense re-establish the context of “nearby
connected components” to see if some re-grouping of pieces
makes more sense. If we are attempting to explain a page by
some global “best fit” computation that maps explanations
(clean characters and positions) to blotches in the bitmap,
the connected components may or may not be on the route
to such a solution. Nevertheless, we have observed the po-
tentially high usefulness of con-pict for a first-cut at recog-
nition based on the following observation: dealing with a
few thousand objects representing connected components,
given their coordinates and sizes, still seems to represent
a savings, even if the objects do not represent characters.
We can still attempt to identify and separate “lines of text”
and then “words” by grouping these object into sorted col-
lections. Recognizing the letters in the context of a word
should be easier than isolated connected components.

6.3 Editing Utilities

Programs for directly editing bitmaps interactively would
seem to be more plausible, so we provide a simple substi-
tution program to replace an edited piece into a larger pic-
ture: replace-pict (smallpict bigpict x y) takes two
picture structures and overwrites the bigpict with the small
one, starting with the smaller one’s lower-left location on
location x,y on the larger one, and extending according to
its size.

A number of utilities for dealing with individual rows or
pairs of rows are available, documented in the source code.

6.4 Learning, Clustering and ldentification

A simple-minded but, in our experience, largely effective
way to approach the decoding of most of a document is to
start with two frequently true (but in general, false) assump-
tions, and proceed to do as much recognition as possible.

First assumption: each character is a single connected
component. This assumption fails for the common charac-
ters 1,j, and punctuation characters such as =;:71%. It also
fails for characters with defects that break them into pieces.

Second assumption: each connected component is ex-
actly one character. This fails for the sequences “fi” and
“fI” and “fll” in some fonts, and is often a false statement
for realistic scans. That is, the assumption may fail when
characters touch by design or through noise.

Nevertheless, we can proceed in this simple-minded way
to characterize each of the connected components by some
set of properties, and cluster them so that all components
that (say) resemble the letter o are together, and those that
(say) represent the letter ¢ are together in another cluster.

6.4.1 Distances between pictures

How can we tell if one picture (of an alleged character) looks
like another picture? The most direct method might be
comparing the character bitmaps by an exclusive-or, and
counting the unmatched bits “left over.” A large number of
bits suggests the pictures are of different characters. Unfor-
tunately this rule does not work very well, at least judging
from human perception: characters that to the human eye
are identical shapes, but are in reality shifted slightly in po-
sition relative to each other, are somewhat distant by this
metric. Similarly, a human may identify two characters as
the same even if they are shightly different in size. A hu-
man will not take note of small differences especially if the
occurrences are separated in time or location) be

Nevertheless we have programmed a rather efficient count-bits-in-xo:

which takes two bitmaps p1 and p2, the first of which, p1 is
presumed to be a dictionary bitmap of a standard charac-
ter, and the second of which is a page which one suspects of
containing instances of the character. Additional arguments
to this function should be pre-computed: the number of bits
in pl alone and the bits in that area in page p2. These pre-
computed data speed up the computation. Although this is,
at first glance, appealing, it also requires a precise line-up
of bit maps.

Any number of better distance metrics can be found. A
useful metric must naturally be fast to compute as well as
likely to agree with the human reader. = We have exper-
imented with using Hausdorff distances; this is appealing
but we do not have evidence yet that this is significantly
better considering the expense [7].

Another approach, corresponding to a somewhat de-focussed

recognizer has some appeal. This technique appears to be
used by some commercial programs (Bokser in [6]), and is

described below.

6.4.2 Computing property vectors

As one classification technique for identifying rectangular
regions as potential characters, we divide the area into n
by m regions and count the ratio of black vs. white bits in
each region. (we currently use 5 by 5, but more or fewer
divisions could be used). For each character we compute
the 25 values, each scaled from 0 to 255, for convenience
in storage. The cost for this computation (for the 5 by 5
scale) averages (for page35) to about .51ms, or about 1958
computations per second. (1.09 seconds for the 2134 items
on page35).

We can compute the (optionally, weighted) distance be-
tween property vectors p and ¢ as the FEuclidean distance:
Zi wi(gi —pi). We could use this for finding the nearest
neighbor, or find the centroid of some cluster that was clos-
est to a new data point. We found it advantageous to make
an “absolute” grouping for complete characters; that is we
would only bother to compare p and ¢ if they were within
10% in absolute height and their height to width ratio was
within 10%. This characterization assumes (in general this
is an optimistic assumption) that all the parts of the char-
acter are connected, or have, by means of heuristics, been
put into a single picture form.

The important of the height-to-width ratio is critical in
distinguishing characters that essentially fill a rectangular
region. A perfect horizontally oriented rectangle (a line) or
a perfect vertically oriented rectangle (a “rule”) would both
be “all black pixels” in a rectangular field, and therefore
could not be distinguished from a square. In fact, a period



Wi

or dot above an “1” would not be far off from either of these,
were it not for the h/w ratio.

Note that there are some absolutely or relatively very tall
or wide characters in our domain of interest: divide bars for
fractions; tall parentheses or integral signs, etc.

Another variation would identify each black dot as a kind
of Gaussian distribution, and therefore a pixel at the corner
of a region would contribute to the pixel density in adja-
cent regions as well. A simple way of approximating this
would be to have overlapping regions for statistics gather-
ing. This would double-count the edge pixels, so a better
approximation to reality may be to overlap the regions but
then discount edge-pixels by half (and corner pixels by half
again). We have not implemented this option.

Another routine, count-bits-in-xor-of-bitmaps, com-
putes the count of the bits in the exclusive-or of two bitmaps
A and B. This is done rather faster than computing the x-
or followed by a bit-count: First note that we can get a
quick upper and lower bound on K =count(xor(A,B)): as-
sume we pre-compute count(A) and count(B). Thenlet M =
max(count(A),count(B)), N =min(count(A),count(B)). M—
N<=K<=M+N.

Also if we compute L =count(and(A,B)), then K = M +
N —2L.

The big hazard here is that to make this a good detec-
tor of similarity, the bitmaps for A and B must be aligned
accurately. To achieve this with minimal cost, it seems ap-
propriate to pre-compute for each template, a number of
shifted 1images. This tends to proliferate templates dramat-
ically: In addition to shifting North/South and East/West,
one can shift NW (etc.).

(In the past we have used other measures such as the
Hausdorff distance; this is less sensitive to minor shifts or
rotations. We are unconvinced that the complexity of this
computation is justified.)

There are, of course, other possible property vectors that
can be computed. A set of 17 properties of letters was sug-
gested by F. W. Frey and D. J. Slate Letter Recognition
Using Holland-style Adaptive Classifiers, Machine Learning
vol 6 no 2 March 1991, These include 17 small integers: hor-
izontal and vertical positions of the enclosing box relative to
the imputed character position, height, width, total number
of pixels, average x position and variance, average y position
and variance, mean x-y correlation, mean z*y mean zy~,
and various edge statistics. We have experimented with the
20,000 characters are offered in this benchmark, and find
that we can partition the data points automatically into
about 850 clusters, many of which consist of just a few of
the 26 letters. Given our algorithm, the properties seem
inadequate to reliably distinguish Y from V etc.)

REWRITE HERE

After some experimentation and reading, the set of prop-
erties we chose was as follows. Consider copying the alleged
character into a bitmap w by h. Divide the bitmap into 5 x
5 regions. In each region compute a number from 0 to 255
to represent the gray scale in that region. 255 represents
“all black (foreground)” and O represents “all background”.
This 5 x 5 grid gives us 25 “property dimensions” for each
number. We have some misgivings about using exactly these
numbers, using the same number of division, and using non-
overlapping regions. (We speculate that overlapping the re-
glons is a good idea.)

We add two more: the height-to-width ratio normalized
to be between 0 and 255 (where 64 is square, 128= high, 32=
wide, 0 is very wide, and 255 is > 4 : 1), and the absolute
height in pixels (although if the height exceeds 255, we use

255).

)The similarity /distance between two characters is com-
puted in a somewhat ad hoc way: if the height to width
ratio differs by more than 20/255, or if the characters differ
in height by more than 20 pixels, the characters are different
(large distance between them). Otherwise the difference is
the sum of squares of differences of the corresponding gray
levels of the two characters. We tried some other techniques
and the benefits of more expensive techniques (e.g. Haus-
dorfl distance) seemed minor [1].

It is not our intention to defend our metric for several
reasons:

1. We provide the programs, and you are free to change
the property vectors, as well as the distance metric in
any way you wish.

2. Alternative techniques for selection of characteristics
and for training, (most notably using neural networks)
are popular and can be found described in the litera-
ture.

We chose this technique as among the simplest, and one
that seemed to do a reasonable job on our test cases[7].

We wrote several clustering programs on the simple prin-
ciple that we would cluster all connected components into
the same bucket as long as they were within some modest
distance of the (running) average of the components in that
bucket. Our training program actually has two tolerances:
really-close (e.g. for our normalization, this meant about
10,000 units) which indicates to us that this certainly be-
longs in the given bucket, visually. A larger number (e.g.
400,000) is used as some outside tolerance toler: If the
distance from the closest cluster to a new component is be-
tween really-close and toler, then the (human) assis-
tant is asked if this letter is indeed different distinct from
its closest cluster or not. If it 1s actually not distinct, it
is merged into the cluster, adjusting the cluster’s running
average. (This is how the cluster “learns”). If the new com-
ponent is distinct, then a new cluster is formed around this
form®®.

Our experience has been that reading a page with “suit-
able” values of really-close and toler indeed breaks the
contents of a page into clusters, mostly without human in-
tervention. In our tests some clusters are not truly useful —
in our current program run on page35, (see appendix) there
are several clusters consisting of various size dots: the dots
from the letters i and j, the dots from colons, semicolons,
or periods. Several clusters may be scraps of noise, broken
letters, etc. Occasionally a cluster will be a single object
corresponding to an unusual joined letter. It is in fact quite
possible to have clusters corresponding to letter combina-
tions that are routinely joined, such as the kerned ff or fl
combinations, or letter combinations that just happen to
touch accidentally.

After a collection of clusters has been formed, it is pos-
sible for a human to “teach” the computer the conventional

15 For example, a human might be asked if a (perhaps noisy) e is a
member of the cluster to which it is closest. In a noisy document in
which no “e” cluster has been previously formed, the closest cluster
might be mostly letter ¢’s (and perhaps some broken o’s). If such
a noisy example is viewed in isolation, a human may not in fact be
able to tell that it is an e — it is only after some enclosing context
is displayed that a human’s high level of accuracy is achieved. Given
a choice of placing the noisy e into the closest cluster or starting a
separate one, it may be preferable to start a separate cluster, even if
there is another cluster of non-noisy (but more distant) e’s.



ascii character for each cluster. In the case of multi-part let-
ters like 1 or j, we associate the identity with the “non-dot”
part. These identities can then be used in a translation of
the page into ascii. How can one tell between the dot over
the 1 and a period? The location relative to characters on
the line seems to distinguish them fairly well, though not
perfectly.

Once a cluster/identification matrix is set up, additional
clean pages from the same document can be processed with
(we believe) high accuracy.

It becomes clear after some experimentation that an ad-
equate setting of tolerances for one document may differ
substantially from the setting that must be used on another.
Various alternative formulations can be proposed (and some
may be implemented soon) based on a better way of de-
termining “distance from a cluster” in a multidimensional
space. [2]. Conceptually, if instances of the letter A occupy
a very narrow cluster in space, but instances of B are more
spread out, then a letter whose properties place it “half-
way” between A and B is more likely to be a B: In a sense,
the standard deviation of the B cluster is larger, and thus
the range of acceptable alternatives for B may be larger than

that for A.

kR ok ok

6.5 Other Bottom-up tools

Local Morphological transformations
Parsing of rectangular regions / Math
Other kinds of parsing

THE FOLLOWING UNORDERED PIECES ARE GATH-

ERED HERE FOR REFERENCE...

IMPORTANT: DOCUMENT STRUCTURE

Maybe some morphology? Trim very thin connections,
nubbins; join close matches? (All risky, and maybe too early
to do so.)

Finding perfectly clear lines to separate lines of text is
not entirely adequate. They must be clumped heuristically.

a sequence “xxx iiil jjj jim” has a horizontal break be-
tween the dots of the i and the character bodies.

Technology used: All of the library 1ibtiff is available
in the lisp system. The specifications are mapped from the
usual C-interface into Lisp, roughly as follows. We have pre-
pared a special version of the Allegro Common Lisp system
by loaded it with 1ibtiff, and then dumping it back out.
Thus subsequent users do not have to specify the library, nor
wait for the loading. Next, any functions that are needed
are mapped on to lisp names: for example, the declarations
for TIFFOpen and TIFFReadScanline look like this:

(defforeign ’tiffopen
rentry-point  (convert-to-lang "TIFFOpen')
rarguments ’ (string string)
:return-type :integer)

(defforeign ’tiffreadscanline

rentry-point (convert-to-lang "TIFFReadScanline")

rarguments ’ (t array integer integer)

)

Any conversion of Lisp’s data types (string, integer, etc)
to the C conventions is done automatically, with the excep-
tion of return-values by reference. In such cases, the Lisp
programmer passes a fixnum array A of length 1 as the ar-
gument to the C program, and on return, the value of A[0]
(or in Lisp, (aref a 0) is set).

We wrote one program in C, called solely by tiff2pict
to convert the tiff scanlines into interval endpoint data, and
continue to use it, although it provides only about a factor
of 2 speed improvement.

Implementation notes: tiff2pict calls a C-language rou-
tine defined in the file cfuns10.c with two arguments. one is
a bit array that has just been filled in by TIFFreadscanline,
and the other is a scratch-array of fixnums. The vector of
bits represents background and foreground colors in the pic-
ture. Unfortunately, the order of the bits is backwards in
bytes, so we have to read them out (this is what the C rou-
tine does) in order 7-6-5-4-3-2-1-0-15-14-13-12-11-10-9-8 etc.
When the color changes from background to foreground, we
record the index or position of the start of a foreground in-
terval in the next 16 bits of the fixnum array,. When the
color changes to background, we record in the next 16 bits
of the fixnum array, the end. The memory for this work-
ing array has been provided by the Lisp program. Now the
array looks like

(each segment is 16 bits). on returning to Lisp this object
as an array of 32-bit fixnum quantities. Because we are going
to be handling many such vectors, of varying lengths, and
in a manner that may require us to add or delete intervals
from the middle, a linked list representation of this would
seem to be a good representation. Thus we can represent
a scanline from the file (a row in the picture) by a list like
((s0 . €0) (s1. el) ....) or we could have a list of pairs of 16-
bit numbers packed into 32-bit INOBs “Immediate Number-
Like Objects”. That is, n0 = s0e0 packed together, nl =
slel packed together, etc. Thus the row is now a list (n0 nl
...). Since INOBEs, as long as we do not use ALL 32 bits, but
only 30, are packed nicely by lisp into the same space as a
pointer, very little excess storage allocation is needed.

There 1s nothing essential in the computing requiring
the C-language program, and in fact we have a version en-
tirely in Lisp: This also calls the tiff library, but does the
fancy footwork for decoding, directly in lisp. This is called
tiff3pict. In fact, the Lisp system’s handling of bit vectors
seems sufficiently fast that we left the program pict2tiff
without a C-language helper.

The major operator of the C program is to count how
many bits in a row are the same color, where “in a row”
involves counting backwards in a byte. (Presumably this is
caused of byte-order differences between our scanner’s native
mode and our machine’s native mode.)

7 Acknowledgments

Thanks to undergraduates Alex Bui, Katherine Marsden,
Paul Tero for prototypes of some of the programs. Contin-
uing discussions with Gary Kopec, Jon Hull, Dan Halpern,
Ted Einwohner, and other participants in the document-
structure analysis seminar at UC Berkeley were also useful
in the design, implementation, and testing of these modules.

8 Appendix 1: Descriptions of Sample Texts

page35 is page 35 of “HAKMEM” (MIT Artificial Intelli-



gence Lab memo 239), February 1972. Hakmem is a col-
lection of random programs, data, problems, and “hacks”.
Most of this memo, and all of page 35 appears to have been
printed with a Courier typeface Selectric (tm) type-ball,
with a few math and superscript symbols from a Symbol
type-ball. Page35 suffers from being reproduced by offset
and then copied xerographically; it also has minor defects
like staple holes. This page was scanned at 600 dpi and
then reduced to 300 dpi in order to try commercial OCR
programs on it. It has a skew of about -0.22 degrees. The
300 dp1 version which is 2548 by 3300 pixels. Commercial
OCR recognition of this page is fairly successful.

6.tif is from a double-page (pages 336-337) of a table of
integrals by Prudnikov, Brichkov, and Marichev: Integrals
and Series, volume 1. This was printed in 1983 by the USSR
government printing office in Moscow on low-quality paper.
It was copied on a xerographic copier once to make it easier
for us to scan mechanically. The right-half part (page 337)
is skewed by about 1.5 degrees. We did our experiments
on the left side, after cropping out some edge defects. This
document was scanned at 600dpi. It is 3408 by 5604 bits.
Commercial OCR of this page results in essentially no useful
information.

form001.tif is from a double-page (pages 254-255) of a
table of integrals by Gradshteyn and Rhyzik, specifically en-
tries 3.161.3-6 on page 255. Although this was published by
Academic Press, we believe it was produced from plates that
were mechanically copied from the original Russian version.
Again, it was copied on a xerographic copier once to make it
easier for us to scan mechanically. The right-half part (page
255) was deskewed by our software. We did our experiments
This document was scanned at 600dpi. It is 1831 by 1524
pixels. Commercial OCR of this page results in no useful
information.

hal4.tif is a full page from a journal (The American
Economic Review) of an article by Hal Varian It contains
a modest number of displayed equations and some in-line
mathematics with substantial text. It was cleanly scanned,
and has only a few joined characters. It is 4192 by 5696
pixels. Commercial OCR by Xerox Scanworx of this page
provides nearly perfect recognition of the text words. The
display mathematics embedded in the text is rendered as
either gibberish or nothing. These failures have the addi-
tional consequence of upsetting the page-layout deduction
and hindering the zoning. A perfect separation would yield
a headline, a page number, two columns, and a footnote
area.

8.1 Appendix: A scenario

What might one do with this package?

0. start up a lisp and load in the package :1d int
(in-package :tiff)

1. read in a page, say the page 35 hakmem image.

(setf p35 (tiff2pict "page35.tif'"))

This particular page has width 2548, length 3300, is in
ccaittfax4 format.

1.1. Review the page. First initialize the graphics if not
already done. Then scale the picture say, down to 1/8 size,
and display it.

(init-test)

(scaledpicts (list p35) 1/8)

2. deskew the page, calling the result (35

(setf =35 (deskew-pic p35))

The deskewed page has width 2562 length 3311.

3. find the horizontal breaks, namely those locations
where there 1s a perfect cut running through the page. The
program horiz-break takes an array of run-length encoded
lines and returns the beginning and ending of the non-blank
lines as a single list of start-end encodings. These represent
pairs, in order from top to bottom, of those regions of rows
that are non-nil. (Yes, this is somewhat disrespecting the
abstraction, but it saved us some programming)

(setf breaks (horiz-break (picture-rows s35)))

There are 59 breaks

4. Produce a list of the heights of each of those rows.

(setf heights (mapcar #’(lambda(x) (- (end x) (start

x))) breaks))
5. Filter out the too-short lines as noise.

(setf lineheights (delete-if #’(lambda (h) (<= h 3))

heights))

There are 47 remaining lines.

6. Find the median lineheight (defun median (1) (elt
(sort 1 #°>) (truncate (length 1) 2)))

(median lineheights).

This results in the number 43 (pixels) for line height.

This information can be used for guesses at character size
and similar data that can be used for segmentation purposes.

7. The basis of our character recognition is the assump-
tion that we can correctly segment text into characters by
looking for connected components. As a rough approxima-
tion, it works reasonably well for most of cleanly typeset
mathematics. More generally, in the case of full text and
especially noisy text, it is demonstrably false, and any at-
tempt to get high accuracy this way will have to be modified
substantially. To be more specific about the kinds of infor-
mation we necessarily forego, and which would undoubtedly
improve accuracy:

o font size estimation, which allows us to split merged
characters or join fragmented ones with some confi-
dence, including dots over 1’s etc.

o baseline computations (classifying letters jgyp as de-
scenders, other letters or punctuation as “short” or
“tall” etc.).

o letter-pair frequency identifications (“th”).
o references to dictionaries.

There are other heuristics possible, of course, but unless they
are also applicable to mathematics, we did not implement
them. (See, however, OCRchie [5], a student project we
supervised.)

In any case, here i1s how we can find connected compo-
nents.

(setf cc (con-pict £35))

Now ccis a lisp list of a few thousand little pictures. For
this page, 2100. Many are letters, but some are fragments
of letters like the dot over the 1, or broken pieces of E, etc.
If you want to see them, try (scaledboxpicts cc 1/8). If you
want to see them and the letters both, and larger, consider
(clear *w*)

(scaledboxpicts cc 1/3)
(scaledpicts cc 1/3)

8. If we want to scrap all parts of cc that have less than
some area, say 16 pixels inside, we can do this: (setf cc
(filter-out-noise 16 cc))

Why did we pick 167 By trying various different area
values we found that the number of connected components
of area > 2 was 2075. Of area > 16 was 2058. Of area > 30
was 2052. Of area > 40, 1926. The precipitous drop between



30 and 40 suggests we are starting to wipe out important
components that may even be letters.

9. Suppose we wish to recognize the connected compo-
nents and treat them as characters, but we have no idea
what characters there are on that page. One approach, and
one for which we provide programming support, is to look at
each putative character and compute a property vector for
it, group these in clusters according to some “close-enough”
criterion, and present each cluster to the human user for
examination, identification as to “this is an italic e” etc.

The program cluster has this characteristic:
Hokk Ak

This double-page spread was copied by a xerographic copier, anc
then run through the scanner. The two pages look (visually)
like the left one (254) is approximately straight, but the
right one is skewed.

Presumably the right way to deskew is to separate the two piece
deskew them

thus..

Separating out the left part and right part:
(setf left (conm-pict pictl :width 2150)) ;from x= 0 only up to
(setf right (con-pict pictl :left 2151)) ; start at middle

There are several possibilities at this point. (setf leftl (dfilter-out-noise 5 right)) ;for example, to clear

a. The clusters may be just right, and all and only the
letter €’s are in one cluster, the letter ¢’s are in another, etc.
This 1s highly unlikely, but even if we had perfect cluster-
ing, we would still have separate pieces for characters like
i,3,:5="%.

b. The clusters may be too large. For example, the e’s
and the c¢’s would be in the same cluster because they look
nearly the same.

c. The clusters may be too small. For example, some of
the e’s may be in one cluster and some in another. This is
not mutually exclusive with the previous defect. We could
have two or more clusters, each with some e’s and some c¢’s.

How to deal with them.. one can interactively edit
these cluster

For example

We can do more here, like cluster the characters into
groups that resemble each other, paste the dots on the i’s
and semi-colons. Identify half-tones, figures, italics, mathe-

matics zones. ... more...
$o kR Rk Rk Rk ok ok

(setf rightl (dfilter-out-noise 5 right))

If necessary one can reassemble the connected components,
after filtering, into a single bitmap instead of a collection.
Here’s how: (setf leftlt (manypicts2l leftl))

The left part appears to be skewed at -0.34 degrees. The
right part appears to be skewed at 1.27 degrees

9 Appendix: Characteristics of pictures

If we have identified a pile of connected components, how
do we tell what they are? One way to start is to see what
the most common size of an enclosing box is: If we find
that (statistical) mode of the width of a box is a reliable
statistic, we can use that as an estimate of the width of a
character. For hakmem page35, the mode of the width is 22,
the height is 23. This suggests that connected components
less than this width may be incomplete.

For the noisy 6.tif, the mode is 1 bit wide, though after

filtering noise out, it becomes 52 bits wide.

8.2 Appendix on Editing 10 Comments on re-use of code

A fun student project, might be to implement “Image EMACS”
(ref. CACM 1994 article by Kopec et al)

given a page of pictures as connected components, then
grouped as words, and text lines, provide the following op-
erations:

In general, software developed in an academic research project
is usually not re-usable outside the host institution, if it is
even re-usable in the same department. Re-use in the same
research group is sometimes a problem! While there are
exceptions, they are rare.

cursor character motions: F B P N (forward back previous—lwinﬁe%@fbwfih@)e-usable is a challenge, especially when

word motions F B the programs themselves are still under development, or re-

line motions A E quire special environments to run successfully. Experimental
delete character: D rubout programs are allowed to be only partial solutions: that is,
group connect components as character the easy or fun parts can be solved; the difficult or laborious
learn (characters) parts can be ignored. The programs can be too slow, or
delete word might work only on small problems. In our experience here,
delete line some neat programs worked only on small bitmaps!
search The additional effort necessary to perfect the programs is
fill-paragraph considerable, and generally not part of the research project.
Occasionally software is picked up via some technology trans-

display in artificial font fer to commercial enterprises.

copy More particularly for OCR, we’ve looked at material

yank from NIST and CalPolySLO; these did not seem to be re-

insert typed characters? useable for our purposes, although some components, espe-

OCR cially of the NIST code, may ultimately be useful in future
development.

More anecdotal info.. form001.tif, a file produced by scanWengapagésay how others will feel about the programs
254-255 of Gradshteyn at 400 dpi produced a picture of wwaétle 4B84%loped: certainly using Lisp appears unusual in
height 3392. Time to read in, 2.01CPU+.2GC; Time to comphrt€dhnempadinity. (other than our own work we are
components 1.5CPU+3GC; 3332 found. After filtering out apete wflyaek&s. Kopec’s Xerox PARC developments were
$<4¢$, the number of components is 2403. prototyped in Lisp but recently (1996) rewritten in C.) We

believe the choice of Lisp has had some very positive con-
Time to convert and display (bitblt to window) a 1/4 scadeguenceion flexibility, modularity, and interactivity. Inter-
of the 2403 characters: 8.4CPU+.44GC seconds. facing with text or document manipulating artificial intel-



ligence programs, where the use of Lisp is traditional, will
presumably be easier than if other cross-language interfaces
are needed. Time will tell if the code is efficient enough yet
general enough for others to use. We hope others will at our
source code, refine and augment the facilities, and provide
feedback to the design.

11  Match-up strategies: Collecting Characters

11.1 Connected Components don’t work well enough

One annoying barrier to the collection of characters on a
page is that the major heuristic we use is guaranteed to fail
on perfect scans of some common characters, and may also
fail on noisy images of other characters. This major heuristic
is that a character has a 1:1 correspondence with a connected
component of the “graph” of the image. This heuristic is fine
for a connected well-formed version of a character like S. The
heuristic clearly fails for i, j, = and punctuation including
:7:17 Additionally, some typeset characters are disconnected
by accident; e.g. it is common to see a separated a leg on
an n as a consequence of a thin curve.

Accidental connection are also possible, in which case
two or more letters, or fragments of them, are touching. A
common join is found in the sequence rn, which is connected
to look rather like an m.

11.2 How to fix this up?

First, consider a fixed width font such as Courier (Normal)
If we draw boundary boxes around the characters’ connected
components, we see that they are in fact not all the same
width. For example, I is narrower than M. What is fixed, is
the spacing from the origin of one character to its neighbors’
origins to the left and right. Thus there is an imaginary rect-
angle that dictates the character width and a height. This
rectangle includes enough space for the tallest character as
well as the one with the deepest descender (e.g. p, y, or for
that matter, parentheses, brackets and other characters.) In
some fonts the characters do not strictly adhere to the rules:
some characters actually intrude into neighboring boxes just
a little. Italic fonts do this quite routinely. If we reliably
knew the (in general, variable) offset from character to char-
acter (including spaces), as well as the glyph size, we would
be have a solution to a major problem. This would vastly
simplifying the next task of identifying each character. If
we could recognize that all the text is in a fixed width font,
there would be simple strategies to help recognition.

These notes below are much less effective and address
variations on our current techniques.

11.2.1 Strategy 1

To join the dot to the 1, and the pieces of broken letters to-
gether. or more generally, to find a box around each charac-
ter, each a character width wide, and as high as is necessary.

1. Divide the page up into horizontal “swaths”. These
generally correspond to lines, but in the case of tightly
spaced lines, we may find no breaks, and end up with
whole paragraphs. We believe these swaths can be
found rapidly by deskewing and looking for large cuts.
Our method should not be so sensitive to failure that
it matters if we end up with two or more lines in one
swath.

2. Next, Determine heuristically, the size of the charac-
ters. For a line typeset in all one size, or mostly one
size, the median left-edge to left-edge distance of ad-
jacent characters provides the character width. This
need not be exact. The height can be determined by
the maximum height of characters, after eliminating
some percentage of outliers: merged characters from
several lines, vertical rules, integral signs. One can
also use as a guideline, the character width and height
of the previous line(s), as well as some heuristic ratio
of known width to height characteristics for fonts.

3. We scan left to right in the regions, picking out

e connected components that are so completely clearly

a letter that they are easily recognized as such.
Remove them.

e scraps that are not recognized. For these, we take
their bounding box, with (x,y) origin at lower left.
extend a character-width box to the right, and a
50% character-height box up and down. Collect
all pieces that are entirely or partly within this
box. (This allows us to connect together a W
whose upper-left leg is the first encountered piece
separated from the rest of the body, as well as
an A whose lower-left leg is separated.) An alter-
native is to determine the baseline heuristically,
and then use the x-coordinate of the scrap plus
the presumed character position.

o Next, create a minimum bounding box around
this new object. Compare this object (picture,
bitmap) to those characters with approximately
similar heuristically determined character sizes: if
this is too large, consider chopping it to the right
size. If it passes muster, treat it as a connected
component for purposes of removal from the page
image, clustering, recognition, etc.

Extension to variable-width fonts

In this case we repeat the exercise looking up first the widest
possible explanation of the character-width, and then nar-
rowing down so that as many pieces are explained as possi-
ble, with the fewest explanations.

This will not work well if narrow character pieces are
first happily explained away, e.g. a letter I is recognized
and removed; afterward a scrap that looks like H with its
left leg missing must be explained, when the real explanation
is that it should have been joined to the “I”.

This will not work well for characters whose left-most
piece and/or right-most piece just missing. A W with a
missing left leg, resembling perhaps an italic N, will not be
aligned correctly. And if both left and right pieces are miss-
ing, for example a W which would resemble an A without
a cross-bar, we will also have problems. | think we’re going
to just miss these characters, at least on a first pass.

11.2.2 Strategy 2

Consider the more simple-minded but computationally ex-
pensive approach of Sliding matchups. Potentially very slow,
but subject to many heuristics. The general idea would be
to try to “explain” as many bits as possible on a page, per-
haps by first looking for base-lines then using a relaxation/
best fit method to try to cover the bits with favorite text
characters. The plausible locations for characters are limited
considerably if we can produce believable implied base-lines



for text. The digram frequencies can limit the search sub-
stantially, if you are really sure you have identified a letter
t, the probability that the next letter is an h is substantial.

further discussion of deskew.. page35 was identified as
having a skew of about -0.22 degrees.

If we look for breaks between horizontal swaths in the
page 35 as scanned, we find there are 51 swaths: 14 consist
solely of noise, 6 consist of double-line-height swaths, and
31 accurate lines.

If we look for breaks in the deskewed version, we find 49
swaths, 10 are 44 pixels high, 15 are 45 pixels high, and all
but 6 are between 35 and 47 pixels high. There are three tall
lines which have superscripts, and 6 small swaths that are
noise, including the image of the staple holes in the corner.
All 43 lines are correctly isolated.

Looking for vertical breaks (between characters) is plau-
sible on this page only because it is set in a fixed-width font.
In the deskewed version, we can easily separate about 49
character spaces: each “column” is a vertical swath that is
between 24 and 27 pixels, plus a few spaces that are marginal
noise, and a few spaces that are multiple characters wide:
two, three, or four.

On a page set with a variable-width font we would not
expect much success in aligning characters in columns any-
way, so we would not make much use of this inter-character
spacing, in general. (The vertical break detection would still
be useful to separate columns in a 2-column page.)

Without deskewing, but treated just as scanned, the ver-
tical breaks between lines are obscured.

12 Appendix: Pre-loading a Lisp with LIBTIF

It is handy to have a Common Lisp with the file-accessing
library for TIFF (Tagged Image Format) pre-loaded. It is
faster to start up and may have additional sharing of code
if there are several processes using the software.

We'® made a new version of Allegro Common Lisp 4.2
linked up with appropriate entry points from the tiff library.
The linkage is done by putting together a dummy C language
program (we call it dummy . c here) that mentions appropriate
entry points. One then builds a new Allegro Common Lisp
in a standard way using its script called config, as defined
in its build directory, using this dummy program and the
tiff library. (Anyone who has installed a copy of this lisp
as distributed will have addressed the issue of this config
file already.) Other Lisps have very similar mechanisms for
“foreign function” loading.

Our particular script looks like this:

cc -c dummy.c

TIFFGetField();
TIFFReadScanline();
TIFFOpen();
TIFFWriteScanline();

References

[1] Benjamin Berman and Richard Fateman. “Optical
Character Recognition for Typeset Mathematics,”
Proc. of Int’l Symp. on Symbolic and Algebraic Com-
putation, (ACM Press) (ISSAC-94) Oxford, UK. July,
1994. 348-353.

[2] Richard O. Duda and Peter E.Hart. Pattern classifica-
tion and scene analysis, Wiley, 1973.

[3] Richard Fateman, Taku Tokuyasu, Benjamin Berman,
Nicholas Mitchell. “Optical Character Recognition and
Parsing of Typeset Mathematics,” Journal of Visual
Communzication and Image Representation vol 7 no. 1
(March 1996), 2—15.

[4] James Foley, Andries van Dam, Steven Feiner, John
Hughes. Computer Graphics, Principles and Practice,
2nd ed. Addison Wesley, 1990.

[5] Katherine Marsden, OCRchie. Sr. Honors Project, May,
1996 Univ. Calif. Berkeley, Computer Science Division,
EECS. http://wwu.cs.berkeley/ fateman/kathey

[6] Lawrence O’Gorman and Rangachar Kasturi: Docu-
ment Image Analysis, IEEE Computer Society Press,
1995.

[7] Taku Tokuyasu. “Optical Character Recognition of
Typeset Mathematics,” MS project, Univ. Calif.,
Berkeley, 1995.

[8] Wilensky: http://cs.berkeley.edu/elib/

sh config temp=/usr/tmp dummy.o /usr/sww/lib/libtiff.a

What should dummy.c contain?

In principle one could access any or all of the entry
points in the library by mentioning them in dummy.c but
for conciseness'” we have eliminated all that are unused in
the current project.

int dummyRoutinesToForceLoad0fLibTiff ()
{ TIFFClose();
TIFFSetField();

16Actually, David Glowacki.

17We have a perl program courtesy of David Glowacki, that auto-
matically constructs dummy.c from the symbol table of all entries in
the tiff library.

(* dummy.c *)



