
A Suite of Programs for Document Structuring and Image Analysis using Lisp

DRAFT DRAFT

Richard J� Fateman�

Taku Tokuyasu

Computer Science Division� EECS Department

University of California at Berkeley

� Introduction and Motivation

As part of an e�ort to incorporate printed material into a
digitally stored library� we were faced with digitizing and
�generally� analyzing substantial quantities of printed tech�
nical documents� For reasons that will become apparent�
it appeared that commercially available optical character
recognition �OCR� programs were not adequate to all parts
of the task� We have vacillated to some extent in deciding
exactly how much of the analysis could be done by com�
mercial software� and have currently settled into a shared
arrangement where we attempt to partition documents into
sections that can ordinarily be processed by commercial pro�
prietary software� and other sections that need special care�
We begin our processing given two�level images of �mostly�

text� and assume that some gross page processing �removing
obvious half�tone images� has been done�
Even after such �ltering� the text we are concerned with

may still be unconventional from the perspective of pack�
aged business�oriented OCR software� Our major interest
has been material that includes two�dimensional mathemat�
ical notation� with the sprinkling of unusual symbols� that
goes with it� We have not been concerned with tables� lo�
gos� or diagrams� but at least some of our programs should
be applicable to diagrams with non�linear layouts� Prior to
our involvement in the digital library project at Berkeley� we
had begun a small project on the recognition of mathemati�
cal text � speci�cally tables of integrals � into a semanti�
cally useful encoding for automated computer lookup� This
task required parsing documents in a domain that can be
categorized loosely as 	advanced calculus equations
� Al�
though the techniques developed for this domain can be
carried over into the recognizing the patterns of ordinary
documents� �after all� a text word is a special case of a math�
ematical formula�� we expect that the more general nature
of our techniques would result in overall less accuracy on
ordinary business documents� where words occur fairly re�
liably on lines in paragraphs �etc�� Our tools would have
some advantages in unusual �non�text� circumstances�

�This work was supported in part by NSF Grant number CCR�
������� and by NSF Infrastructure Grant number CDA��	��	��
 and
NSF Digital Library grant IRI���������

Before discussing the particular attributes of the pro�
grams we�ve developed� we wish to review a few questions
relevant to our overall project�

��� How should scanned text be stored�

The cost of �especially tertiary� storage has dropped to the
point where it is economically feasible to base document�
handling systems on storage and retrieval of pages as com�
pressed bit�maps� Indeed� some business work�ow applica�
tions are fundamentally data�base retrieval systems for such
pages where externally imposed keys are used for indexing�
but the pages themselves are essentially opaque to process�
ing�
On the other hand� for many applications� including ours�

it is useful and sometimes critical to be able manipulate the
contents of the scanned material as though it were text� To
be most useful� this content should be structured or 	parsed

so it can be subjected to indexing� search� reformatting� edit�
ing �including cutting and pasting�� computation� and eco�
nomical re�transmission� Such a recognized document can
be stored as a bitmap plus a structure� These combinations
�in the Berkeley digital library project we call them multi�
valent documents� have become very attractive� They look
like especially good solutions for a corpus of widely varying
materials subjected to �exible search� retrieval and process�
ing�
���

��� Why not use o��the�shelf solutions�

Typical commercial OCR programs are quite properly tar�
geted at their most likely source material� business�letter
text� Programs can sometimes succeed on other page recog�
nition task as well� Some can handle columnar data� Some
programs are especially successful for forms recognition from
pre� 	zoned
 documents� They are best used for high vol�
umes of essentially similar documents� In some cases consid�
erable e�ort has been devoted to dealing with lower�quality
scanned images in a variety of fonts� The commercial pro�
grams are commonly packaged for e�cient distribution and
ease of use in common cases� Their e�ectiveness can some�
times be improved if the user speci�es particular known
qualities of the material �e�g� �xed�width fonts� 	noisy
 etc��
The commercial designs appear to substantially preclude

using and re�ning component tools to gain higher levels of
recognition on unconventional material �e�g�� mathematics��
Along another dimension� most systems appear to take

insu�cient advantage of certain contextual information that

may be available� for example� we can get much higher accu�
racy on a corpus if we are given material known to be highly
structured and 	very
 stereotypical� for example pages that
one can depend upon to be all in a particular known font�
Such a specialized recognizer could maintain its relatively
high accuracy in the face of much noisier data�
As discussed in more detail below� we also require� for

some of our applications� a keyed recognition result where
the words refer back to their positions on the original scanned
page� Entry�level packages do not provide such results� Typ�
ical API 	development
 packages o�er this level of data�
Because there are no standards here� the data is provided
in some proprietary vendor format �e�g� XDOC for Xe�
rox�Scansoft Textbridge� PDA for Caere��
Our experiments with several commercial OCR programs

used on our initial data of mathematical text suggested that
available monolithic commercial products would just not
perform adequately� Accuracy� even in recognizing con�
stituent characters was low� After discussions with the ven�
dors� it was apparent that systems of that time ������ were
not built in a form enabling us to extract 	modules
 for
re�use�� Therefore we embarked� reluctantly at �rst� on a
project to design and implement our own OCR programs�
The routines described in this document are the early fruits
of this e�ort�

Naturally� not all commercial OCR�related activities are
subsumed by the OCR programs available �now� at modest
cost 	over the counter
 or included with scanner hardware�
Businesses also provide custom OCR solutions tailored to
speci�c needs� These are� however� expensive and di�cult
to obtain when the range of documents is not well de�ned�

� Goals for our design

The modules described here are intended to be portable� re�
usable� reasonably e�cient building blocks for optical char�
acter recognition and related document�structuring tasks�
They are based on straightforward designs� mostly mirror�
ing what has been shown to be e�ective in the literature� For
the most part� we have deviated from simplicity only when
the simplest solution was tried and found ine�cient or in�
adequate� We expect that further development will follow
the same route�
The programs need not be used together as an end�to�

end package for recognition of bitmaps to ascii text��le� In
fact� our �rst digital library application has been to use
one or two modules solely to de�skew bitmaps� without any
recognition processing� � The de�skewing generally corrects
misalignment in the scanner�feeder mechanism� or earlier
production problems in the original corpus� We expect that
modules for input�output to di�erent formats could be con�
structed and the modules for recognition and learning of
isolated characters easily replaced�
Another important goal for us is to provide� at a rea�

sonably accessible level� the correspondence between words
�or equations� and positions on the original page� Thus it

�Some systems are �open
 through application program interfaces

but this is not modular in the sense we were looking for� Five years
later
 the same situation still prevails�

�It may not be obvious
 but de�skewing a scanned page
 even by a
degree or two
 helps in the manipulation of the bitmaps �by hand
�
That is
 if one uses the traditional �rubber�band rectangle
 aligned
to the computer�display X�Y axes to select a �line of text
 or some
other rectangular section of a page
 misalignment causes problem�
Straightening the page �xes this problem
 and makes the multivalent
document processing much easier� selected picture rectangles corre�
spond to text blocks in the OCR format�

should be possible to see that a particular word occupies a
speci�ed rectangle on a page image� or that a mathemati�
cal expression occupies a particular rectangle� � This level
of information is used in Berkeley�s multivalent document
system�

� Non�Goals for our design

While we are willing to see more features added to this suite
of programs� we are not attempting to provide all the facili�
ties that have appeared elsewhere� For example� we are not
concerned at this time with�

� Providing as output� the input formats speci�c to the
many editors available for personal computers�

� Recording the font� style� and point�size of characters�
except as it matters for recognition� �In fact� we need
to know about italics for mathematics��

� Recognition of reverse�video� cross�out� script� half�
toned or similar modi�ed text�

� Automatic recognition of ���degree rotated text�

We recognize that such capabilities may be valuable in
some contexts� and hope that others may �nd our tools use�
ful in building such capabilities� should they be necessary�
We also have made some e�orts ������ to integrate other

OCR programs �in particular� Scansoft�Xerox�s TextBridge�
into our system so that in the Windows environment a sub�
section of a page can be sent to a commercial 	intelligent
character recognition
 engine�

� Outline of OCR tasks

We are grateful to the many researchers in OCR who have
explored various options in approaching standard problems�
First we brie�y outline the currently accepted wisdom on
the steps necessary for successful document understanding
�
���� In subsequent sections we show where our pieces �t in�

��� Pixel�level processing

Faced with an image scanned in to the computer� the �rst
group of processes deal with pixel�level transformations�

� Thresholding is the determination of whether a partic�
ular pixel position is to be treated as white or black�
given that it is actually perceived as some level of
color or gray� We don�t address this task in our pro�
grams� relying instead on the scanner �perhaps with its
low�level software� appropriately adjusted� to come up
with the �binary level� image� While such an arrange�
ment can be fooled by inverse�color printing� print�
ing on top of half�tones� etc�� we have found that the
scanners we�ve used can generally be adjusted satisfac�
torily to produce ��level images from our documents�
This decision to leave well enough alone could be re�
examined and we could either write our own thresh�
olding program or directly use a gray�scale� This latter
approach would seem to be far most costly than our
binary bitmap approach� We are willing to re�examine
this in the future since it seems especially plausible to
trade�o� low�resolution gray�scale for high�resolution

�In�line math running over two or more lines require a more elab�
orate shape than a rectangle�

��level images� and there is considerable evidence that
keeping gray�scale information in low�resolution pic�
tures makes them much easier for humans to under�
stand�

� Noise reduction� This can include a host of trans�
formations attempting to modify or �lter the shapes
represented� including morphological processing and
	kFill
 �lters� Initially we did not do this� but we
have added some morphological style processing for
half�tone detection� and a kind of smearing operation
for segmentation� �Crudely speaking� letters tend to
become words if you smear their bounding boxes hori�
zontally�� While some kinds of morphological process�
ing are relatively clumsy to execute in our current run�
length�encoded representation �e�g� ��D �ltering op�
erations�� horizontal smearing is easily accomplished�
And if an image is represented as a collection of bound�
ing boxes �as we do for segmentation�� then vertical
and horizontal smearing is rather fast� We discuss this
in a subsequent section�

� Thinning�skeletonization� This is a kind of higher�
level morphological concept that can be applied to im�
ages which appears especially useful in images that are
graphs� maps� etc� Although one could argue that it
would be useful also for character recognition� it ap�
pears to us that thinning loses some useful information
that we could use for recognition� We can easily do
naive horizontal thinning by shortening intervals in a
scan line� We can do vertical thinning most directly by
rotating the RLE encoding� doing horizontal thinning�
and reversing the rotation� Since a �� degree rota�
tion takes a few seconds �in our representation� this
is hardly free� but not as expensive as we�ve seen it
in other programs� One would ordinarily try to avoid
repeated rotation operations� 	Real
 thinning is far
more sophisticated� We do none of this�

� Chain coding and vectorization� We do not do ei�
ther of these per se� though run�length encoding on
a row�by�row basis serves some of the same needs� it
is easier to compute connectivity� and it is potentially
far more compact than bitmaps� RLE also makes use
of more easily �arithmetically� manipulated chunks of
information than bit�strings� Although we hesitate
to make a totally language� and machine�independent
judgment on this� in our programming environment
there is something of a performance penalty for oper�
ations which tend to require masking�shifting opera�
tions to extract� compare� and count bits from mem�
ory� versus doing integer arithmetic�

� Connected components� region detection� feature�level
extraction� We provide support for connected com�
ponent extraction and some heuristic feature detec�
tion �e�g� The number of columns or lines of text can
be based on �nding vertical or horizontal gaps of a
given width�� Our current design deskews and �nd
connected components �rst� which seems somewhat at
odds with the ordering in O�Gorman
��� but is prob�
ably more a consideration of our premise� that we are
dealing with text� and prior processing has removed
other material�

If we are uncertain of the nature of the text�half�tone
mixture� then it makes sense to try to test for such
non�text features and remove them as a preliminary

to connected component extraction� Such an operation
on a sizable half�tone would be extremely slow�

��� Region detection

Detection of di�erent text and other regions� combined with
reading�order segmentation seem to be important in achiev�
ing high quality results in the following sense� Regions detec�
tion� by which we typically mean identifying headers� foot�
ers� paragraphs� columns� displays� etc� is useful for

� Specializing recognition� Title fonts� mathematics� foot�
notes may bene�t from di�erent approaches� For ex�
ample� knowing that a section is entirely text means
that word�line�character heuristics can be applied for
better identi�cation� Knowing that a section is math�
ematics �or that a text section contains math� means
one might expect lower success in looking for words�

� Computing or Indicating Order of Reading� The read�
ing order is just an attempt to impose a consistent
ordering for material that appears on the page so that
at least the �ow of the words of continuous text is
given� Given a number of regions� one generally reads
them top to bottom� If there are several columns� the
left�most column is read �rst �etc��

Beyond that� heuristics begin to play a larger role�
If the page is really a table with columns� horizontal
lines are more plausibly each 	separate records
� Some
printed material has much fancier layouts� Popular
magazines might have large�font quotes pulled from
the article and splashed across the page� perhaps cross�
ing columns� Presumably the quotes are to be read
�rst � before or instead of reading the page� Some�
times it is not clear how to resume the reading order
below such a quote� and human readers are confused�
Humans may read captions on �gures and tables be�
fore the text� Humans probably do not read the page
number at all unless there is a suspicion that pages are
out of order or missing�

How is this done� There are a variety of techniques that
have appeared in the literature� using textures� manipulat�
ing of connected components� and hand�correction� We be�
lieve that any automatic segmentation is going to be fallible�
and therefore to the extent that it must be done correctly� we
require tools to correct the segmentation� We have designed
and implemented a program with a pleasant user interface
for zoning �Calzone�
��� This allows the user of our doc�
ument processing system to examine the result of our auto�
matic zoning and correct it by altering general parameters�
and to correct particular one�time errors� It also provides
a simple mechanism for identifying by hand those sections
which contain mathematical equations� While display equa�
tions can sometimes be identi�ed� it is rather di�cult to
identify automatically a brief in�line mathematical expres�
sion like x�yz� and especially tricky to de�ne it as a zone if
it is split over two or more lines in a non�rectangular region�
In an attempt to solve some of these problem and bring

the manipulation into the Lisp model� in the summer of
����� Richard Fateman implemented� an interactive zoning
program� described brie�y here� See also http���http�cs�berkeley�edu��

�We used Allegro Common Lisp and its Common Windows graph�
ics package
 a medium�level object�oriented system that depends on
light�weight multiprocessing threads in the UNIX Lisp implementa�
tion� It seemed to us at the time to be the best compromise between
e�ciency and utility� In the grand tradition of graphics packages
 this
has subsequently become an �unsupported standard�
 Although this

In order to enhance the manipulation of page images�
we developed a design for a user interface for panning and
zooming in and out��
Acrobat scaling seems to be limited to �� to ��� in certain

steps� To accommodate a ��button mouse� it has a slightly
di�erent detail in control� The program 	Imaging
 by Wang
Inc �for Windows NT�� and distributed with Caere�s devel�
opment system is� in some dimensions� a simpler alternative
that allows one to view TIF �les by panning and zooming�
it however also allows one to edit the image��

Given�

� A huge picture P o��screen which is far too large to
display on a pixel by pixel basis� For example� P might
be ���� by ���� pixels� corresponding to an ��� by ��
inch page scanned at ���dpi�

� A large canvas L on screen� �lling much of the display�
This might be ��� by ���� pixels�

Objectives�

� To see on the canvas a selected section of the large
picture for visualization� editing� selection etc�

� To scroll�pan the selection section around so that any
part of the picture can be seen�

� To change the magni�cation �positive or negative�� At
one extreme� the whole picture �presumably greatly
shrunk� can be seen� displayed on the whole canvas�
At the other extreme� a small piece of the picture�
much enlarged� even a portion of a single character� is
enlarged to the size of the canvas�

The usual tools in a drawing program are scroll�bars hor�
izontal and vertical� and zoom boxes big�small� We found
this rather clumsy� requiring considerable 	remote
 hand
motion to get to another location on the page� and also re�
quiring fairly precise pointing within a scroll�bar� Instead
we implemented the following alternative tools�
We display a thumbnail image T of the whole page� with

a sub�rectangle S� the same proportions as T� superimposed
on it� The canvas L is also geometrically congruent to S
and T� At any given time� the sub�portion of T covered
by S is displayed on the large canvas� By moving S in T�
corresponding motions of L on P are accomplished�
Shrinking S in the thumbnail magni�es the view in L�
Through experimentation� we found a variety of features

to enhance the user interface� although the primary interface
criterion emerged as fast interaction� the speed of redisplay�
The simplicity of the controls were important in our own
�admittedly self�evaluation� �extra features� warping mouse
cursors� changing cursor shapes��
These description pale in usefulness to a �� second demon�

stration� but we will try to use text� nevertheless� In partic�
ular� to shrink�expand S� click�drag inside�outside S with
left mouse button� The cursor changes to NE arrow� The
mouse is warped to the closest corner of S� Motions of the
mouse are tracked with S changing proportionally� Moving

code was used by � or � Lisp vendors
 in the interests of continued
maintainability
 portions of the code have been moved to Allego Lisp
using Common Graphics �based on Windows graphics�
 and more of
it may be used in the future�

�After thinking this through we have discovered an essentially sim�
ilar interface in Adobe�s Acrobat
 so any minor originality we might
claim is probably of no consequence�

�I particularly like the stamp idea� you can stamp �REJECT
 or
�DRAFT
 on an image�

out of T terminates the tracking� as does releasing the but�
ton� At this point the newly determined size of S covers a
portion of the thumbnail picture T which is then re�scaled
and displayed to �ll canvas L�
To move �pan� the displayed sub�picture� press the left

mouse button in the thumbnail window� The mouse cursor
warps to the center of the region S� from which the region
may be moved until the button is released�
Along with this interactive viewing� we implemented a

sequence of operations that guesses �with user input� at
zones in a page� The user can set sliders to change param�
eters that a�ect this automatic zoning as described below
in the section on automatic bottom�up segmentation� if no
fully�satisfactory automatic zoning can be attained� the user
can use mouse commands to break apart zones that are too
large� and join zones that are incorrectly separated� We ini�
tially implemented rectangular non�overlapping regions for
this purpose� for equations� especially in�line equations� we
allow zones that are nearly arbitrary regions� In fact they
are collections of small �always rectangular� bounding boxes
of connected components from the page�
Of the commercial OCR programs� we have found that

heuristics for zoning are not described� although sometimes
the user has the opportunity to suggest 	one column
 or
	multi�column
� or other basic parameters� In some pro�
grams� �e�g� TextBridge as supplied by Wang Imaging Pro��
the zoning results are not explicitly displayed� in other pro�
grams �e�g� FineWeb��� by ABBYY� the zones are available
and can be edited� Each of these programs allows the user
to de�ne zones that are not to be handled as usual text�
These zones may be picture zones or �for FineWeb� table
zones��
Zoning is not su�cient unto itself� except in the simple

case of a single column of text� If there are several columns�
or even small decorations like page numbers or headers� it
is useful to consider the read�order of zones on the page�
How should this proceed� The simplest mechanism is a

top�to�bottom reading of all the material on this page� ei�
ther treated as one large zone� or a vertical concatenation
of zones� When zones are horizontally adjacent� problems
appear� As a �rst step we have implemented an entirely 	by
hand
 speci�cation of read�order� this was dictated by our
need to handle ��column documents correctly� We are think�
ing about writing an 	automatic
 zoning program which
would take a collection of rectangular �or possibly more gen�
eral� regions and determine a heuristic read�order based on
�a� guessing a model and �b� �tting the model against the
found data�

��� Automatic Bottom�up Segmentation

Given a collection of connected components� �ccs� we can try
to group them into objects that approximate words� lines�
paragraphs� columns�
The basic idea	 is to vastly reduce complexity overall by

change all cc�s to empty bounding boxes �bbs��
Let p be a list of boxes of cc�s on a page� If smear�x

is ��� then any two bbs within �� pixels in the x�direction
of each other are combined to a single bb� This� in general�
expands to a superset of the two bb� and thus may make the
new box encroach within �� pixels of additional bbs� This

�Each of these programs makes mistakes on one of our standard
examples �hal��tif� because of either mathematics or footnotes �or
both� splitting or joining columns�

�we explain this notion in detail in a later section�
	are give in �le boxsmear�

operation is iterated until it ceases smearing boxes� result�
ing in some number of new 	super
 boxes� For example�
if there are about ���� connected components on a page�
an appropriate choice of horizontal smearing tolerance �for
smear�x�� iterated until it stops making changes might set�
tling in on about ��� connected components� These might
correspond with substantial� but not perfect accuracy� to
the words� Given such a collection of words one can smear
them into lines by increasing the smear�x tolerance� One
can �vertically� smear them into paragraphs� If we have say�
���� paragraphs� perhaps in two or more columns� we can go
back to a particular paragraph and repeat the processing to
get the line�separation and hence the typical text point�size
for that paragraph� This will help if paragraphs on the page
are in di�erent fonts or sizes� A paragraph may also consist
of a title or a displayed equation� or �if we have not otherwise
removed it� a half�tone� These operations are fast because
they do not require any consideration of the the bit encod�
ing� Should it be necessary to �ll the boxes back with the
contents� then stuff�boxes�bbs� src� restores the rectan�
gular bitmap encoding into the bounding boxes� given the
original source page src�
A program for interactively changing the smear param�

eters and watching the changes in groupings is hooked up
to our CALZONE program� Other parameters that can be
modi�ed in CALZONE include the sizes �area� height� of
items that are too large to be used as boxes �typically these
are vertical or horizontal rules� �gures� or pictures of page
bindings� or items that are too small to be used �typically
noise��
A plausible direction to follow is to determine� by the

changes in the statistics following the smearing� how many
words or lines there are on a page� We have not pursued
automatic determinations of this information� but an auto�
matic approach might look like this� if we start with ����
ccs� gently increase the smear�x parameter until the num�
ber of distinct ccs drops precipitously� Maybe nudge it up
slightly to see how stable that smear�x parameter setting is�
If the number of ccs is now plausibly the number of words
on the page �say ����� compute some statistics� average or
median height of a word might be very useful� Continue
nudging that parameter up� and if one gets to a number of
ccs that is plausibly the number of lines on the page �say
���� take some comfort in the statistics there� as well� One
might even �nd columns this way�
We can propose to use vertical smearing to get para�

graphs in approximately the same way� perhaps �rst do
some horizontal smearing to get words or lines� and then
vertical smearing� If there is more space between para�
graphs that between ordinary lines� this may help� More
subtle recognition to deal with indented or 	out�dented

paragraphs may be appropriate�
Software tools� �smear�x bl tol� takes all cc�s in the

list of bounding boxes bl �presumably all in a particular
picture p�s coordinate system� that are within a horizontal
distance �border to border� in the x direction of tol� and
which overlap in y coordinates �that is� by the most liberal
measure possible� are next to each other�� and merges them
into a single box� This process entirely ignores the 	content

of the pictures� and treats them as empty boxes� To do any
operations on the contents� you must go back to the original
data in the picture p�

�smear�y bl tol� is like smear�x except in the other
direction�

��� Classi	cation of Regions
 text� non�text

What is the point in doing this automatically� If we cannot
do it perfectly �and we cannot�� we must be able to handle
the situation of a paragraph being identi�ed as text when
it is really mathematics� or vice�versa� The actually options
may be more numerous� A map may be identi�ed as a dia�
gram but it will also have text� Some text may look like a
half�tone texture� etc�
If every processing component must deal with whatever

it is given� even if it is wrongly characterized� then the only
advantage in a classi�cation is an optimization in time �try
this �rst����� but if �say� the mathematics recognizer is pow�
erful enough to understand both mathematics and Roman
text �which it must anyway to deal with embedded words��
then one can argue� treat everything as math� The math
parser will then chew up text and say 	Oh� by the way� you
might as well treat this as text in further processing� because
there is nothing very math�y about it�

Unfortunately� the math recognizer is not yet� anyway as

robust for text as the polished commercial programs� and so
we do not really want to shove everything through the math
recognizer�
We have not included any automatic classi�cation pro�

grams� but two indications are easily computed� 	average
density
 of a picture constituting a paragraph� displayed
math has a lower density� The distribution of large and small
characters �or connected components� is another� In a plot
of height vs� width� text has a tendency toward tighter clus�
tering than mathematics� We rely on human recognition in
CALZONE to pick out math�
We do not use any automatic read�ordering of zones at

this time� It is a plausible topic for research� although it
would be necessary to have a convenient interaction 	cor�
rection�

��� Text Analysis

We include in this section

� Skew� This is the determination of the 	slant
 of the
page as scanned� For typewritten or typeset pages it
is usually possible and bene�cial to detect �and some�
times� remove the skew by sliding bits� In some ver�
sions of skew removal� only text�lines are straightened�
individual characters remain unmodi�ed� Our imple�
mentation deskews whole pages� and occasionally in�
troduces a slightly disconcerting single�bit shift in the
middle of a character�

� Page layout� detecting lines and paragraphs�

� Character Recognition� At the moment we provide
tools for isolated character lookup which is clearly not
as good as recognition in context� The result from this
stage is a collection of glyphs and locations�

� Interpretation� here we examine the positions of the
character to arrange them in text lines� or in one of our
primary tests� as mathematical equations� We parse
the mathematics into the language of a computer al�
gebra system�

� Data representations for pictures� characters

If one has no a priori knowledge of what to expect from an
image� the �rst cut at computing with images is likely to
be based on dealing with an array of numbers representing

pixel values�colors� The value at a pixel location may be
an index into a color map� or some absolute quantity� In
the case of a ��level black and white image� an array of zero
and one bits seems to su�ce� Such an array can typically
be compressed substantially for secondary storage�
We found this initially appealing approach to be imprac�

tical for our objectives� at least given the computing at our
disposal� except for rather small images and�or low resolu�
tions� We are scanning at a minimum of ���� but often at
��� to ��� dots per inch� Displaying a ���dpi ��� by �� inch
picture on a �� dot�inch workstation screen means that we
would need a display lineally about ��� times larger than the
document size� or about � by ��� feet� It also means we are
using about ��� megabytes of RAM for the bu�er� at � bit
per pixel� If we are forced to use � bits �or more� per pixel�
we are at �� or more megabytes of RAM for one image�
We are not saying that one needs to display such full

pages at full resolution � just that this is a substantial
sized array � and computing with it on a bit�wise basis is
not something that one should do casually�
Normally� some substantially compressed data format is

used for raster images� Example�
One experimental data set we have been working with

is 	�tif� a black and white tiff �Tagged Image Format�
�le representing a page approximately ��� by ��� inches in
size� scanned at about ��� dots per inch� �More details
of this are given in the appendix�� This image� comprising
���� by ���� bits� is delivered by our scanner and associated
software as a compressed tiff �le of ������ bytes� In terms
of black and white bits� uncompressed� it would be ���� �
���� ��� ���� ��� bits� or ���� megabytes� Thus the TIF
�le represents a ���� compression�
At �rst blush it would seem that to do any processing� we

would have to unpack the image to bits� and it is certainly
possible to proceed on that basis�
Yet the raster image as an array is actually not so conve�

nient� A basic operation in character recognition and docu�
ment processing would seem to require access to successive
individual bits� one is routinely trying to �nd out the extent
of a uniformly�colored region� Yet access to the individual
adjacent bits in a word� one�by�one� may not be the ideal
access� A better result would be one that provided higher�
level groupings� Ideally� if we had one grouping of bits per
character� much of our processing would be done� In point
of fact� we have adopted as our representation a version of a
run�length encoding� and have found this to be enormously
advantageous in time and probably space�
Consider an image to be a sequence of �say� horizontal�

scan�lines� Each scan�line is a sequence of � s� e � pairs�
where s is an integer denoting the start of a section of black
bits� and e is the corresponding end index� The endpoints of
these intervals can be encoded in a modest number of bits�
For example� with �� bits we can encode numbers up to ����
assuming ���dpi this limits us to ���� inches across� which
is far wider than our scanners�
Converted into our picture data as intervals� 	�tif is

���� lines of intervals� If we scan this along the long dimen�
sion �arguably the less e�cient way if we wish to compress
horizontal lines e�ciently� we �nd this particular page has a
total of ������ entries in the scan lines� where� as indicated
above� each entry is a pair of numbers� How much storage
does this take� Our current design uses a few words for
descriptive header information� and then�
�� An array of ���� words �pointers� to the data struc�

ture for each scan�line�
�� A scan�line structure of variable length� The concep�

tually simplest Lisp�
 structure would use � words for each
pair� two Lisp CONS cells� one for maintaining the 	back�
bone
 of the list� and another for the pair �s � e� of start
and end indexes� This would look like ��
� � �
� ���
 � ���� �����
With this encoding� we would use a total of �������

words for the lists of pairs� Considering the array and the
pairs together we have a total of� ������� words or �����
megabytes for the representation of this picture�
This is somewhat wasteful� Since the indexes are num�

bers less than ��� two can easily be stored as 	immediate

values in the same space as a ���bit pointer� In particu�
lar in most Lisps on ���bit word machines� numbers less
that ��	 are easily packed into one 	�xnum
 �an encoded
immediate number form�� So if we care to pack these in�
tegers two�per�word� we now have a linked list of �xnums
�not conses� of length ������ Although the exact details
are irrelevant� we actually use two ���bit �elds �	short
 in
C�language�� parlance� for storing the two parts� For many
computers extracting bits by loading half�words from a reg�
ister �or shifting� is much faster than following a pointer to
memory� so this is a savings in space and time� We now
have�

�� ���� words� one for each line

�� � Cons cell � � words each� for each of ����� pairs
������ words� for total storage of ��� kilobytes�

This is the representation we use� Another step in storage
reduction would be to replace the lists by vectors� reducing
the storage to � word per pair� and the total storage to about
��� kbytes� But the use of linked lists� with the freedom to
add and drop links� is such a convenience that we are not
especially eager to trade that o� for space�

 Discussion of routines

Here we describe in brief the collection of our routines in�
tended to be used by experimenters in OCR� We do not doc�

�
Why did we program in Lisp� Several reasons�

�� We like Lisp
 especially for exploratory programming�

�� Natural data�structures are linked lists�

�� Memory leakages
 a common problem in C or C��
 are elimi�
nated by automatic memory management�

�� There is a convenient built�in package ��Common Windows
�
for bit�map display� Interaction with the program for learning
and debugging have been substantially assisted by the easy
availability of this set of routines providing access to the X�
window interface� This is not essential for the running of the
core routines� however
 a realistic model of recognizing text
may include a user�interface for spot�checking results
 and for
quizzing the user about uncertain identi�cation�

�� �After some work� convenient access to �les as formatted from
the scanners�

�� Lisp programs tend to be quite portable� Portability to other
implementations of Common Lisp would require no alteration
except in the interface to libtif
 a public domain package we use
for input and output of ti� format �les� This alteration would
consist of a transcription of the foreign�function call mechanism
from the Allegro dialect to some other form�

�
��Partly in recognition of the popularity of C and C��
 and partly

to see how speed would be a�ected by other language implementa�
tions
 two versions of the scan�line to encoding program were written

one in Lisp and one in C� Somewhat to our surprise
 while the C code
was faster by a factor of two in ����
 the ���� compiler technology
and computer hardware has changed the balance� C is not particu�
larly faster now ������� Furthermore
 a cleverer algorithm suggested
by Reiner Staszewski easily coded in Lisp has made the Lisp code
twice as fast as C�

ument all the detailed algorithms here� considerably more
documentation is provided with the program text�

�� Input� conversion

tiff
pict ��filename�� Given a string that is the name
of a �le� tiff
pict reads that �le in TIF form� presumably
a b�w binary scanned �le� and returns a picture structure�
width� height� x�y coordinate of the lower left corner� the
collection of rows� the source �lename� and some indication
of content� For a newly read�in picture� the �x�y� setting is
always ������ The height of the picture is exactly the number
of rows in the collection� The width of the picture is taken
as the width of the originating �le� The content is the string
	a full page
� The �x�y� setting is in any case a pair of non�
negative integers� If it is� say ���� ����� this means that the
�th row represents line ��� of the page� and that on that row
�and every row�� the � mark is at column �� of the page�

pict
tiff �p� �filename�tif��writes back out to the
�le system the picture p as a tiff �le with encoded name
filename�tif� The �x�y� coordinates in p are ignored� and
assumed to be ������

pict
bit �p� converts a picture structure p into a bitmap
b� A bitmap is an o�cial data structure used by the Com�
monWindows package in Common Lisp� If WIN is a Common
Windows window descriptor for a visible window� and p is
a picture then �bitblt �pict
bit p� � � WIN � �� trans�
fers �bitblt bit�block�transfer� the image of the picture
p starting at its lower left� into the window WIN at its lower
left�
A brief digression on the topic of bitmaps and Common

Windows�
You might think that the provision of this structure im�

plies support for other operations� This is true in that it
extends to drawing lines on it� Analysis of bitmaps is not so
well supported� if it were� we would probably use it more�
In the interactive portions of our programs we use it heavily�
Bitmaps are restricted to a total size of ���������� bits so

that arrays that are larger than ���� by ���� are too big to
handle� This is not usually a problem because conventional
display systems today handle about ���� by ���� pixels� or
���� of that bitmap� And there are probably better things
you�d like to do with your memory� as well as better ways
to represent data o��screen�
While a full page at ��� by �� inches at a typical ���

dpi �dpi dots per inch� CAN be converted to a bitmap�
in our processing experience this has seemed inadvisable�
We suggest you scale things down so you can see the whole
page using scaledpict�bit� �see below� or perhaps look at a
subsection of the page� using smallerpict �see below��
Why�
Simple� Most workstations display about at ��dpi� To

fully display every bit on such a bitmap would require a
screen about � by ��� FEET �or ��� foot diagonal�� You can
display about ��� of it on your typical ��million pixel screen�
At ���dpi� which is about the highest resolution for scan�

ning that is used at all frequently� the bitmap is far and away
too big for a workstation� which might display ���� of the
picture� In fact the array is �� megabits� if we use color
for overlays or shading� this is expanded to ��byte per pixel�
For �� bits of color per pixel for a color display� this means a
LOT of memory� Fortunately� for document processing this
is much more than we need� Some color image processing
can require such expansion� and that�s why big machines are
recommended for that business�

Pict�bit actually has two sub�cases� the simple case in
which the �x�y� coordinates of the lower�left corner are given
as ������ and the case where some other location is given� In
this latter case� the program provides a bitmap that �never�
theless� starts at ������ and so may include big areas of blank
bitmap� In practice� it seems we generally 	renormalize
 our
picture encodings so that that they have origins of ������ and
if we want to produce a bitmap of a particular character in
�say� the upper�right corner of a page� we should separately
remember its �x�y� origin� extract and convert just that little
rectangular picture to a bitmap� We can paint it anywhere
on the screen� and if we want to put it in the 	same
 place
as it occurred on the picture� we will use its saved origin
to position it� A program that assists this is smaller�pict
described just below�
The �nal bitmap has the same height and width as the

picture�
smaller�pict �pict x� x� y� y�� takes a picture pict

and � integers� It extracts from pict a picture starting at
x�coordinate x� and continues up to but not including co�
ordinate x�� If x� is too far to the right �o� the page� so to
speak� then the smaller picture will be similarly truncated
at the border� The y�coordinate is treated the same way�
All the coordinates are re�adjusted so that �x��y�� is now at
location ����� in the returned picture�

bit
pict �b� takes a bitmap b� as might be produced
by interactive editing� and returns a picture structure� Since
CommonWindows programs use the bitmap structure as the
underlying support for its drawing canvas� pop�up menus�
etc� it is plausible to �for example� write character editing
or similar manipulation programs using bitmaps� and then
translate the results to a picture form� It takes the lower�left
corner of the bitmap as coordinate ������

pict
tiff �pict� filename� takes a single picture struc�
ture and writes it �fairly rapidly� to a �le in a format that
is fast to read back in� This assumes the origin of the pic�
ture is at ������ This primitive routine is probably not of
substantial direct use except to rewrite a page that has just
been deskewed� Some of the encoding details �e�g� compres�
sion� etc�� are set to correspond to the last ti� image that
was read in� A careful programmer using this procedure
may look at it as a model rather than a complete module
for simple use�

writepicts
file�plist filename� In this program a
list of pictures plist is given� rather than a single picture�
The output is NOT in ti�� but in a form that is more quickly
read and written by lisp� The pictures are written out in the
order given in the list� Another �le� �lename�dic is written
to contain some dictionary�style material� a kind of symbol
table for the contents of the pictures�
Although we have not tested this extensively for e��

ciency� assuming that the encoded �le is a page of text� a �le
written out in this way is only slightly larger than a ti� �le�
It could� however� be much larger if the encoded material
consisted of random bits� The primary advantage of a �le
produced in this way is that it can be indexed and accessed
in random order if necessary� Therefore it might be a better
representation for pages and pages of text where access to
individual picture components �e�g�� characters or perhaps
words� over a whole document are useful�
The inverse operation for this output is readpicts�filename��

which returns a Lisp list of pictures from a �le written by
writepicts
file� Our assumption is that this program
would be used as a model for a more elaborate program that
could �for example� read the pictures non�sequentially� For
purposes of multi�page document processing we can read�write

pages to�from disk at a fairly rapid clip� �on an HP ��������
workstation� ��� sec� to write� ��� seconds to read back in a
whole page of ���� connected components� Access to partic�
ular character images would be yet faster� A normal lisp text
storage format rather than a byte stream� is about �� times
slower� Using ti� as a disk format depends on compression�
but seems to take a minimum of ��� seconds to read� ���
seconds to write� and re�computing connected components
takes about ��� seconds� and doesn�t have the advantage of
keeping individual characters in place� The times on a ���
Mhz Pentium Pro computer using Allegro Common Lisp are
slightly faster than this� ��� and ��� seconds� June� ������

�� Utility Programs

We have made substantial e�orts in polishing code to pro�
duce a fast deskewing algorithm and a fast connected�components
program� We therefore describe these in much greater detail�

���� De�skewing

Pages scanned or printed by a mechanical device are ordi�
narily read at a slight angle� Humans do not usually have
di�culty reading such skewed pages� Indeed� small skew
may not not even be noticed� It is advantageous for com�
puter processing to remove skew when possible� The ma�
jor reason is that regions �lines� paragraphs� zones� of com�
mon text� tend to be more easily isolated in properly grid�
aligned rectangles� Such rectangles can be described by one
origin �x�y�� a height and width� An unaligned rectangle
typically needs four full pairs of numbers� and the display
of un�aligned rectangles tends to show uncomfortable 	jag�
gies
� While it is possible to deal with skewed text� and
some OCR programs do so quite well� we prefer to deskew
when possible�
Three programs are provided�
deskew�pic�p� given a picture p produces a deskewed

version of it� In fact� all this does is �nd the skew and
then unskews the picture by composing the two programs
described below�

find�skew�p� given a picture p computes heuristically a
skew angle d in degrees that the picture is tilted� Typically
the angle will be less than ��� degrees� A positive value for
d means the picture appears to be rotated clockwise by that
angle about a point at the lower right� A negative value sug�
gests a skew counter�clockwise around a point at the lower
left� Actually as many as � additional key�word parame�
ters can be provided to this program� find�skew�p �min
m� �mid m
 �max m� �skip s� The minimum� maximum�
and midpoint of the angles expected can be set� By default
these are set to ����� �� ���� The skip parameter �default ��
indicates how many lines should be skipped in testing skew�
Skip � uses every other line� This speeds analysis by about
a factor of �� For high�density pages� skip � seems to work
about as well as skip ��

UN�skew�p d� given a picture and an angle d in degrees�
produces a new picture that is unskewed�
There are a number of recent papers �refs� written on

deskewing algorithms� but from our limited experience it
appears that a simple� fast and therefore useful approach
can be based on a simple observation� Compute the distri�
bution of black dots on a line�by�line basis in a page of text
�or mostly text�� If the scan lines are aligned with the text
grid� there will be substantial numbers of blank or nearly�
blank lines� and substantial numbers of lines with consider�
able black density� In the case of horizontal lines �say as a

table�rule� underline� or mathematical fraction divide�bar��
the line may even be a majority of black bits�
On the other hand� if the scan lines are at an angle to the

text �think of it as �� or �� degrees�� then the distribution
of white and black bits will be far more uniform� there will
be very few purely white or purely black lines�
A statistical measure of the variance of the distribution

of bit�counts is easy to compute� we� in e�ect� do a 	ray
scan
 of lines oriented horizontally �very easy and fast�� or at
slight positive and negative angles� almost as fast� The scan�
ning angle that corresponds most closely to the skew angle
will have the highest variance� A short somewhat heuristic
search can try to identify the 	best
 angle�
Given our representation� scanning at a zero angle is

truly inexpensive� the cost increases� but slowly� as the angle
increases� Counting the number of black bits in a full row
is a simple operation� and we can compute the variance of
	�tif at zero degrees� examining ���� lines� in less than ���
second� The cost at one degree is more than one second� to
scan a single 	row
 at one degree� one must scan and sum
up the count of black bits from some original row for bit
positions � to �� bits� and then hop up one row and scan
bit positions �� to ��� �etc��� The step�size for one degree is
approximately ��� tan�������� ������ Hoping up one row
and skipping to the interval that encloses the appropriate
bits can eventually become time�consuming�� �
Fortunately� the statistical computation need not rely on

looking at every scan�line� and therefore one can select every
kth row �perhaps with a random perturbation�� to speed
up the calculation� In preliminary tests on a few scanned
pages� accuracy is relatively good even if � out of �� lines
are skipped�
Finding the best angle� that is the one with the highest

variance� is done with a conventional numerical search� The
function being maximized typically has a global appearance
of a single maximum with a rather 	�at
 top� The detailed
local appearance at that top is more fractal in nature� and
so �nding the precise maximum may be wasteful� an ap�
proximation good to ��� degrees should be achievable�

���� Correcting Skew

Each of the transformations is a shear� think of a stack of
dominos sitting on a table� Pushing it sideways so that each
domino is shifted a distance proportional to its height� is
a horizontal shear� This is a row�preserving transformation
we call a 	slant�
 If each row going upward progressively
moves further to the right as the row number increases� we
have 	italicized
 the picture� The second kind of shear is at
right angles to the �rst shear� a column�preserving trans�
formation we refer to as a 	tilt
� A combination of the two
is nearly a rotation for small angles� An actual rotation
would require that in each of the two shears� the amount
of shifting varies as the row �or the column� changes �
��
p� ����� In particular� their row�preserving transformation
is �x�y�� �x cos����y tan���� y� and the column�preserving
transformation is �x� y�� �x� x sin �! y cos ���
How far o� is the maximum error in using our near�

rotation� The approximation we use is based on the fact
that sin��� tan��� and � �in radians� are approximately equal
for small �� and that cos��� is approximately one� We use
�x� y�� �x� y�� y� �x� y�� �x�x�! y� For an angle of one

��Our initial code required a constant step size
 but we found this
too restrictive� Our current program allows for fractions� a step size
of one degree is not exactly �	 to �
 but a sequence� ��	 �� �	 �	 �	
�	 �� �����

degree ������� radians� and an ��� by �� inch page scanned
at ���dpi� or even at ����dpi the true rotation point given
by the formula is o� by one pixel at the worst� �A page with
such a slant might have been inserted in the copier o�set
about ��� inches out of ����
At � degrees� and ���dpi� the center of the page is dis�

placed �"x�"y� ��� �� pixels� about ���� inches from the
true location� and the worst case� the upper right�hand cor�
ner is displaced by ��� �� pixels� still less than ���� inch o�
the correct position� Since this error is encountered at � de�
grees� how likely is this� In fact a � degree error represents
a displacement of about ���� inches out of ��� this would be
a quite noticeable skew in inserting a page into a copier or
scanner�
Nevertheless� what about more extreme angles� At an�

gles approaching �� degrees� or about � inches out of ��� the
deviation of our formula from a true rotation is substantial�
with a ���� ��� erroneous displacement at the upper right�
hand corner� nearly ��� inches� A sequence of several smaller
shears� rather than just two� may be preferable in correcting
such a tilt�
Note that deskewing necessarily puts a jag into the data

at the point of the corrections� One alternative approach to
deskewing would be to maintain all intra�connected�component
relationships and only deskew BETWEEN such objects� This
keeps the letter shapes unchanged� but levels�out the base�
lines of text� For small letters this is �ne� but presents a
problem for those connected components� the long divide
bar in fractions� for example� that we would also like to
deskew� For the present� we deskew full pages and su�er the
consequences of the occasional letter with a jag in it� An
alternative that may be easy to implement in one dimen�
sion is to avoid inserting a shift in a foreground color if one
can make a correction within a few pixels� in a background
color� Note that even a highly accurate deskewing calcula�
tion can have local discretization problems� resulting in a
re�alignment of the apparently tilted line of dots
���

into one that is only nearly�aligned�
���
Another approach for de�skewing adopted by some scan�

ning software is to not re�represent the page� but to keep the
information of the skew angle for following base�lines at an
angle across the page�
Occasionally papers are scanned either accidentally or

purposely at right angles �or occasionally upside down��
Scanning software can be adjusted for this� but sometimes
is not� We�ve written a program � rot�� pic� to rotate a
single picture clockwise by �� degrees� A rotation of a run�
length encoded full page at ���dpi takes about ��� seconds�� �
On a typical page� it may be better to separate the page
into connected components ���� seconds� and rotate each
of a few thousand small characters� this program requires
about another ���� seconds� The savings accrue by not hav�
ing to 	rotate the white�space
� �This requires specifying
the page�width as a second argument to rot�� because the
axis of rotation cannot otherwise be deduced�� We also have
written �rot��� pic� for a ��� rotation counter�clockwise
as well as �rot��� pic�� For speed� the last of these changes
the data 	in place
 and hence destroys the data structure�
It can be easily recreated by rotation of another ��� degrees�

��Times reported in this paper are for a Hewlett�Packard �����	��
workstation running Allegro Common Lisp ����

���� Morphology and Half�tone removal heuristics

Morphology transformations on picture forms is easily
performed if they are 	one dimensional
 and correspond to
the run�length�encoding direction� That is� one can easily
write a program that takes each interval and dilates it� What
we programmed were two transformations� merge�close�intervals�line
n� which merges any two adjacent intervals of foreground
color �usually black� if they are separated by fewer than n
bits of background �white�� We also programmed remove�narrow�interva
n� which erases any interval of width less than n� These
programs can be 	mapped
 over the lines in any picture by
map�over�pict�pic� function�� If we wish to run these
transformations in the vertical direction� we can rotate the
picture by �� degrees� run the transformation� and then ro�
tate by ��� �or !���� degrees�
We programmed a 	blotching
 operation on a picture to

join� by horizontal or vertical mergings� half�tones images�
The objective is to produce a single �or a few� large blob�s�
that can be easily dismissed as 	not text
� and wiped out
wholesale� �in fact� it appears that all large objects that do
not �t into a horizontal or vertical line model might as well
be deleted along with noise�

���� Connected Components

con�pict�p� produces a Lisp list of the connected compo�
nents of the picture p� Each one of the components is itself
a picture structure of a rectangular element of the origi�
nal large picture� with an �x�y� origin at the lower left of
the bounding box of that component� In many cases these
components correspond to the characters on the page image�
although they can be both character fragments or arti�cially
merged characters� The components are not necessarily dis�
joint� Indeed� the bounding boxes of adjacent italic charac�
ters can easily overlap� Each component picture includes�
however� only those bits that are connected� The current
version of this program �including Lisp garbage collection
times� �nds about ���� components per second on the �le
	�tif mentioned earlier� This is probably not an entirely
typical example since many of the components are small
pieces of the binding and page edges�
Another� probably more typical sample� an ��� by ��

inch typed page in courier typeface was found to have ����
connected components in ��� seconds� a rate of ���� chars�sec�
We believe this program is quite fast� even though this

speed could be improved substantially by using lower reso�
lution� and hence smaller� images� Halving the linear reso�
lution should speed the processing by a factor of two ���
A program to compute the reversal of con�pict is avail�

able� manypict
one�plist� takes a list plist of �perhaps
many� pictures� possibly overlapping� and returns one pic�
ture structure� This is an especially useful operation if you
believe that the connected component breakup of a large pic�
ture is wrong� and one should reconnect some of the pieces�
In constructing the single resultant picture� an x�y origin is
computed that is the minimum x and minimum y origin of
any of the component pieces�
Our initial enthusiasm about the usefulness of con�pict

has been tempered somewhat by several realizations�

a� We must also manage the fairly common situation
where a connected component is not a complete single

��If we were using pixel arrays
 we would expect the processing
time to decrease by a factor of four� In own representation
 while the
number of rows would be halved� we would not expect the number of
intervals per row to halve as well� Intervals would be lost only when
details were lost to the decreased resolution�

character� �We can reassemble them via manypicts
one�
though��

b� The underlying assumption seems to be that one can
identify each component in isolation� By taking a
connected component out of its context� we miss the
nearby pieces that might be critical to enable us to
identify the piece�

c� It is advantageous to take into account as a de�nition
of a character� not only the black bits� but also the
space about the bits� Part of the identity of a letter
is its spacing relationship with respect to other letters
�e�g� in the same word��

Thus unless one is quite sure of an identi�cation� one may
have to in some sense re�establish the context of 	nearby
connected components
 to see if some re�grouping of pieces
makes more sense� If we are attempting to explain a page by
some global 	best �t
 computation that maps explanations
�clean characters and positions� to blotches in the bitmap�
the connected components may or may not be on the route
to such a solution� Nevertheless� we have observed the po�
tentially high usefulness of con�pict for a �rst�cut at recog�
nition based on the following observation� dealing with a
few thousand objects representing connected components�
given their coordinates and sizes� still seems to represent
a savings� even if the objects do not represent characters�
We can still attempt to identify and separate 	lines of text

and then 	words
 by grouping these object into sorted col�
lections� Recognizing the letters in the context of a word
should be easier than isolated connected components�

�� Editing Utilities

Programs for directly editing bitmaps interactively would
seem to be more plausible� so we provide a simple substi�
tution program to replace an edited piece into a larger pic�
ture� replace�pict �smallpict bigpict x y� takes two
picture structures and overwrites the bigpict with the small
one� starting with the smaller one�s lower�left location on
location x�y on the larger one� and extending according to
its size�
A number of utilities for dealing with individual rows or

pairs of rows are available� documented in the source code�

�� Learning� Clustering and Identi	cation

A simple�minded but� in our experience� largely e�ective
way to approach the decoding of most of a document is to
start with two frequently true �but in general� false� assump�
tions� and proceed to do as much recognition as possible�
First assumption� each character is a single connected

component� This assumption fails for the common charac�
ters i�j� and punctuation characters such as ������� It also
fails for characters with defects that break them into pieces�
Second assumption� each connected component is ex�

actly one character� This fails for the sequences 	�
 and
	�
 and 	#
 in some fonts� and is often a false statement
for realistic scans� That is� the assumption may fail when
characters touch by design or through noise�
Nevertheless� we can proceed in this simple�minded way

to characterize each of the connected components by some
set of properties� and cluster them so that all components
that �say� resemble the letter o are together� and those that
�say� represent the letter c are together in another cluster�

���� Distances between pictures

How can we tell if one picture �of an alleged character� looks
like another picture� The most direct method might be
comparing the character bitmaps by an exclusive�or� and
counting the unmatched bits 	left over�
 A large number of
bits suggests the pictures are of di�erent characters� Unfor�
tunately this rule does not work very well� at least judging
from human perception� characters that to the human eye

are identical shapes� but are in reality shifted slightly in po�
sition relative to each other� are somewhat distant by this
metric� Similarly� a human may identify two characters as
the same even if they are slightly di�erent in size� A hu�
man will not take note of small di�erences especially if the
occurrences are separated in time or location� be
Nevertheless we have programmed a rather e�cient count�bits�in�xor

which takes two bitmaps p� and p
� the �rst of which� p� is
presumed to be a dictionary bitmap of a standard charac�
ter� and the second of which is a page which one suspects of
containing instances of the character� Additional arguments
to this function should be pre�computed� the number of bits
in p� alone and the bits in that area in page p
� These pre�
computed data speed up the computation� Although this is�
at �rst glance� appealing� it also requires a precise line�up
of bit maps�
Any number of better distance metrics can be found� A

useful metric must naturally be fast to compute as well as
likely to agree with the human reader� We have exper�
imented with using Hausdor� distances� this is appealing
but we do not have evidence yet that this is signi�cantly
better considering the expense
���
Another approach� corresponding to a somewhat de�focussed

recognizer has some appeal� This technique appears to be
used by some commercial programs �Bokser in
���� and is
described below�

���� Computing property vectors

As one classi�cation technique for identifying rectangular
regions as potential characters� we divide the area into n
by m regions and count the ratio of black vs� white bits in
each region� �we currently use � by �� but more or fewer
divisions could be used�� For each character we compute
the �� values� each scaled from � to ���� for convenience
in storage� The cost for this computation �for the � by �
scale� averages �for page��� to about ���ms� or about ����
computations per second� ����� seconds for the ���� items
on page����
We can compute the �optionally� weighted� distance be�

tween property vectors p and q as the Euclidean distance�P
i
wi�qi � pi�� We could use this for �nding the nearest

neighbor� or �nd the centroid of some cluster that was clos�
est to a new data point� We found it advantageous to make
an 	absolute
 grouping for complete characters� that is we
would only bother to compare p and q if they were within
��$ in absolute height and their height to width ratio was
within ��$� This characterization assumes �in general this
is an optimistic assumption� that all the parts of the char�
acter are connected� or have� by means of heuristics� been
put into a single picture form�
The important of the height�to�width ratio is critical in

distinguishing characters that essentially �ll a rectangular
region� A perfect horizontally oriented rectangle �a line� or
a perfect vertically oriented rectangle �a 	rule
� would both
be 	all black pixels
 in a rectangular �eld� and therefore
could not be distinguished from a square� In fact� a period

or dot above an 	i
 would not be far o� from either of these�
were it not for the h�w ratio�
Note that there are some absolutely or relatively very tall

or wide characters in our domain of interest� divide bars for
fractions� tall parentheses or integral signs� etc�
Another variation would identify each black dot as a kind

of Gaussian distribution� and therefore a pixel at the corner
of a region would contribute to the pixel density in adja�
cent regions as well� A simple way of approximating this
would be to have overlapping regions for statistics gather�
ing� This would double�count the edge pixels� so a better
approximation to reality may be to overlap the regions but
then discount edge�pixels by half �and corner pixels by half
again�� We have not implemented this option�
Another routine� count�bits�in�xor�of�bitmaps� com�

putes the count of the bits in the exclusive�or of two bitmaps
A and B� This is done rather faster than computing the x�
or followed by a bit�count� First note that we can get a
quick upper and lower bound on K count�xor�A�B��� as�
sume we pre�compute count�A� and count�B�� Then letM
max�count�A��count�B��� N min�count�A��count�B���M�

N � K � M !N�
Also if we compute L count�and�A�B��� then K M!

N � �L�
The big hazard here is that to make this a good detec�

tor of similarity� the bitmaps for A and B must be aligned
accurately� To achieve this with minimal cost� it seems ap�
propriate to pre�compute for each template� a number of
shifted images� This tends to proliferate templates dramat�
ically� In addition to shifting North�South and East�West�
one can shift NW �etc���
�In the past we have used other measures such as the

Hausdor� distance� this is less sensitive to minor shifts or
rotations� We are unconvinced that the complexity of this
computation is justi�ed��
There are� of course� other possible property vectors that

can be computed� A set of �� properties of letters was sug�
gested by F� W� Frey and D� J� Slate Letter Recognition
Using Holland�style Adaptive Classi�ers� Machine Learning
vol � no � March ����� These include �� small integers� hor�
izontal and vertical positions of the enclosing box relative to
the imputed character position� height� width� total number
of pixels� average x position and variance� average y position
and variance� mean x�y correlation� mean x�y mean xy��
and various edge statistics� We have experimented with the
������ characters are o�ered in this benchmark� and �nd
that we can partition the data points automatically into
about ��� clusters� many of which consist of just a few of
the �� letters� Given our algorithm� the properties seem
inadequate to reliably distinguish Y from V etc��
REWRITE HERE
After some experimentation and reading� the set of prop�

erties we chose was as follows� Consider copying the alleged
character into a bitmap w by h� Divide the bitmap into � x
� regions� In each region compute a number from � to ���
to represent the gray scale in that region� ��� represents
	all black �foreground�
 and � represents 	all background
�
This � x � grid gives us �� 	property dimensions
 for each
number� We have some misgivings about using exactly these
numbers� using the same number of division� and using non�
overlapping regions� �We speculate that overlapping the re�
gions is a good idea��
We add two more� the height�to�width ratio normalized

to be between � and ��� �where �� is square� ��� high� ��
wide� � is very wide� and ��� is � � � ��� and the absolute
height in pixels �although if the height exceeds ���� we use

�����
The similarity �distance between two characters is com�

puted in a somewhat ad hoc way� if the height to width
ratio di�ers by more than ������� or if the characters di�er
in height by more than �� pixels� the characters are di�erent
�large distance between them�� Otherwise the di�erence is
the sum of squares of di�erences of the corresponding gray
levels of the two characters� We tried some other techniques
and the bene�ts of more expensive techniques �e�g� Haus�
dor� distance� seemed minor
���

It is not our intention to defend our metric for several
reasons�

�� We provide the programs� and you are free to change
the property vectors� as well as the distance metric in
any way you wish�

�� Alternative techniques for selection of characteristics
and for training� �most notably using neural networks�
are popular and can be found described in the litera�
ture�

We chose this technique as among the simplest� and one
that seemed to do a reasonable job on our test cases
���
We wrote several clustering programs on the simple prin�

ciple that we would cluster all connected components into
the same bucket as long as they were within some modest
distance of the �running� average of the components in that
bucket� Our training program actually has two tolerances�
really�close �e�g� for our normalization� this meant about
������ units� which indicates to us that this certainly be�
longs in the given bucket� visually� A larger number �e�g�
�������� is used as some outside tolerance toler� If the
distance from the closest cluster to a new component is be�
tween really�close and toler� then the �human� assis�
tant is asked if this letter is indeed di�erent distinct from
its closest cluster or not� If it is actually not distinct� it
is merged into the cluster� adjusting the cluster�s running
average� �This is how the cluster 	learns
�� If the new com�
ponent is distinct� then a new cluster is formed around this
form���
Our experience has been that reading a page with 	suit�

able
 values of really�close and toler indeed breaks the
contents of a page into clusters� mostly without human in�
tervention� In our tests some clusters are not truly useful �
in our current program run on page��� �see appendix� there
are several clusters consisting of various size dots� the dots
from the letters i and j� the dots from colons� semicolons�
or periods� Several clusters may be scraps of noise� broken
letters� etc� Occasionally a cluster will be a single object
corresponding to an unusual joined letter� It is in fact quite
possible to have clusters corresponding to letter combina�
tions that are routinely joined� such as the kerned � or �
combinations� or letter combinations that just happen to
touch accidentally�
After a collection of clusters has been formed� it is pos�

sible for a human to 	teach
 the computer the conventional

��For example
 a human might be asked if a �perhaps noisy� e is a
member of the cluster to which it is closest� In a noisy document in
which no �e
 cluster has been previously formed
 the closest cluster
might be mostly letter c�s �and perhaps some broken o�s�� If such
a noisy example is viewed in isolation
 a human may not in fact be
able to tell that it is an e � it is only after some enclosing context
is displayed that a human�s high level of accuracy is achieved� Given
a choice of placing the noisy e into the closest cluster or starting a
separate one
 it may be preferable to start a separate cluster
 even if
there is another cluster of non�noisy �but more distant� e�s�

ascii character for each cluster� In the case of multi�part let�
ters like i or j� we associate the identity with the 	non�dot

part� These identities can then be used in a translation of
the page into ascii� How can one tell between the dot over
the i and a period� The location relative to characters on
the line seems to distinguish them fairly well� though not
perfectly�
Once a cluster�identi�cation matrix is set up� additional

clean pages from the same document can be processed with
�we believe� high accuracy�
It becomes clear after some experimentation that an ad�

equate setting of tolerances for one document may di�er
substantially from the setting that must be used on another�
Various alternative formulations can be proposed �and some
may be implemented soon� based on a better way of de�
termining 	distance from a cluster
 in a multidimensional
space�
��� Conceptually� if instances of the letter A occupy
a very narrow cluster in space� but instances of B are more
spread out� then a letter whose properties place it 	half�
way
 between A and B is more likely to be a B� In a sense�
the standard deviation of the B cluster is larger� and thus
the range of acceptable alternatives for B may be larger than
that for A�
%%%%%%%%%

�� Other Bottom�up tools

Local Morphological transformations
Parsing of rectangular regions � Math
Other kinds of parsing

THE FOLLOWING UNORDERED PIECES ARE GATH�
ERED HERE FOR REFERENCE���

IMPORTANT� DOCUMENT STRUCTURE
Maybe some morphology� Trim very thin connections�

nubbins� join close matches� �All risky� and maybe too early
to do so��
Finding perfectly clear lines to separate lines of text is

not entirely adequate� They must be clumped heuristically�
a sequence 	xxx iiii jjj jim
 has a horizontal break be�

tween the dots of the i and the character bodies�

Technology used� All of the library libtiff is available
in the lisp system� The speci�cations are mapped from the
usual C�interface into Lisp� roughly as follows� We have pre�
pared a special version of the Allegro Common Lisp system
by loaded it with libtiff� and then dumping it back out�
Thus subsequent users do not have to specify the library� nor
wait for the loading� Next� any functions that are needed
are mapped on to lisp names� for example� the declarations
for TIFFOpen and TIFFReadScanline look like this�

�defforeign �tiffopen
�entry�point �convert�to�lang �TIFFOpen��
�arguments ��string string�
�return�type �integer�

�defforeign �tiffreadscanline

�entry�point �convert�to�lang �TIFFReadScanline��
�arguments ��t array integer integer�
�

Any conversion of Lisp�s data types �string� integer� etc�
to the C conventions is done automatically� with the excep�
tion of return�values by reference� In such cases� the Lisp
programmer passes a �xnum array A of length � as the ar�
gument to the C program� and on return� the value of A���
�or in Lisp� �aref a �� is set��
We wrote one program in C� called solely by tiff
pict

to convert the ti� scanlines into interval endpoint data� and
continue to use it� although it provides only about a factor
of � speed improvement�

Implementation notes� ti��pict calls a C�language rou�
tine de�ned in the �le cfuns���c with two arguments� one is
a bit array that has just been �lled in by TIFFreadscanline�
and the other is a scratch�array of �xnums� The vector of
bits represents background and foreground colors in the pic�
ture� Unfortunately� the order of the bits is backwards in
bytes� so we have to read them out �this is what the C rou�
tine does� in order ������������������������������������� etc�
When the color changes from background to foreground� we
record the index or position of the start of a foreground in�
terval in the next �� bits of the �xnum array�� When the
color changes to background� we record in the next �� bits
of the �xnum array� the end� The memory for this work�
ing array has been provided by the Lisp program� Now the
array looks like

s
 e
 s� e� � � �

�each segment is �� bits�� on returning to Lisp this object
as an array of ���bit �xnum quantities� Because we are going
to be handling many such vectors� of varying lengths� and
in a manner that may require us to add or delete intervals
from the middle� a linked list representation of this would
seem to be a good representation� Thus we can represent
a scanline from the �le �a row in the picture� by a list like
��s� � e�� �s� � e�� ����� or we could have a list of pairs of ���
bit numbers packed into ���bit INOBs 	Immediate Number�
Like Objects
� That is� n� s�e� packed together� n�
s�e� packed together� etc� Thus the row is now a list �n� n�
����� Since INOBs� as long as we do not use ALL �� bits� but
only ��� are packed nicely by lisp into the same space as a
pointer� very little excess storage allocation is needed�
There is nothing essential in the computing requiring

the C�language program� and in fact we have a version en�
tirely in Lisp� This also calls the ti� library� but does the
fancy footwork for decoding� directly in lisp� This is called
tiff�pict� In fact� the Lisp system�s handling of bit vectors
seems su�ciently fast that we left the program pict
tiff
without a C�language helper�
The major operator of the C program is to count how

many bits in a row are the same color� where 	in a row

involves counting backwards in a byte� �Presumably this is
caused of byte�order di�erences between our scanner�s native
mode and our machine�s native mode��

� Acknowledgments

Thanks to undergraduates Alex Bui� Katherine Marsden�
Paul Tero for prototypes of some of the programs� Contin�
uing discussions with Gary Kopec� Jon Hull� Dan Halpern�
Ted Einwohner� and other participants in the document�
structure analysis seminar at UC Berkeley were also useful
in the design� implementation� and testing of these modules�

� Appendix �
 Descriptions of Sample Texts

page�� is page �� of 	HAKMEM
 �MIT Arti�cial Intelli�

gence Lab memo ����� February ����� Hakmem is a col�
lection of random programs� data� problems� and 	hacks
�
Most of this memo� and all of page �� appears to have been
printed with a Courier typeface Selectric �tm� type�ball�
with a few math and superscript symbols from a Symbol
type�ball� Page�� su�ers from being reproduced by o�set
and then copied xerographically� it also has minor defects
like staple holes� This page was scanned at ��� dpi and
then reduced to ��� dpi in order to try commercial OCR
programs on it� It has a skew of about ����� degrees� The
��� dpi version which is ���� by ���� pixels� Commercial
OCR recognition of this page is fairly successful�

	�tif is from a double�page �pages �������� of a table of
integrals by Prudnikov� Brichkov� and Marichev� Integrals
and Series� volume �� This was printed in ���� by the USSR
government printing o�ce in Moscow on low�quality paper�
It was copied on a xerographic copier once to make it easier
for us to scan mechanically� The right�half part �page ����
is skewed by about ��� degrees� We did our experiments
on the left side� after cropping out some edge defects� This
document was scanned at ���dpi� It is ���� by ���� bits�
Commercial OCR of this page results in essentially no useful
information�

form����tif is from a double�page �pages �������� of a
table of integrals by Gradshteyn and Rhyzik� speci�cally en�
tries ��������� on page ���� Although this was published by
Academic Press� we believe it was produced from plates that
were mechanically copied from the original Russian version�
Again� it was copied on a xerographic copier once to make it
easier for us to scan mechanically� The right�half part �page
���� was deskewed by our software� We did our experiments
This document was scanned at ���dpi� It is ���� by ����
pixels� Commercial OCR of this page results in no useful
information�

hal��tif is a full page from a journal �The American
Economic Review� of an article by Hal Varian It contains
a modest number of displayed equations and some in�line
mathematics with substantial text� It was cleanly scanned�
and has only a few joined characters� It is ���� by ����
pixels� Commercial OCR by Xerox Scanworx of this page
provides nearly perfect recognition of the text words� The
display mathematics embedded in the text is rendered as
either gibberish or nothing� These failures have the addi�
tional consequence of upsetting the page�layout deduction
and hindering the zoning� A perfect separation would yield
a headline� a page number� two columns� and a footnote
area�

��� Appendix
 A scenario

What might one do with this package�
�� start up a lisp and load in the package �ld int

�in�package �tiff�
�� read in a page� say the page �� hakmem image�
�setf p�� �tiff
pict �page���tif���
This particular page has width ����� length ����� is in

ccittfax� format�
���� Review the page� First initialize the graphics if not

already done� Then scale the picture say� down to ��� size�
and display it�

�init�test�
�scaledpicts �list p��� ����
�� deskew the page� calling the result �s��
�setf s�� �deskew�pic p����
The deskewed page has width ���� length �����

�� �nd the horizontal breaks� namely those locations
where there is a perfect cut running through the page� The
program horiz�break takes an array of run�length encoded
lines and returns the beginning and ending of the non�blank
lines as a single list of start�end encodings� These represent
pairs� in order from top to bottom� of those regions of rows
that are non�nil� �Yes� this is somewhat disrespecting the
abstraction� but it saved us some programming�

�setf breaks �horiz�break �picture�rows s�����
There are �� breaks
�� Produce a list of the heights of each of those rows�
�setf heights �mapcar ���lambda�x��� �end x��start

x��� breaks��
�� Filter out the too�short lines as noise�
�setf lineheights �delete�if ���lambda �h���� h ���

heights��
There are �� remaining lines�
�� Find the median lineheight �defun median �l� �elt

�sort l ���� �truncate �length l�
���
�median lineheights��
This results in the number �� �pixels� for line height�
This information can be used for guesses at character size

and similar data that can be used for segmentation purposes�
�� The basis of our character recognition is the assump�

tion that we can correctly segment text into characters by
looking for connected components� As a rough approxima�
tion� it works reasonably well for most of cleanly typeset
mathematics� More generally� in the case of full text and
especially noisy text� it is demonstrably false� and any at�
tempt to get high accuracy this way will have to be modi�ed
substantially� To be more speci�c about the kinds of infor�
mation we necessarily forego� and which would undoubtedly
improve accuracy�

� font size estimation� which allows us to split merged
characters or join fragmented ones with some con��
dence� including dots over i�s etc�

� baseline computations �classifying letters jgyp as de�
scenders� other letters or punctuation as 	short
 or
	tall
 etc���

� letter�pair frequency identi�cations �	th
��

� references to dictionaries�

There are other heuristics possible� of course� but unless they
are also applicable to mathematics� we did not implement
them� �See� however� OCRchie
��� a student project we
supervised��
In any case� here is how we can �nd connected compo�

nents�
�setf cc �con�pict s����
Now cc is a lisp list of a few thousand little pictures� For

this page� ����� Many are letters� but some are fragments
of letters like the dot over the i� or broken pieces of E� etc�
If you want to see them� try �scaledboxpicts cc ����� If you
want to see them and the letters both� and larger� consider
�clear �w��
�scaledboxpicts cc ����
�scaledpicts cc ����
�� If we want to scrap all parts of cc that have less than

some area� say �� pixels inside� we can do this� �setf cc
�filter�out�noise �	 cc��
Why did we pick ��� By trying various di�erent area

values we found that the number of connected components
of area � � was ����� Of area � �� was ����� Of area � ��
was ����� Of area � ��� ����� The precipitous drop between

�� and �� suggests we are starting to wipe out important
components that may even be letters�
�� Suppose we wish to recognize the connected compo�

nents and treat them as characters� but we have no idea
what characters there are on that page� One approach� and
one for which we provide programming support� is to look at
each putative character and compute a property vector for
it� group these in clusters according to some 	close�enough

criterion� and present each cluster to the human user for
examination� identi�cation as to 	this is an italic e
 etc�
The program cluster has this characteristic�
%%% %%%
There are several possibilities at this point�
a� The clusters may be just right� and all and only the

letter e�s are in one cluster� the letter c�s are in another� etc�
This is highly unlikely� but even if we had perfect cluster�
ing� we would still have separate pieces for characters like
i�j�������
b� The clusters may be too large� For example� the e�s

and the c�s would be in the same cluster because they look
nearly the same�
c� The clusters may be too small� For example� some of

the e�s may be in one cluster and some in another� This is
not mutually exclusive with the previous defect� We could
have two or more clusters� each with some e�s and some c�s�
How to deal with them�� � one can interactively edit

these cluster
For example
We can do more here� like cluster the characters into

groups that resemble each other� paste the dots on the i�s
and semi�colons� Identify half�tones� �gures� italics� mathe�
matics zones� ��� more���
%%%%%%%%%%%%%

��� Appendix on Editing

A fun student project� might be to implement 	Image EMACS

�ref� CACM ���� article by Kopec et al�
given a page of pictures as connected components� then

grouped as words� and text lines� provide the following op�
erations�

cursor character motions� F B P N �forward back previous�line next�line�
word motions F B
line motions A E
delete character� D rubout
group connect components as character
learn �characters�
delete word
delete line
search
fill�paragraph

display in artificial font
copy
yank
insert typed characters�
OCR

More anecdotal info�� form����tif� a file produced by scanning pages

���
�� of Gradshteyn at ��� dpi produced a picture of width �����
height ���
� Time to read in�
���CPU �
GC� Time to compute connected
components ���CPU �GC� ���
 found� After filtering out spots of area
!��!� the number of components is
����

Time to convert and display �bitblt to window� a ��� scale version
of the
��� characters� ���CPU ���GC seconds�

This double�page spread was copied by a xerographic copier� and
then run through the scanner� The two pages look �visually�
like the left one �
��� is approximately straight� but the
right one is skewed�
Presumably the right way to deskew is to separate the two piece
deskew them
thus��

Separating out the left part and right part�
�setf left �con�pict pict� �width
����� �from x� � only up to
�setf right �con�pict pict� �left
����� � start at middle
�setf left� �dfilter�out�noise � right�� �for example� to clean
�setf right� �dfilter�out�noise � right��

If necessary one can reassemble the connected components�
after �ltering� into a single bitmap instead of a collection�
Here�s how� �setf left�t �manypicts
� left���
The left part appears to be skewed at ����� degrees� The

right part appears to be skewed at ���� degrees

� Appendix
 Characteristics of pictures

If we have identi�ed a pile of connected components� how
do we tell what they are� One way to start is to see what
the most common size of an enclosing box is� If we �nd
that �statistical� mode of the width of a box is a reliable
statistic� we can use that as an estimate of the width of a
character� For hakmem page��� the mode of the width is ���
the height is ��� This suggests that connected components
less than this width may be incomplete�
For the noisy 	�tif� the mode is � bit wide� though after

�ltering noise out� it becomes �� bits wide�

�� Comments on re�use of code

In general� software developed in an academic research project
is usually not re�usable outside the host institution� if it is
even re�usable in the same department� Re�use in the same
research group is sometimes a problem� While there are
exceptions� they are rare�
Making software re�usable is a challenge� especially when

the programs themselves are still under development� or re�
quire special environments to run successfully� Experimental
programs are allowed to be only partial solutions� that is�
the easy or fun parts can be solved� the di�cult or laborious
parts can be ignored� The programs can be too slow� or
might work only on small problems� In our experience here�
some neat programs worked only on small bitmaps�
The additional e�ort necessary to perfect the programs is

considerable� and generally not part of the research project�
Occasionally software is picked up via some technology trans�
fer to commercial enterprises�
More particularly for OCR� we�ve looked at material

from NIST and CalPolySLO� these did not seem to be re�
useable for our purposes� although some components� espe�
cially of the NIST code� may ultimately be useful in future
development�
We cannot say how others will feel about the programs

we�ve developed� certainly using Lisp appears unusual in
the OCR community� �other than our own work we are
aware only of G� Kopec�s Xerox PARC developments were
prototyped in Lisp but recently ������ rewritten in C�� We
believe the choice of Lisp has had some very positive con�
sequences in �exibility� modularity� and interactivity� Inter�
facing with text or document manipulating arti�cial intel�

ligence programs� where the use of Lisp is traditional� will
presumably be easier than if other cross�language interfaces
are needed� Time will tell if the code is e�cient enough yet
general enough for others to use� We hope others will at our
source code� re�ne and augment the facilities� and provide
feedback to the design�

�� Match�up strategies
 Collecting Characters

���� Connected Components don�t work well enough

One annoying barrier to the collection of characters on a
page is that the major heuristic we use is guaranteed to fail
on perfect scans of some common characters� and may also
fail on noisy images of other characters� This major heuristic
is that a character has a ��� correspondence with a connected
component of the 	graph
 of the image� This heuristic is �ne
for a connected well�formed version of a character like S� The
heuristic clearly fails for i� j� and punctuation including
�
��� Additionally� some typeset characters are disconnected
by accident� e�g� it is common to see a separated a leg on
an n as a consequence of a thin curve�
Accidental connection are also possible� in which case

two or more letters� or fragments of them� are touching� A
common join is found in the sequence rn� which is connected
to look rather like an m�

���� How to 	x this up�

First� consider a �xed width font such as Courier �Normal�
If we draw boundary boxes around the characters� connected
components� we see that they are in fact not all the same
width� For example� I is narrower than M� What is �xed� is
the spacing from the origin of one character to its neighbors�
origins to the left and right� Thus there is an imaginary rect�
angle that dictates the character width and a height� This
rectangle includes enough space for the tallest character as
well as the one with the deepest descender �e�g� p� y� or for
that matter� parentheses� brackets and other characters�� In
some fonts the characters do not strictly adhere to the rules�
some characters actually intrude into neighboring boxes just
a little� Italic fonts do this quite routinely� If we reliably
knew the �in general� variable� o�set from character to char�
acter �including spaces�� as well as the glyph size� we would
be have a solution to a major problem� This would vastly
simplifying the next task of identifying each character� If
we could recognize that all the text is in a �xed width font�
there would be simple strategies to help recognition�
These notes below are much less e�ective and address

variations on our current techniques�

������ Strategy �

To join the dot to the i� and the pieces of broken letters to�
gether� or more generally� to �nd a box around each charac�
ter� each a character width wide� and as high as is necessary�

�� Divide the page up into horizontal 	swaths
� These
generally correspond to lines� but in the case of tightly
spaced lines� we may �nd no breaks� and end up with
whole paragraphs� We believe these swaths can be
found rapidly by deskewing and looking for large cuts�
Our method should not be so sensitive to failure that
it matters if we end up with two or more lines in one
swath�

�� Next� Determine heuristically� the size of the charac�
ters� For a line typeset in all one size� or mostly one
size� the median left�edge to left�edge distance of ad�
jacent characters provides the character width� This
need not be exact� The height can be determined by
the maximum height of characters� after eliminating
some percentage of outliers� merged characters from
several lines� vertical rules� integral signs� One can
also use as a guideline� the character width and height
of the previous line�s�� as well as some heuristic ratio
of known width to height characteristics for fonts�

�� We scan left to right in the regions� picking out

� connected components that are so completely clearly
a letter that they are easily recognized as such�
Remove them�

� scraps that are not recognized� For these� we take
their bounding box� with �x�y� origin at lower left�
extend a character�width box to the right� and a
��$ character�height box up and down� Collect
all pieces that are entirely or partly within this
box� �This allows us to connect together a W
whose upper�left leg is the �rst encountered piece
separated from the rest of the body� as well as
an A whose lower�left leg is separated�� An alter�
native is to determine the baseline heuristically�
and then use the x�coordinate of the scrap plus
the presumed character position�

� Next� create a minimum bounding box around
this new object� Compare this object �picture�
bitmap� to those characters with approximately
similar heuristically determined character sizes� if
this is too large� consider chopping it to the right
size� If it passes muster� treat it as a connected
component for purposes of removal from the page
image� clustering� recognition� etc�

Extension to variable�width fonts

In this case we repeat the exercise looking up �rst the widest
possible explanation of the character�width� and then nar�
rowing down so that as many pieces are explained as possi�
ble� with the fewest explanations�
This will not work well if narrow character pieces are

�rst happily explained away� e�g� a letter I is recognized
and removed� afterward a scrap that looks like H with its
left leg missing must be explained� when the real explanation
is that it should have been joined to the 	I
�
This will not work well for characters whose left�most

piece and�or right�most piece just missing� A W with a
missing left leg� resembling perhaps an italic N� will not be
aligned correctly� And if both left and right pieces are miss�
ing� for example a W which would resemble an A without
a cross�bar� we will also have problems� I think we�re going
to just miss these characters� at least on a �rst pass�

������ Strategy �

Consider the more simple�minded but computationally ex�
pensive approach of Sliding matchups� Potentially very slow�
but subject to many heuristics� The general idea would be
to try to 	explain
 as many bits as possible on a page� per�
haps by �rst looking for base�lines then using a relaxation�
best �t method to try to cover the bits with favorite text
characters� The plausible locations for characters are limited
considerably if we can produce believable implied base�lines

for text� The digram frequencies can limit the search sub�
stantially� if you are really sure you have identi�ed a letter
t� the probability that the next letter is an h is substantial�

further discussion of deskew�� page�� was identi�ed as
having a skew of about ����� degrees�
If we look for breaks between horizontal swaths in the

page �� as scanned� we �nd there are �� swaths� �� consist
solely of noise� � consist of double�line�height swaths� and
�� accurate lines�
If we look for breaks in the deskewed version� we �nd ��

swaths� �� are �� pixels high� �� are �� pixels high� and all
but � are between �� and �� pixels high� There are three tall
lines which have superscripts� and � small swaths that are
noise� including the image of the staple holes in the corner�
All �� lines are correctly isolated�
Looking for vertical breaks �between characters� is plau�

sible on this page only because it is set in a �xed�width font�
In the deskewed version� we can easily separate about ��
character spaces� each 	column
 is a vertical swath that is
between �� and �� pixels� plus a few spaces that are marginal
noise� and a few spaces that are multiple characters wide�
two� three� or four�
On a page set with a variable�width font we would not

expect much success in aligning characters in columns any�
way� so we would not make much use of this inter�character
spacing� in general� �The vertical break detection would still
be useful to separate columns in a ��column page��
Without deskewing� but treated just as scanned� the ver�

tical breaks between lines are obscured�

�� Appendix
 Pre�loading a Lisp with LIBTIF

It is handy to have a Common Lisp with the �le�accessing
library for TIFF �Tagged Image Format� pre�loaded� It is
faster to start up and may have additional sharing of code
if there are several processes using the software�
We�� made a new version of Allegro Common Lisp ���

linked up with appropriate entry points from the ti� library�
The linkage is done by putting together a dummy C language
program �we call it dummy�chere� that mentions appropriate
entry points� One then builds a new Allegro Common Lisp
in a standard way using its script called config� as de�ned
in its build directory� using this dummy program and the
ti� library� �Anyone who has installed a copy of this lisp
as distributed will have addressed the issue of this config
�le already�� Other Lisps have very similar mechanisms for
	foreign function
 loading�
Our particular script looks like this�

cc �c dummy�c
sh config temp��usr�tmp dummy�o �usr�sww�lib�libtiff�a

What should dummy�c contain�
In principle one could access any or all of the entry

points in the library by mentioning them in dummy�c but
for conciseness�� we have eliminated all that are unused in
the current project�

int dummyRoutinesToForceLoadOfLibTiff�� �� dummy�c ��
" TIFFClose���
TIFFSetField���

��Actually
 David Glowacki�
��We have a perl program courtesy of David Glowacki
 that auto�

matically constructs dummy�c from the symbol table of all entries in
the ti� library�

TIFFGetField���
TIFFReadScanline���
TIFFOpen���
TIFFWriteScanline���

#

References

�� Benjamin Berman and Richard Fateman� 	Optical
Character Recognition for Typeset Mathematics�

Proc� of Int�l Symp� on Symbolic and Algebraic Com�

putation� �ACM Press� �ISSAC���� Oxford� UK� July�
����� ��������

�� Richard O� Duda and Peter E�Hart� Pattern classi�ca�

tion and scene analysis�Wiley� �����

�� Richard Fateman� Taku Tokuyasu� Benjamin Berman�
Nicholas Mitchell� 	Optical Character Recognition and
Parsing of Typeset Mathematics�
 Journal of Visual

Communication and Image Representation vol � no� �
�March ������ �����

�� James Foley� Andries van Dam� Steven Feiner� John
Hughes� Computer Graphics� Principles and Practice�
�nd ed� Addison Wesley� �����

�� Katherine Marsden� OCRchie� Sr� Honors Project� May�
���� Univ� Calif� Berkeley� Computer Science Division�
EECS� http���www�cs�berkeley��fateman�kathey

�� Lawrence O�Gorman and Rangachar Kasturi� Docu�
ment Image Analysis� IEEE Computer Society Press�
�����

�� Taku Tokuyasu� 	Optical Character Recognition of
Typeset Mathematics�
 MS project� Univ� Calif��
Berkeley� �����

�� Wilensky� http���cs�berkeley�edu�elib�

