How to Find Mathematics on a Scanned Page

Richard J. Fateman
University of California, Berkeley

Abstract

We describe the design of document analysis procedures
to separate mathematics from ordinary text on a scanned
page of mixed material. It is easy to observe that the accu-
racy of commercial OCR programs is helped by separating
mixed material into two (or more) streams, with only con-
ventional non-math text handled by the usual OCR text-
based heuristic analysis. The second stream, consisting of
material judged to be mathematics, can be fed to a special-
ized recognizer. If that fails to decode it, it can be passed
on to yet a third stream including diagrams, logos, or other
miscellaneous material, perhaps including halftones. We ex-
plore the extent to which this separation can be automated
in the context of scanning archival material for a digital li-
brary project including mathematical and scientific journal
material.

1 Why separate mathematics from text pages?

Conventional OCR programs have low accuracy for mathe-
matics for several reasons. The very sensible heuristics typ-
ically used for text recognition include computing the lo-
cations of text lines and estimating character sizes using
global statistics as well as local processing. These pro-
grams may also use language-based statistics (perhaps a
spelling dictionary) as tools to improve recognition rates.
By contrast, mathematics is not necessarily arranged on
lines, its character sizes vary, the letter and symbol fre-
quencies are distinct from normal text, and many other
text-oriented heuristics are directly counter-productive. Ad-
ditionally, even if the mathematics were somehow recog-
nized, conventional OCR programs whose traditional output
is (say) ASCII text, need to be substantially augmented with
some meta-level language before they can express “math
results” as their output. Although most advanced word-
processing programs have some such escape mechanism for
“doing” mathematics, there is still no uniform standard for
expressing two-dimensional layouts, subscript positioning,
variable-sized characters, unusual math operators, etc. Re-
search projects based on the needs of publishers, digital li-

DRAFT

braries, and mathematics computation systems have only
recently begun to grapple with this issue', so a standard
not available today, may be available in the future.

In the absence of special mathematics recognition, the
natural fall-back position for an OCR system is to try to
decode math as ordinary text, and provide whatever is clos-
est to (some) text within that model. This typically makes
a mess of the material. For example, superscripts are either
unrecognized or pushed down to the baseline. An integral
sign may be ignored or viewed as an S.

For some purposes, a better response is to provide only
an image of a math section, treating it as analogous to a
diagram or half-tone image [4]. Yet another alternative,
assuming the component characters can be identified cor-
rectly might be to consider constructing a small section of
PostScript. This would be less sensitive to degradation in
re-rendering at different scales. This is not necessarily a
realistic goal for high accuracy. Even familiar characters
appearing in math contexts may fail to be recognized.

In our view, one would like to produce a version of the
mathematics that reflects the semantics of the material in
such a fashion that the result of OCR could be used in fur-
ther computer processing. By this we mean it could be
possible to evaluate a formula or manipulate it in some way.
Typical computer algebra systems such as Maple, Mathe-
matica, or Macsyma allow useful kinds of manipulation and
each of these current systems allows one to display calcu-
lated formulas as typeset expressions. We are, in some sense,
trying to reverse the process.

To summarize our motivation: given the difficulties of
applying a uniform algorithm, we propose to improve the
OCR success rate on mixed material by separating mathe-
matics from the usual text. This may increase the accuracy
of regular text recognition, and should allow us to use a spe-
cialized recognizer with appropriate attention to the seman-
tics of the math material. Alternatively, we could commit
mathematics to an image storage format.

Understanding mathematics is treated in more detail in
a variety of recent papers [1] [2].

2 Previous work

Most papers that delve into recognizing (parsing) 2-D math-
ematics, without being specific, assume that the regions con-
taining math are already known. Okamoto [6] is unusual in
specifically noting “In these tests, table and picture areas
were excluded and the distinction between text lines and

Uhttp://www.can.nl/ abbott/OpenMath/index.html

mathematical expressions was specified manually.” A re-
cent paper by Lee and Wang [7] is directed to our task,
but uses somewhat different techniques. They separate out
“isolated” mathematics (we would call this “display” math),
by its word-box statistics: higher boxes, separated by more
than the usual paragraph spacing. There are good first-cut
heuristics, but make mistakes: titles are labelled as formulas.
One of the merits of this is that the characters need not be
recognized. Lee and Wang treat “embedded” mathematics
(we would call this “in-line” math), by first recognizing the
characters. Characters that are known to be mathematical
(such as)) are used as seeds for growing geometric “trees”
of mathematical expressions, heuristically attaching sym-
bols that are adjacent including those in super/sub-script
positions. Other keys to iteratively begin the grouping step
include the presence of super/sub-scripting, or matrix struc-
tures delimited by paired enclosure symbols like parenthe-
ses. (It would be unusual to find an actual matrix as in-line
text, it seems.) Lee and Wang do not take advantage of
the nature of the character font information, which is some-
what surprising, since we find that italics are a key feature
of mathematical text. Lee and Wang do not attempt to
confirm that the localized sections contain mathematics, in
fact, leaving a parser and further corrective procedures for
future work.

3 When can we find mathematics in a document?

It is advantageous to head off the processing of mathemat-
ics by an OCR system as soon as possible. In some cir-
cumstances one might know prior to processing a page at
all, that it either consists of mathematics only, or is free of
mathematics. In our target domain of scientific journals,
most pages are mixtures.

Given this mixture we might be to identify mathematics
on a page by rough analysis akin to zoning [5], or image sig-
nal processing [10]. These approaches do not, in our opinion,
show much promise: some mathematics, especially in-line
material, is rather indistinguishable from ordinary language
at the level of texture.

The next step in sequence, and higher in expense is prob-
ably finding connected components and judging the like-
lihood of mathematics being present by the arrangement
of bounding boxes [4]. This level of processing seems to
be helpful in finding text strings when they appear within
graphics, as in maps or engineering drawings. Approxi-
mately collinear components of appropriate sizes and spac-
ing are assumed to be text characters, without regard to
actual bit-patterns.

It would be pleasant to declare that one need go no fur-
ther than this level to discriminate reliably between mathe-
matics and ordinary text. Unfortunately, this does not work
in practice.

We have found that to be reasonably robust, we must
go at least one step further, and tentatively identify many
of the connected components as particular characters. For
well-scanned clean images with clearly separated letters, this
is plausible. For low-resolution, noisy, or poorly-scanned
images, this processing may be infeasible, and we cease to
pursue this line. Fortunately, we expect to be processing
relatively clean copies of technical papers scanned at high
resolution. We do not expect to decode fax transmissions or
poorly printed pages?.

2If old papers in hand may do not scan well even at high resolution,
we may have to reconsider.

To proceed with our system we must generally distin-
guish Italic letters from Roman letters, we must recognize
digits, and identify dots and horizontal lines. We do not
directly use some other information that is readily available
from recognizing isolated letters, such as character size. We
will, however, need to compute with adjacency relationships
and context because many characters can appear either in
text or mathematics, and we must distinguish them. While
we do not expect 100% separation, with some training (es-
pecially on the character set in use for mathematics) we
expect that only a modest amount of editing by hand will
be needed to separate the streams of data.

4 Background: where do we find mathematics?

We are concerned with two types of math present in docu-
ments, display mathematics and ¢n-line mathematics.

Display math is less problematical in principle in that it
is usually set off by extra vertical space, and can sometimes
be detected as non-text even before it has been examined
in detail. It has distinctive lower density compared to a
normal text paragraph, has smaller words, and unusual line
statistics. This are an unreliable indicator because a small
text paragraph may have similar characteristics.

Because display math lives in separate regions on the
page, identifying it by hand can be done quickly. If we are
committed to recognizing it by automatic means, we use the
same heuristics as for in-line math, described below. That is,
display math will consist mostly of special symbols, italics,
and few Roman characters or words.

In-line mathematics is material that is run-in with text
like this: e® 4+ sinz and in the worst case, is pretty much
indistinguishable from text unless you have substantial con-
text available. Some mathematics journals, in an effort to
conserve space, use as much in-line mathematics as possi-
ble, even if it then requires running expressions from one
“text” line to the next. This causes substantial trouble for
automatic segmentation, and we have not solved it. Other
typesetting styles forbid such in-line run-on mathematics,
forcing such expressions to displays.

In our view, any hope for high accuracy in overall auto-
matic processing of mixed material requires a fairly effective
to identify most in-line math.

5 How much math is in a document?

Obviously it varies.

Our initial test was on an economics modeling paper, and
selecting each math section on a page was only moderately
burdensome, at least if decent interactive tools are available.

Other subject areas are more math-intensive. For a typi-
cal math journal article, nearly every sentence contains some
in-line mathematics, and many sentences have several math
sections. For such documents an automatic selection mech-
anism is important.

6 What precisely differentiates text from in-line math?

If one were properly typesetting a document in TEX, and
had access to the source code for the document, the math
would be all text within matching $ or material otherwise
designated as math-mode.

Of course if we had the luxury of examining the TEX
source of the typeset document we were scanning, the job of
scanning would be largely redundant. Given only the output
page, it is less clear.

Officially we can declare defeat is inevitable because we
can exhibit examples where we are unable to distinguish au-
tomatically and in a context-free manner, between the italic
characters in a word and the symbols in mathematics. (See
the appendix.) In practice we simply accept the prospect
that some mistakes will be made and/or some material must
be recognized with hand assistance.

Remark: We have seen papers prepared by TEX-nicians
who habitually uses math-mode for italics. For example,
they use $coefficient$, which typesets as coef ficient in-
stead of {\it coefficient}. This latter form typesets as
the properly spaced coefficient.

In fact, we are of two minds here on what to include in
our identification of math sections.

One view is that isolated symbols might as well be text,
as in p within “At each point p where... 7 Indeed, since
an OCR program is likely to correctly read a single italic
p typeset on the normal text base-line, this notion — let
as much be text as possible — could be extended to iso-
lated boldface, Greek letters, or sequences of these symbols.
This view is especially attractive if the only mechanism for
identifying math is to select it from an image by hand. As
already mentioned, this technique is useful for benchmarks
involving only modest math material.

A second view is that it 1s advantageous to treat every-
thing as math unless we decide by specific means that it is
text. In this view we separate material into two bags of sym-
bols as soon as possible. The elements of these bags encode
bitmaps (pictures), locations and size, with some (perhaps
tentative) identification as characters, and perhaps baseline
information derived from the character. The advantage here
is that such an automatic segregation of characters may pro-
vide a very good approximation to text vs. non-text, and
that once they are separated, we can look at aggregates of
special symbols or italics in the bag of math symbols and
restore them to the text bag more economically than the
reverse. This “looking” may be done automatically, or by
hand. For example, if we initially place all parentheses all
dashes into the math bag, we can move these symbols — if
they are sufficiently isolated, back into the text bag.

(Major defect in this idea: “theorem environments” in
some mathematics journals, and as supported by IATEX type-
set straight text words in italics. These words may look like
math, and may in fact be difficult to distinguish from math
except by deeper natural language analysis. Similarly, texts
including emphatic sections will also make trouble for us.
We address the issue of where to put unrecognized merged
or broken symbols later.

In either case, if we can figure out most of the math
characters and clump them into math rectangles, we could
then ask the user to review the automatic selections, and
repair errors. The user can

(a) Identify new mathematics that was entirely missed by
the automatic process.

(b) Demote alleged mathematics back to normal text (e.g.
Some words in italics are NOT mathematics).

c¢) Re-group mathematics sections that were mistakenly
g
grouped by the automatic process.

7 A proposal for automatic process of separating math
from text

7.1 Pass One: initial separation

We initialize two bags of symbols to be empty. The text bag
and the math bag.

We put into the math bag the following connected components®

An alternative is to place only those not extracted as math in
the text bag, including anything unrecognized, and a third
is to place some “dummy zone” objects in the text bag as
placeholders for math.

Why is unrecognized material treated as text?

Simply in the hope that other peoples’ clever heuristics
for text processing will figure out what these pieces are. It
may be that in our next stage of processing we will notice
that such unidentified objects are entirely surrounded by
math pieces and we will then try to merge broken pieces
(etc.) to justifiy their presence as math. If in the future
our math recognizer will be so strengthened that it will be
more effective than commercial text recognizers on broken
pieces, we might consider shunting unrecognizable material
into math first.

7.2 Second pass: correct for too much math

We remove items from the math bag, leaving them in the
text bag if implausibility sets in. More precisely, we clump
math symbols together by proximity. After this operation,
if we find in the math bag an isolated symbol with respect

3By prior heuristic processing we may have joined some pieces
multi-part characters together):

1. special mathematics characters: 4+, =, Greek letters, scientific
symbols, large parentheses. All horizontal lines. All commas.
We know that this is over-reaching, but we will correct it.

2. Italics/bold, We know that this may include non-math text,
but again we will have to correct this in a later pass.

3. Numeric digits in Roman typeface. Italic numbers are generally
NOT used in mathematics, but in page numbers etc. It is a
challenge to distinguish between a lower-case letter 1 and a
Roman digit 1. If every occurrence of an 1 must be considered
equally plausible as a 1, we must rely rather more heavily on
context than we would like. To show that we may in general
have to deal with 1 and 1 as members of the same equivalence
class, observe figure 1, where there are 13 glyphs, one of which
is a number. Which one is revealed later in the appendix to this
paper. We may also find that the digit zero (0) is confused with
the letter O. It may also a challenge to distinguish between
the bottom of a letter i and a (subscript-size) number 1.

We also consider

4. Occurrences of () especially if we can detect pairs that occur
close to each other. Occurrences of [] .

5. symbols in super/subscript locations (this info is unfortunately
not readily available).

6. Mathematics words like sin cos tan. (this info is also not readily
available). Standard tables of integrals also use rather ordinary
upper-case Roman letters for special functions of physics (e.g.
J, K, W, E) This may have to be handled by special case hand
recognition, or by a third pass, described below.

7. Dots, commas and similar punctuation. Dots appear over the
letters i,j as well as :;. Periods at the end of sentences or abbre-
viations. Decimal points. Depending on how we have processed
the material, some of the dots may already be explained (e.g.
i dots), but there may still be some floating ones. Commas
occur frequently in text, but also occur in math

Our current scheme leaves a copy of everything, including suspected
math, in the text bag, and lets the commercial program muddle about
with this. Perhaps it may help the OCR program in determining line
computation, and it is our experience that removing all math plays
havoc with zoning.

to other math symbols, but one that appears to be in close
proximity to other text symbols, we assume that it is, in
fact, text bag. A general clumping operation® similar to
that which might be used in a bottom-up zoning process.
This generally gets most of the groups, but not all of them,
so we can be more specific.

In various tests we find items that would incorrectly
remain in the math bag. Consider “ ignoring p' (the
derivative with respect to t).” Here we find, incorrectly, the
two math clumps: p'(and t). As another example, consider
“Substituting (1), (2) and (3) into S:”

To avoid these errors we add rules to discard from the
mathbag

o A left parenthesis without math to its right.

e A trailing® right parenthesis whose matching left paren-
thesis is missing from this clump.

e A horizontal line unless it has math to its right, above,
or below.

o A leading or trailing comma or dot in a clump.

e Anisolated 1 or even 11 in the math bag that is how-
ever within a single-character-space of text, which may
instead be an 1 or an 1. (We treat 1 and 1 equivalently)

e An isolated 0 or even 00 in the math bag that is how-
ever within a single-character-space of text, which may
instead be an O or an OO. (We treat 0 and O equiva-
lently)

7.3 Third pass: correct for too much text

Words like sin, tan, or ANYTHING ELSE in Roman text
appearing in mathematics can be distinguished heuristically
from other Roman text in that they will be surrounded in
the text-bag by open space, but will be very near compo-
nents in the math-bag. We can blur the math into larger
groups (smearing their bounding boxes to form zones) and
assert that any Roman text inside or intersecting these zones
is math. In particular, this allows us to assert that I’s or 1’s
when they seem to appear within, or close to, mathematics
clumps, are digits. After making such transformations, we
re-clump the mathematics: sometimes these newly recog-
nized symbols provide important bridges between symbols
to allow us to clump mathematics together, and subsequent
processing uses these clumps. It is possible (and inexpen-
sive) to re-confirm the mathematics/text distinction by look-
ing, once again, for isolated symbols.

7.4 Remaining problems

Italic words will generally be categorized as mathematics. [
don’t see a good heuristic for solving this problem, and so
this may need human intervention.

Experience suggests that confusion of letter 1 with num-
ber 1 may still cause some grief: By distinguishing them by

4ywe use a computation based only on bounding boxes. It is a kind
of iterative “smearing” where all bounding boxes horizontally within
a chosen x-smear distance are merged, repeatedly, until the process
ceases to make any changes. Then a similar y-direction merging is
done. Setting these parameters is tricky. The x-smear should be
larger than the inter-character space, but smaller than the inter-word
space. The y-smear is especially tricky since it must be considerably
smaller than the inter-line space, yet large enough to grab all the
parts of a built-up fraction or even a multiple-line display.

5that is, it has no assured math characters to its right

context only, we are more successful. We distinguish each
of these from the bottom part of the letter i by noting that
1 has a dot over it!

8 Procedural details

How does our program work?

Initially we must have progressed to the point where we
have a mechanism for identifying isolated symbols by char-
acter and font. In practice, our method has been to col-
lect a large sample of connected components from a corpus;
we cluster them by statistical measures, and have a human
check these clusters, correcting as appropriate. This set of
clusters/properties forms a set of property-vectors in a dic-
tionary. A human then identifies each entry as a particular
glyph. We may actually have several different property-
vectors with the same identification (that is, the text may
include sets of differently shaped letters which however we
prefer to not distinguish, and so are identified as the same
letter. Typically we do not have much to say about paren-
theses, even though we find them in a variety of shapes.
Although we may not need to distinguish some such font
or size variations from each other, for formula identification
we must distinguish between Italic and Roman versions of
letters and digits.

In practice, one system we set up continues to learn new
characters as it proceeds about its recognition tasks seems to
be an attractive way of improving accuracy in an academic
or research setting. [t is presumably less attractive in a
purely production mode.

For each page we proceed as follows:

o Deskew, filter out noise, and clean up the image. Col-
lect all connected components (ccs) on a page, and
identify each by that dictionary entry that is closest
to it. If a cc is so remote® in characteristics from
anything we have previously identified, we can either
ask for human help in identification, specify that it is
noise, or specify that it is unknown text. (Since we
use the same dictionary for our math processing as
for isolated character recognition, if we send unrecog-
nized items through to our math processing, we will
not make much further headway there. Our best bet
at the moment is to assert that it is text, in the hope
that the commercial text recognition system will make
sense of it.) Perform some elementary joining of sepa-
rate components such as matching the top and bottom
of 1 and j characters when possible.

e Based on such identification separate all items into two
bags, math and text. The text bag includes all Roman
letters, Italic numbers. The math bag includes punc-
tuation, special symbols, Italic letters, Roman digits,
and other marks (horizontal lines, dots), etc. In figures
2 and 3 we show corresponding sections of a small ex-
cerpt of a paper [9]. Figure one has the initial contents
of the math bag, and figure 2 the text. Superimposed
two-color illustrations are sometimes more useful in
understanding the relationships of the components.

e Group the math bag components into zones according
to proximity. This is a very sensitive, and potentially
error-introducing operation. If we include too much
territory in a math zone, we will absorb components
such as dots, commas, and parentheses that rightfully

%How remote is a judgment call.

NN

Figure 1: Twelve I’s and a 1

f(p); fp)=
F(p) . '

P

')2
(1-F(p)" .

1—(1=F(p)" . (3

Figure 2: Initial Collection of Math

belong in text. The technique we use is simple, com-
putationally and intuitively. For simplicity and speed
we consider only the bounding boxes of each of the
connected components. Set two parameters’, vertical
smear vs and horizontal smear hs. Any two bounding
boxes separated horizontally by hs or less are joined
and a new bounding box around their union is formed.
This is iterated until no more joins are possible. Then
a similar operation, but in the vertical dimension is
performed. Bounding boxes may be touching, in which
case even hs=0 and vs=0 will cause them to “smear”.
More typically, hs is larger than vs.

o After this grouping within the math bag, some sym-
bols still remain isolated. Those symbols which might
be attributed either to math or text given appropriate
context, but which appear to be too far from other
math symbols to be grouped together with them, are
moved to text. These include each isolated dot, comma
or parenthesis. We also consider that dots, commas,
and parentheses that are only in proximity with each
other are “” or *” or “.)” etc. should also be consid-
ered isolated, and are moved to text as well.

o With the exceptions just noted, all groups of compo-
nents in the math bag remain in the math bag. Other,
isolated items that are unambiguously math remain
in the math bag as well. For example isolated italic
letters or isolated Greek letters stay as math.

e Next, join up the text bag into groups according to
proximity.

"whose values are a judgment call based on how tightly the docu-
ment is typeset, and the scan density in dots per inch.

e Some text words are relatively isolated from other text,
but are within zones that have been previous estab-
lished in the math bag to contain mathematics. Move
these words, which we hope will include “sin” etc. into
the math bag.

e Final human review: Look at the bags of math vs.
text, and review/correct the choices. Especially, make
sure that multiple-line in-line math is correctly picked
out, and that we are not mistakenly including italic
text as mathematics. This can be done by displaying
a page either in two separate pieces, or in one piece but
in two colors. Mistakes are likely to be more apparent
in the two-page display, but the two-color display takes
up less screen real-estate.

e Reassemble the bag of text and run it through com-
mercial OCR programs.

e Run the bag of math through math recognition, or
alternatively, collect the sections and store them as
GIF or similar image formats.

o Collect the two sets of results and combine them as a
description of the page.

9 Example

Figures 2 and 3 are extracted from column 2 of page 4 of a
paper on economic modeling [9] from our digitized electronic
library collection®. We found that for the whole page, the
math-bag contained 684 elements, 207 of them dots over 1, j,
¢, j, or dots in colons or semicolons. By merging these dots
together early, subsequent processing is likely to be faster.
Yet this is not always possible, since some dots are placed
over the “4” portion of merged letters®.

The text-bag contained 2215 components. In the second
phase, about 216 are isolated dots that must be returned to
the text bag 5 pairs of parentheses are returned to the text
page as well.

In the third phase, no “Roman text” math occurs on this
page to be returned to math bag.

10 Known systematic errors

e Strings of isolated italic letters will ordinarily be left as
math. If the italic letters are touching, and hence not
recognized by connected component analysis as italics,
will be treated as text. Hence italic words may be
either mathematics or text.

e Strings of numbers and symbols sometimes appear in
text as, e.g. (1) apples; (2) pears. In our classification,
“(1)” is mathematics. So are “1)” or “1:”.

e Given the strong possibility of 1 and 1 being inter-
changed, a word like lilly may be scanned as 1illy and
treated as either partly mathematics or, depending on
spacing, entirely mathematics.

e The attribution of periods is weighted toward mathe-
matics in that a math section ending a sentence will
include the terminating period e.g. in this sentence,
notice the period after f(x).

8http://elib.cs berkeley.edu
In particular we have instances of “xi” and “ik” merged.

on Let be the cumulative dis
tribution function for thus
almost everywhere

We can now construct the expected profit
function for a representative store When a
store charges price exactly two events are
relevant It may be that 1s the smallest
price being charged 1n which case the given
store gets all of the informed customers
This event happens only if all the other
stores charge prices higher than an event
which has probability On the
other hand there may be some store with a
lower price 1n which case the store in ques
tion only gets its share of the uninformed
customers This event happens with proba
bility By Proposition

Figure 3: Initial Collection of Text

e Higures or line-drawings that include dotted or dashed
lines may contain connected components that look, to
our isolated character recognition routines, like math-
ematics characters. We do not yet solve the problem
of separating these out and treating them like figures
(which should probably be treated as image data).

e Often material is typeset so tightly that descenders
from one text line very nearly touch ascenders or su-
perscripts from the line below. This leads to over-
smearing errors.

While some of these errors may be correctable by addi-
tional processing, they can be rather subtle. In cases where
completely correct interpretation is required, it may be nec-
essary to make corrections by hand.

The final and (we believe “most automatic”) approach
depends on the robustness of the text processing component
to ignore confusing math, but to make sense of everything
else. The tactic is to place the FULL page in the text bag,
including the parts we believe are math. Sections of material
that are fully understood by the text recognizer and are also
fully recognized by math, are represented in two ways and,
in the fullness of our digital library representation, the end
user should be able to make a meaningful choice.

11 Acknowledgments

Thanks to the Berkeley elib-docstruct seminar participants
for comments.

12 Appendix: On Ambiguity

Here we provide some evidence to suggest that the problem
is, in the worst case, “Al (artificial intelligence) Complete”
That is, clearly you can solve this problem if you first con-
struct an artificial human: a computer program that reads
and understands all of mathematics and natural language.
On the other hand, if you can solve this separation prob-
lem completely, then we suggest that full natural language
comprehension cannot be far behind.

Consider the following questions:

e [s there any mathematics in the title of this numerical
analysis lecture: “Approximating trigonometry func-
tions for fun and profit: the wages of sin”?

e Can we find the math in ad — bc by ad hoc methods?

Finally, in figure 1, the digit “one” is third from the right.

References

[1] D. Blostein and Ann Grbavec. “ Recognition of Math-
ematical Notation,” Chapter 22 in P.S.P. Wang and
H. Bunke, (eds), Handbook on Optical Character Recog-
nition and Document Analysis, World Scientific Pub-
lishing Company, 1996.

[2] Richard Fateman, Taku Tokuyasu, Benjamin Berman,
Nicholas Mitchell. “Optical Character Recognition and
Parsing of Typeset Mathematics.” J. of Visual Com-
mun. and Image Representation vol 7 no. 1, (March
1996), 2—15.

[3] Richard Fateman and Taku Tokuyasu. “A Suite of Pro-
grams for for Document Structuring and Image Analy-
sis using Lisp”, UC Berkeley, technical report, 1996.

[4] L. A. Fletcher and R. Kasturi, “A robust algorithm
for text string separation from mixed text/graphics im-
ages,” IEEE Trans. Pattern Analysis and Machine In-
telligence, vol 10, no 6 (Nov. 1988), 910-918. (reprinted

in [8])

[5] Mukkai Krishnamoorthy, George Nagy, Sharad Seth,
Mahesh Viswanathan. “Syntactic segmentation and la-
beling of digitized pages from technical journals,” IEEFE
Trans. on Pattern Analysis and Machine Intell. vol 15
no. 7 (July 1993), 737—747.

[6] M. Okamoto and A. Miyazawa. “An experimental
implementation of a document recognition system
for papers containing mathematical expressions, in
H.S. Baird et al (ed). Structured Document Image Anal-
ysis Springer-Verlag 1992, 36-51.

[7] Hsi-Jian Lee and Jiumn-Shine Wang. “Design of a
mathematical expression understanding system,” Pat-
tern Recognition Letters 18 (1977) 289—298.

[8] Lawrence O’Gorman and Rangachar Kasturi: Docu-
ment Image Analysis, IEEE Computer Society Press,
1995.

[9] Hal R. Varian. “A Model of Sales” Berkeley Elib doc-
ument 620, originally published in The American Fco-
nomic Review, 651-659. Sept, 1990.

[10] F.M. Wahl, K.Y. Wong and R.G. Casey. “Block seg-
mentation and text extraction in mixed text/image doc-
uments,” Compt. Vision, Graphics, Image Proc., vol
20, 275-390, 1982.

