A Solution to Mathematics Parsing

Martin Proulx

April 29, 1996

1 Introduction

1.1 What the problem is

We need to derive the mathematical meaning from a collection of typeset symbols.

1.2 Why?

TILU: Automate the entry of large, old, and unavaible electronically book of integrals.

Multivalent documents: Once a mathematical expression is recognized (as being mathematics rather
than text or graphics) and located, we would then like to parse it or derive the TEX, LISP or 777
equivalent.

1.3 The possible solutions

A grammar based approach:

This would be the ideal, but has some major drawbacks. First, normal grammars do not pro-
vide us any ways to describe the 2D environments that mathematics really are. If we take a
grammar based approach, we also have to come up with our own 2D extensions in the grammar
for things such as “in the exponent of”, “above”, etc...

Then, even if we can define a grammar, is that of any help? Not really, since there aren’t any
programs that will let us parse the mathematics in any reasonneable amount of time. Which brings
us to the other solution.

Writing a specific program:

This is what I opted for after first trying to define a grammar for the problems we had to deal
with. Defining a grammar was really helpful in that ended up seeing what was common between
expressions, and what wasn’t. After having a good idea of the overall picture, I could start writing
the parser.

1.4 Bigger doens’t mean harder!

Before going on, it’s also important to realize that the problem doesn’t reside in the size or math-
ematical complexity of the equations. The real problem is figuring out the spatial layout of the

symbols, and assign to those symbols with this layout a mathematical meaning.

As an example of this, consider:

[E5)
zr—1 \cospr

and:

/wp—xq dx s (T‘p—COSpﬂ' T‘q—COS(]ﬂ')

z—1 x—l—rzl—l—r sin prw sin g

Those two equations are just as hard, because they both contain the following: integrals, equal
sign, exponents, parentheses and function (sin, cos).

2 My solution

2.1 The assumptions and the starting point

My parser assumes that perfect recognition of the symbols have been made, and that all those
symbols have been collected by a lexical analyser. I.E. The parser works with tokens such as ”sin”
or "quotient” and "minus” rather than with ”s”, 7i”, ”n” and two ”hlines” of different lengths.

2.2 The concepts

The parser I implemented is an operator based recursive descent parser. So at every step, it will
look at the subset of the symbols it has looking for certain mathematical operators, take a stand on
how it is appropriate to split this subset of the equation, and recurse on the new smaller subsets.
There’s a visual example of recursion in figure 1.

Figure 1: Visual example of recursion

The problem in doing so is in figuring out where to look for those operators, and which ones to
look for. In order to differentiate the top-level expression from sub-expressions (like exponents, or
expressions above or below divide bars), | gather what I call the main-line of the expression.

The mainline concept turns out to be the most useful idea of the whole technique that I’'m us-
ing. Rather than to deal with the baselines, I deal with what I call the "mainlines”. Look at
figure 2.

This makes it terribly easy to figure out if some symbols are in the exponent or subscript of
another symbol. It also clearly show you where the top level of your expression is, and where to
look for key symbols.

How do I find them? It’s simply the vertical middle of the symbol for most, and you need to
adjust this slightly for characters with ascenders and descenders.

How do I find the mainline of the top-expression? It’s nearly always the mainline of the left-
most character, but for some special cases. Like the one in figure 3.

2.3 The different operators, by decreasing order of priority

(1A}
9

separating expressions that are arguments to a function. we need to look for them on the mainline,

and “;”: those are used to split expressions one of another, usually found inside parentheses and

and then recurse.

“=": We need to look for this one on the mainline, and then recurse accordingly.

“r e 44 Used as unary-operators. Those will be the leftmost symbol of the expression.
“4+7.7-7 1 We need to look for this one on the mainline, and then recurse accordingly.

“/” This is different from the horizontal bar, since it seems from its usage to have a different
priority. I.LE What is (1/2 — 7) 7 Is it a half minus pi or 1 over (2 minus pi)? | implemented the
first possibility.

All the rest are looked for in the leftmost symbol.

divide bar: This is the long horizontal bar with an expression above and below as well. We
will then recurse above, below, and on the right of it.

integral,sum: Those two need some constant special attention, regarding where to find their ranges.
We then recurse into everything but the symbol, the ranges and the ”dx” for integrals.

root: We get the possible exponent the exact same way as we would for normal variables. Then
recurse inside the root symbol, and on its right.

functions: Need to find where the arguments are, and recurse accordingly.
Opening parenthesis: Need to find the matching parenthesis, and recurse both into, and on the
right of the matching parenthesis.

Variable: Multiply it and its exponent/subscripts against whatever is on the right.

919

Special case: factorials I do not look for factorials at all during the parsing. 1 simply treat
them as any other symbol, and when I'm done parsing, I have a little tail-end program that will

unwind things such as (* (expression) fact) into (fact (expression)).

3 Conclusion

3.1 What I’ve parsed succesfully so far

Look at comments on integral formulas, OCR, and parsing.

3.2 The loose ends

Dependance upon the correct typesetting. The parser couldn’t recognize correctly an expression if
it can’t derive good mainline infos, which are dependent upon typesetting.

Assuming perfect input may not be feasible, see figure ?7?.

Notice that the integral sign and the b are touching. The exponents are hardly readeable. Will
the OCR be able to break the pieces as we’d like and be able to recognize those exponents?

Solutions for this. A stochastic parser, where the parser knows the different probabilities for
possible meanings of not clearly recognized symbols. The parser would then return the expression
if belives to be the more plausible according to other known factors.

3.3 The open ends

Partial recognitions. Right now, because of the assumptions, the parser will totally fail if it en-
counter an expression that is not correctly typeset. The parser should be expanded to be able
to skip sections and say it couldn’t figure out a certain part, but still parse the sctions it can.
Examples of not correctly typeset?

More knowledge. Expand the parser to deal with matrices. Also give it more power in recog-
nizing functions versus simple variables.

Parsing multiple-lines expressions.
Keeping typesetting information.

The whole problem needs a solid lexical analyser.

X
L
=
S
Yo,

A~

Q
i
\E.../

Q
r
\E.../

&
:
g
t

/)

Figure 2: Visual example of mainlines

7+ 1

4

Figure 3: When the physical leftmost isn’t the right one

q
Zxdaz
r =]

u 3 dx _ 1 . —5 7
N SV(a’-—z')'(z'-o')'"a(ai_.w; {BF p—aEm 9+ 2/ 520

ad® — it
[a>u>b>0) BY (217.06)

Figure 4: A real world example

