
A Solution to Mathematics Parsing

Martin Proulx

April ��� ����

� Introduction

��� What the problem is

We need to derive the mathematical meaning from a collection of typeset symbols�

��� Why�

TILU� Automate the entry of large� old� and unavaible electronically book of integrals�

Multivalent documents� Once a mathematical expression is recognized �as being mathematics rather
than text or graphics� and located� we would then like to parse it or derive the TEX� LISP or ���
equivalent�

��� The possible solutions

A grammar based approach�

This would be the ideal� but has some major drawbacks� First� normal grammars do not pro�
vide us any ways to describe the �D environments that mathematics really are� If we take a
grammar based approach� we also have to come up with our own �D extensions in the grammar
for things such as 	in the exponent of
� 	above
� etc���

Then� even if we can de�ne a grammar� is that of any help� Not really� since there aren�t any
programs that will let us parse the mathematics in any reasonneable amount of time� Which brings
us to the other solution�

Writing a speci�c program�

This is what I opted for after �rst trying to de�ne a grammar for the problems we had to deal
with� De�ning a grammar was really helpful in that ended up seeing what was common between
expressions� and what wasn�t� After having a good idea of the overall picture� I could start writing
the parser�

��� Bigger doens�t mean harder�

Before going on� it�s also important to realize that the problem doesn�t reside in the size or math�
ematical complexity of the equations� The real problem is �guring out the spatial layout of the






symbols� and assign to those symbols with this layout a mathematical meaning�

As an example of this� consider�

Z
dx

x� 

�

�
xp

cos p�

�

and�

Z
xp � xq

x� 


dx

x� r
�

�


 � r

�
rp � cos p�

sin p�
�

rq � cos q�

sin q�

�

Those two equations are just as hard� because they both contain the following� integrals� equal
sign� exponents� parentheses and function �sin� cos��

� My solution

��� The assumptions and the starting point

My parser assumes that perfect recognition of the symbols have been made� and that all those
symbols have been collected by a lexical analyser� I�E� The parser works with tokens such as 
sin

or 
quotient
 and 
minus
 rather than with 
s
� 
i
� 
n
 and two 
hlines
 of di�erent lengths�

��� The concepts

The parser I implemented is an operator based recursive descent parser� So at every step� it will
look at the subset of the symbols it has looking for certain mathematical operators� take a stand on
how it is appropriate to split this subset of the equation� and recurse on the new smaller subsets�
There�s a visual example of recursion in �gure 
�

Figure 
� Visual example of recursion

The problem in doing so is in �guring out where to look for those operators� and which ones to
look for� In order to di�erentiate the top�level expression from sub�expressions �like exponents� or
expressions above or below divide bars�� I gather what I call the main�line of the expression�

The mainline concept turns out to be the most useful idea of the whole technique that I�m us�
ing� Rather than to deal with the baselines� I deal with what I call the 
mainlines
� Look at
�gure ��

�



This makes it terribly easy to �gure out if some symbols are in the exponent or subscript of
another symbol� It also clearly show you where the top level of your expression is� and where to
look for key symbols�

How do I �nd them� It�s simply the vertical middle of the symbol for most� and you need to
adjust this slightly for characters with ascenders and descenders�

How do I �nd the mainline of the top�expression� It�s nearly always the mainline of the left�
most character� but for some special cases� Like the one in �gure ��

��� The di	erent operators
 by decreasing order of priority

	�
 and 	�
� those are used to split expressions one of another� usually found inside parentheses and
separating expressions that are arguments to a function� we need to look for them on the mainline�
and then recurse�

	�
� We need to look for this one on the mainline� and then recurse accordingly�

	�
� 	��
� 	��
� Used as unary�operators� Those will be the leftmost symbol of the expression�

	�
�
�
 � We need to look for this one on the mainline� and then recurse accordingly�

	�
 This is di�erent from the horizontal bar� since it seems from its usage to have a di�erent
priority� I�E What is �
��� �� � Is it a half minus pi or 
 over �� minus pi�� I implemented the
�rst possibility�

All the rest are looked for in the leftmost symbol�

divide bar� This is the long horizontal bar with an expression above and below as well� We
will then recurse above� below� and on the right of it�

integral�sum� Those two need some constant special attention� regarding where to �nd their ranges�
We then recurse into everything but the symbol� the ranges and the 
dx
 for integrals�

root� We get the possible exponent the exact same way as we would for normal variables� Then
recurse inside the root symbol� and on its right�

functions� Need to �nd where the arguments are� and recurse accordingly�
Opening parenthesis� Need to �nd the matching parenthesis� and recurse both into� and on the
right of the matching parenthesis�

Variable� Multiply it and its exponent�subscripts against whatever is on the right�

Special case� factorials 
�
 I do not look for factorials at all during the parsing� I simply treat
them as any other symbol� and when I�m done parsing� I have a little tail�end program that will
unwind things such as �� �expression� fact� into �fact �expression���

�



� Conclusion

��� What I�ve parsed succesfully so far

Look at comments on integral formulas� OCR� and parsing�

��� The loose ends

Dependance upon the correct typesetting� The parser couldn�t recognize correctly an expression if
it can�t derive good mainline infos� which are dependent upon typesetting�

Assuming perfect input may not be feasible� see �gure ���

Notice that the integral sign and the b are touching� The exponents are hardly readeable� Will
the OCR be able to break the pieces as we�d like and be able to recognize those exponents�

Solutions for this� A stochastic parser� where the parser knows the di�erent probabilities for
possible meanings of not clearly recognized symbols� The parser would then return the expression
if belives to be the more plausible according to other known factors�

��� The open ends

Partial recognitions� Right now� because of the assumptions� the parser will totally fail if it en�
counter an expression that is not correctly typeset� The parser should be expanded to be able
to skip sections and say it couldn�t �gure out a certain part� but still parse the sctions it can�
Examples of not correctly typeset�

More knowledge� Expand the parser to deal with matrices� Also give it more power in recog�
nizing functions versus simple variables�

Parsing multiple�lines expressions�

Keeping typesetting information�

The whole problem needs a solid lexical analyser�

�



Figure �� Visual example of mainlines

Figure �� When the physical leftmost isn�t the right one

Figure �� A real world example

�


