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Supervised learning problems

Many supervised learning problems (e.g., classification, regression)
can be written as

min
w
L(X T w)

where L is convex, and X contains the data.



Robust Optimization &
Machine Learning

6. Robust Optimization
in Supervised

Learning

Robust Supervised
Learning
Motivations

Examples

Thresholding and
robustness

Boolean data

Theory
Preliminaries

Main results

Special cases

Globalized robustness

Chance constraints

References

Penalty approach

Often, optimal value and solutions of optimization problems are
sensitive to data.

A common approach to deal with sensitivity is via penalization, e.g.:

min
x
L(X T w) + ‖Wx‖2

2 (W = weighting matrix).

I How do we choose the penalty?
I Can we choose it in a way that reflects knowledge about problem

structure, or how uncertainty affects data?
I Does it lead to better solutions from machine learning viewpoint?
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Support Vector Machine

Support Vector Machine (SVM) classification problem:

min
w,b

m∑
i=1

(1− yi (zT
i w + b))+

I Z := [z1, . . . , zm] ∈ Rn×m contains the data points .
I y ∈ {−1, 1}m contain the labels .
I x := (w , b) contains the classifier parameters , allowing to

classify a new point z via the rule

y = sgn(zT w + b).
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Robustness to data uncertainty

Assume the data matrix is only partially known, and address the
robust optimization problem:

min
w,b

max
U∈U

m∑
i=1

(1− yi ((zi + ui )
T w + b))+,

where U = [u1, . . . , um] and U ⊆ Rn×m is a set that describes additive
uncertainty in the data matrix.
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Measurement-wise, spherical uncertainty

Assume

U = {U = [u1, . . . , um] ∈ Rn×m : ‖ui‖2 ≤ ρ},

where ρ > 0 is given.

Robust SVM reduces to

min
w,b

m∑
i=1

(1− yi (zT
i w + b) + ρ‖w‖2)+.



Robust Optimization &
Machine Learning

6. Robust Optimization
in Supervised

Learning

Robust Supervised
Learning
Motivations

Examples

Thresholding and
robustness

Boolean data

Theory
Preliminaries

Main results

Special cases

Globalized robustness

Chance constraints

References

Link with classical SVM

Classical SVM contains l2-norm regularization term:

min
w,b

m∑
i=1

(1− yi (zT
i w + b))+ + λ‖w‖2

2.

where λ > 0 is a penalty parameter.

With spherical uncertainty, robust SVM is similar to classical SVM.

When data is separable, the two models are equivalent . . .
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Separable data

Maximally robust classifier for separable data, with spherical
uncertainties around each data point. In this case, the robust
counterpart reduces to the classical maximum-margin classifier
problem.
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Interval uncertainty

Assume
U = {U ∈ Rn×m : ∀(i , j), |Uij | ≤ ρ},

where ρ > 0 is given.

Robust SVM reduces to

min
w,b

m∑
i=1

(1− yi (zT
i w + b) + ρ‖w‖1)+.

The l1-norm term encourages sparsity, and may not regularize the
solution.
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Separable data

Maximally robust classifier for separable data, with box uncertainties
around each data point. This uncertainty model encourages sparsity
of the solution.
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Other uncertainty models

We may generalize the approach to other uncertainty models,
retaining tractability:

I “Measurement-wise” uncertainty models: perturbations affect
each data point independent of each other.

I Other models couple the way uncertainties affect each
measurement; for example we may control the number of errors
across all the measurements.

I Norm-bound models allow for uncertainty of data matrix that is
bounded in matrix norm.

I A whole theory is presented in [1].
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Thresholding and robustness

Consider standard l1-penalized SVM:

φλ(X ) := min
w,b

m∑
i=1

(1− yi (wT xi + b))+ + λ‖w‖1

Constrained counterpart:

ψc(X ) := min
w,b

1
m

m∑
i=1

(1− yi (xT
i w + b))+ : ‖w‖1 ≤ c

I Basic goal: solve these problems in the large-scale case.
I Approach: use robustness to sparsify the data matrix in a

controlled way.
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Thresholding data

We threshold the data using an absolute level t :

(xi (t))j :=

{
0 if |xi,j | ≤ t
1 otherwise

This will make the data sparser, resulting in memory and time savings.
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Handling thresholding errors

Handle thresholding errors via robust counterpart:

(w(t), b(t)) := arg min
w,b

max
‖Z−X‖∞≤t

m∑
i=1

(1− yi (wT zi + b))+ + λ‖w‖1.

Above problem is tractable.

The solution w(t) at threshold level t satisfies

0 ≤ 1
m

m∑
i=1

(1− yi (xT
i w(t) + b(t)))+ + λ‖w(t)‖1 − φλ(X ) ≤ 2t

λ
.
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Results
20 news groups data set

Dataset size: 20, 000 × 60, 000. Thresholding of data matrix of TF-IDF scores.
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Results
UCI NYTimes Dataset

1 stock 11 bond
2 nasdaq 12 forecast
3 portfolio 13 thomson financial
4 brokerage 14 index
5 exchanges 15 royal bank
6 shareholder 16 fund
7 fund 17 marketing
8 investor 18 companies
9 alan greenspan 19 bank
10 fed 20 merrill

Top 20 keywords for topic ’stock’. Dataset size: 100, 000 × 102, 660, ≈
30,000,000 non-zeros. Thresholded dataset (by TF-IDF scores) with level 0.05
≈ 850,000 non-zeroes (2.8 %). Total run time: 4317s.
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Robust SVM with Boolean data
I Data: boolean Z ∈ {0, 1}n×m (eg, co-occurence matrix)
I Nominal problem: SVM

min
w,b

m∑
i=1

(1− yi (zT
i w + b))+,

I Uncertainty model: assume each data value can be flipped, total
budget of flips is constrained:

U =
{

U = [u1, . . . , um] ∈ Rl×m : ui ∈ {−1, 0, 1}l , ‖u‖1 ≤ k
}
.
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Robust counterpart

min
w,b

m∑
i=1

(1− yi (zT
i w + b) + φ(w))+,

where
φ(w) := min

s
k‖w − s‖∞ + ‖s‖1

I Penalty is a combination of l1, l∞ norms.
I Problem is tractable (doubles number of variables over nominal).
I Still needs regularization.
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Results
UCI Internet advertisement data set

Dataset size: 3279 × 1555. k = 0 corresponds to nominal SVM problem. Best
performance at k = 3.
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Refined model

We can impose ui ∈ {0, 1− 2xi}. This leads to a new penalty:

min
w,b

m∑
i=1

(1− yi (xT
i w + b) + φi (w))+,

with

φi (w) := min
µ≥0

kµ+
n∑

j=1

(yiwj (2xij − 1)− µ)+

Problem can still be solved via LP.
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Results
UCI Heart data set

Dataset size: 267 × 22. k = 0 corresponds to nominal SVM problem. Best
performance at k = 1.
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Nominal problem

min
θ∈Θ
L(Z T θ),

where
I Z := [z1, . . . , zm] ∈ Rn×m is the data matrix
I L : Rm → R is a convex loss function
I Θ imposes “structure” (eg, sign) constraints on parameter vector
θ
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Loss function: assumptions

We assume that
L(r) = π(abs(P(r))),

where abs(·) acts componentwise, π : Rm
+ → R is a convex, monotone

function on the non-negative orthant, and

P(r) =

{
r (”symmetric case”)
r+ (”asymmetric case”)

with r+ the vector with components max(ri , 0), i = 1, . . . ,m.



Robust Optimization &
Machine Learning

6. Robust Optimization
in Supervised

Learning

Robust Supervised
Learning
Motivations

Examples

Thresholding and
robustness

Boolean data

Theory
Preliminaries

Main results

Special cases

Globalized robustness

Chance constraints

References

Loss function: examples
I lp-norm regression
I hinge loss
I Huber, Berhu loss
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Robust counterpart

min
θ∈Θ

max
Z∈Z

L(ZT θ).

where Z ⊆ Rn×m is a set of the form

Z = {Z + ∆ : ∆ ∈ ρD, } ,

with ρ ≥ 0 a measure of the size of the uncertainty, and D ⊆ Rl×m is
given.
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Generic analysis

For a given vector θ, we have

max
Z∈Z

L(ZT θ) = max
u

uT Z T θ − L∗(u) + ρφD(uvT ),

where L∗ is the conjugate of L, and

φD(X ) := max
∆∈D

〈X ,∆〉

is the support function of D.
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Assumptions on uncertainty set D
Separability condition: there exist two semi-norms φ, ψ such that

φD(uvT ) := max
∆∈D

uT ∆v = φ(u)ψ(v).

I Does not completely characterize (the support function of) the set
D

I Given φ, ψ, we can construct a set Dout that obeys condition
I The robust counterpart only depends on φ, ψ.

WLOG, we can replace D by its convex hull.
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Examples
I Largest singular value model: D = {∆ : ‖∆‖ ≤ ρ}, with φ, ψ

Euclidean norms.
I Any norm-bound model involving an induced norm (φ, ψ are then

the norms dual to the norms involved).
I Measurement-wise uncertainty models, where each column of

the perturbation matrix is bounded in norm, independently of the
others, correspond to the case with ψ(v) = ‖v‖1.
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Other examples

Bounded-error model: there are (at most K ) errors affecting data

D =


∆ = [λ1δ1, . . . , λmδm] ∈ Rl×m : ‖δi‖ ≤ 1, i = 1, . . . ,m,

m∑
i=1

λi ≤ K , λ ∈ {0, 1}m


.

for which φ(·) = ‖ · ‖∗, ψ(v) = sum of the K largest magnitudes of the
components of v .
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Examples (follow’d)
I The set

D =
{

∆ = [λ1δ1, . . . , λmδm] ∈ Rl×m : δi ∈ {−1, 0, 1}l , ‖δ‖1 ≤ k
}

models measurement-wise uncertainty affecting Boolean data
(we can impose δi ∈ {xi − 1, xi} to be more realistic)
In this case, we have ψ(·) = ‖ · ‖1 and

φ(u) = ‖u‖1,k := min
w

k‖u − w‖∞ + ‖w‖1.
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Main result

For a given vector θ, we have

min
θ

max
Z∈Z

L(ZT θ) = min
θ,κ
Lwc(Z T θ, κ) : κ ≥ φ(UT θ)

where
L(r , κ) := max

v
vT r − L∗(v) + κψ(v)

is the worst-case loss function of the robust problem.
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Worst-case loss function

The tractability of the robust counterpart is directly linked to our ability
to compute optimal solutions v∗ for

L(r , κ) = max
v

vT r − L∗(v) + κψ(v)

Dual representation (assume ψ(·) = ‖ · ‖ is a norm):

L(r , κ) = max
ξ
L(r + κξ) : ‖ξ‖∗ ≤ 1

When ψ is the Euclidean norm, robust regularization of L (Lewis,
2001).
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Special cases
I When ψ(·) = ‖ · ‖p, p = 1,∞, problem reduces to simple,

tractable convex problem (assuming nominal problem is).
I For p = 2, problem can be reduced to such a simple form, for the

hinge, lq-norm and Huber loss functions.
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Lasso

In particular, the least-squares problem with lasso penalty

min
θ
‖X T θ − y‖2 + ρ‖θ‖1

is the robust counterpart to a least-squares problem with uncertainty
on X , with additive perturbation bounded in the norm

‖∆‖1,2 := max
1≤i≤l

√√√√ n∑
j=1

∆2
ij .
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Globalized robust counterpart

The robust counterpart is based on the worst-case value of the loss
function assuming a bound on the data uncertainty (Z ∈ Z):

min
θ∈Θ

max
Z∈Z

L(ZT θ).

The approach does not control the degradation of the loss outside the
set Z.
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Globalized robust counterpart: formulation

In globalized robust counterpart, we fix a “rate” of degradation of the
loss, which controls the amount of degradation of the loss as the data
matrix Z goes “away from” the set Z.
We seek to minimize τ , such that

∀∆ : L((Z + ∆)T θ) ≤ τ + α‖∆‖,

where α > 0 controls the rate of degradation, and ‖ · ‖ is a matrix
norm.
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Globalized robust counterpart

Examples
I For the SVM case, the globalized robust counterpart can be

expressed as:

min
w,b

m∑
i=1

(1− yi (zT
i w + b))+ :

√
m‖θ‖2 ≤ α,

which is a classical form of SVM.
I For lp-norm regression with m data points, the globalized robust

counterpart takes the form

min
θ
‖X T θ − y‖p : κ(m, p)‖θ‖2 ≤ α

where κ(m, 1) =
√

m, κ(m, 2) = κ(m,∞) = 1.
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Chance constraints

Theory can address problems with “chance constraints”

min
θ

max
p∈P

EpL(Z (δ)T θ)

where δ follows distribution p, and P is a class of distributions
I Results are more limited, focused on upper bounds.
I Convex relaxations are available, but more expensive.
I Approach uses Bernstein approximations (Nemirovski & Ben-tal,

2006).
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Robust regression with chance constraints: an example

φp := min
θ

max
x∼(x̂,X)

E
x
‖A(x)θ − b(x)‖p

I Regression variable is θ ∈ Rn

I x ∈ Rq is an uncertainty vector that enters affinely in the problem
matrices: [A(x), b(x)] = [A0, b0] +

∑
i xi [Ai , bi ].

I The distribution of uncertainty vector x is unknown, except for its
mean x̂ and covariance X .

I Objective is worst-case (over distributions) expected value of
lp-norm residual (p = 1, 2).
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Main result

(Assume x̂ = 0, X = I WLOG)
For p = 2, the problem reduces to least-squares:

φ2
2 = min

θ

q∑
i=0

‖Aiθ − bi‖2
2

For p = 1, we have (2/π)ψ1 ≤ φ1 ≤ ψ1, with

ψ1 = min
θ

q∑
i=0

‖Aiθ − bi‖2
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Example: robust median

As a special case, consider the median problem:

min
θ

q∑
i=1

|θ − xi |

Now assume that vector x is random, with mean x̂ and covariance X ,
and consider the robust version:

φ1 := min
θ

max
x∼(x̂,X)

E
x

q∑
i=1

|θ − xi |
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Approximate solution

We have (2/π)ψ1 ≤ φ1 ≤ ψ1, with

ψ1 :=
n∑

i=1

√
(θ − x̂i )2 + Xii

Amounts to find the minimum distance sum (a very simple SOCP).



Robust Optimization &
Machine Learning

6. Robust Optimization
in Supervised

Learning

Robust Supervised
Learning
Motivations

Examples

Thresholding and
robustness

Boolean data

Theory
Preliminaries

Main results

Special cases

Globalized robustness

Chance constraints

References

Geometry of robust median problem
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