Short Course Robust Optimization and Machine Learning

Lecture 5: Robust Optimization

Laurent El Ghaoui

EECS and IEOR Departments UC Berkeley

Spring seminar TRANSP-OR, Zinal, Jan. 16-19, 2012

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LI

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

・ロト・4回ト・ヨト・ヨー うへぐ

Optimization models

"Nominal" optimization problem:

$$\min_{x} f_0(x) : f_i(x) \le 0, \ i = 1, \dots, m$$

 f_0, f_i 's are convex.

- Includes many problems arising in decision making, statistics.
- Efficient (polynomial-time) algorithms.
- Convex relaxations for non-convex problems.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP Affine Recourse Chance Constrain Robust Dynamic Programming

References

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Uncertainties are a pain!!

In practice, problem data is uncertain:

- Estimation errors affect problem parameters.
- Implementation errors affect the decision taken.

Uncertainties often lead to highly unstable solutions, or much degraded realized performance.

These problems are compounded in problems with multiple decision periods.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Robust counterpart

"Nominal" optimization problem:

$$\min_{x} f_0(x) : f_i(x) \le 0, \ i = 1, \ldots, m.$$

Robust counterpart:

 $\min_{x} \max_{u \in \mathcal{U}} f_0(x, u) : \forall u \in \mathcal{U}, f_i(x, u) \leq 0, i = 1, \dots, m$

- ▶ functions f_i now depend on a second variable u, the "uncertainty", which is constrained to lie in given set U.
- Inherits convexity from nominal. Very tractable in some practically relevant cases.
- Complexity is high in general, but there are systematic ways to get relaxations.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP Affine Recourse Chance Constraints Robust Dynamic Programming

Robust chance counterpart

(Assume for simplicity there are no constraints)

 $\min_{x} \max_{p \in \mathcal{P}} \mathbf{E}_{p} f_{0}(x, u).$

- Uncertainty is now random, obeys distribution p.
- Distribution p is only known to belong to a class P (e.g., unimodal, given first and second moments).
- Complexity is high in general, but there are systematic ways to get relaxations.
- Rich variety of related models, including Value-at-Risk constraints.

In this lecture: our main goal is to introduce some important concepts in robust optimization, *e.g.* robust counterparts, affine recourse, distributional robustness.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Uncertainty models

Nominal problem:

$$\min_{x} c^{\mathsf{T}} x : a_{i}^{\mathsf{T}} x \leq b_{i}, \quad i = 1, \ldots, m$$

We assume that $a_i = \hat{a}_i + \rho u_i$, where

- \hat{a}_i 's are the nominal coefficients.
- ▶ u_i 's are the uncertain vectors, with $u_i \in U_i$ but otherwise unknown.
- ρ ≥ 0 is a measure of uncertainty.

Assumption that uncertainties affect each constraint independently is done without loss of generality.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Robust counterpart

Robust counterpart:

$$\min_{x} c^{\mathsf{T}} x : \forall u_i \in \mathcal{U}_i, \ (\hat{a}_i + \rho u_i)^{\mathsf{T}} x \leq b_i, \ i = 1, \dots, m.$$

Solution may be hard, but becomes easy when:

- U_i are polytopic, given by their vertices ("scenarios");
- ► U_i's are "simple" sets such as ellipsoids, boxes, LMI sets, etc.
- Complexity governed by the support functions of sets U_i.

Robust LP with ellipsoidal uncertainty.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust L

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Basic idea

Nominal LP:

$$\min_{x} c^{\mathsf{T}} x : A x \leq b$$

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust Ll

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

We assume that A, b are affected by uncertainty in affine fashion. We assume uncertainty is available to "known by" some decision variables (*e.g.*, price revealed as time unfolds).

We seek an affinely adjusted robust solution (*i.e.*, a linear feedback).

Example

Nominal LP:

$$\min_{x} c^{T}x : Ax \leq b$$

Assume that

- ▶ Right-hand side *b* is subject to uncertainty, $b(u) = \hat{b} + Bu$ with $u \in U$.
- Decision variable can depend on (parts of) $u: x(u) = \hat{x} + Xu$.

Model information on *u* available to $x(\cdot)$ as $X \in \mathcal{X}$.

Affinely Adjustable Robust counterpart (AARC):

$$\min_{\hat{x}, X \in \mathcal{X}} \max_{u \in \mathcal{U}} c^{\mathsf{T}} x(u) : \forall u \in \mathcal{U}, A x(u) \leq b(u).$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Above is tractable (provided \mathcal{U} is).

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LI

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Example

Assume $\mathcal{U} = [-\rho, \rho]^m$, we obtain the AARC

 $\min_{\hat{x},X\in\mathcal{X}} c^T \hat{x} - \rho \| c^T X \|_1 : A \hat{x} + \rho s \leq \hat{b}, \quad s_i \geq \| e_i^T (A X - B) \|_1, \quad i = 1, \dots, m.$

We recover the "pure" robust counterpart with X = 0.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust L

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Case with coefficient uncertainty

Approach can be extended to cases when *A*, *c* are also uncertain.

- AARC is usually not tractable.
- Efficient approximations via SDP.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LI

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

・ロト・日本・日本・日本・日本・日本

Chance constraints

Simple case

Consider an LP, and assume one of the constraints is $a^T x \le b$, where $x \in \mathbf{R}^n$ is the decision variable.

If a is random, we can often deal with the chance constraint

Prob
$$\left\{ a^{\mathsf{T}} x \leq b \right\} \geq 1 - \epsilon$$

easily. For example, if *a* is Gaussian with mean \hat{a} and covariance matrix Γ , above is equivalent to

$$\hat{a}^T x + \kappa(\epsilon) \|\Gamma^{1/2} x\|_2 \leq b,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

where $\kappa(\cdot)$ is a known function that is positive when $\epsilon < 0.5$.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

More complicated chance constraints

Often, the random variable enters quadratically in the constraint. This happens for example when x includes affine recourse, and a depends linearly on some random variables.

We are led to consider

Prob
$$\left\{ (u, 1)^T W(u, 1) > 0 \right\} \leq \epsilon$$

where W depends *affinely* on the decision variables. Above is hard, even in the Gaussian case.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Distributional robustness

Consider instead

$$\sup_{\rho \in \mathcal{P}} \operatorname{Prob}_{\rho} \left\{ (u, 1)^{T} W(u, 1) > 0 \right\} \leq \epsilon$$

where the sup is taken with respect to all distributions p in a specific class \mathcal{P} , specifying *e.g.*:

- Moments.
- Symmetry, unimodality.

Fact: when \mathcal{P} is the set of distributions having zero mean and unit covariance, the condition $\sup_{\rho \in \mathcal{P}} P_{wc} \leq \epsilon$ is equivalent to the LMI in M, v:

$$\operatorname{Tr} M \leq \epsilon v, \quad M \succeq 0, \quad M \succeq v J + W,$$

where J is all zero but a 1 in the bottom-right entry.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Example

Transaction costs In many financial decision problems, the transaction costs can be modeled with

 $T(x, u) = ||A(x)u + b(x)||_1,$

for appropriate affine $A(\cdot), b(\cdot)$.

Example:

$$\sum_{t=1}^{T} |\boldsymbol{x}_{t+1} - \boldsymbol{x}_t|$$

with decision variable x_t an affine function of u.

This leads to consider quantities such as

$$\max_{u \sim (0,l)} \mathbf{E} T(x,u)$$

where $u \sim (0, I)$ refers to distributions with zero mean and unit covariance matrices.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

A useful result

For given $m \times d$ matrix A and d-vector b, define

$$\phi := \max_{u \sim (0,l)} \mathbf{E} \| Au + b \|_1$$

Let a_i denote the *i*-th row of A ($1 \le i \le m$). Then

$$\frac{2}{\pi}\psi \le \phi \le \psi,$$

where

$$\psi := \sum_{i=1}^m \left\| \begin{pmatrix} a_i \\ b_i \end{pmatrix} \right\|_2.$$

Note: ψ is convex in *A*, *b*, which allows to minimize it if *A*, *b* are affine in the decision variables.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LI

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Dynamic programming

- Finite-state, discrete-time Markov decision process.
- Finite-horizon control problem: minimize expected cost.
- a ∈ A denote actions, s ∈ S states, and c_t(s, a) the cost for action a in state s at time t.

Bellman recursion (value iteration):

$$v_t(s) = \min_{a \in \mathcal{A}} c_t(s, a) + p_t(a)^T v_{t+1}, \ s \in \mathcal{S}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

with $p_t(a)$ the transition probabilities at time *t* under action *a*.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

Uncertainty on transition matrix

We assume that *at each stage*, "nature" picks a transition probability vector $p_t(a)$ in a given set $\mathcal{P}_t(a)$.

Robust counterpart: the robust control problem, with "nature" the adversary.

Robust Bellman recursion:

$$v_t(s) = \min_{a \in \mathcal{A}} c_t(s, a) + \max_{p \in \mathcal{P}_t(a)} p^T v_{t+1}, \ s \in \mathcal{S}.$$

For a wide variety of sets $\mathcal{P}_t(a)$, inner problem very easy to solve.

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Entropy uncertainty model

A natural way to model uncertainty in the transition matrices involves relative entropy bounds

$$\mathcal{P} = \left\{ p \geq 0 \ : \ \sum_{j} p_j \log \frac{p_j}{q_j} \leq \beta, \ \sum_{j} p_j = 1
ight\}.$$

where $\beta > 0$ is a measure of uncertainty, and *q* is the nominal distribution.

The corresponding inner problem can be solved in O(n) via bisection.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Robust Optimization & Machine Learning 5. Robust Optimization

Robust LP Affine Recourse

Robust Dynamic Programming

Example Robust path planning

Robust Optimization & Machine Learning 5. Robust Optimization

Overvie

Robust LI

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Overview

Robust LP

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

Robust Optimization & Machine Learning 5. Robust Optimization

Overview

Robust LF

Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

References

A. Bental, L. El Ghaoui, and A. Nemirovski.

Robust Optimization.

Princeton Series in Applied Mathematics. Princeton University Press, October 2009.

D. Bertsimas, D. Brown, and C. Caramanis.

Theory and applications of robust optimization. *SIAM Review*, 2011.

To appear.

V. Guigues.

Robust production management.

Optimization Online, February 2011.

www.optimization-online.org/D8_HTML/2011/02/2935.html.

Arnab Nilim and Laurent El Ghaoui.

Robust control of Markov decision processes with uncertain transition matrices.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Oper. Res., 53(5):780-798, September-October 2005.

Robust Optimization & Machine Learning 5. Robust Optimization

verview obust LP ffine Recourse

Chance Constraints

Robust Dynamic Programming