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Optimization models

“Nominal” optimization problem:

min
x

f0(x) : fi (x) ≤ 0, i = 1, . . . ,m

f0, fi ’s are convex.

I Includes many problems arising in decision making, statistics.
I Efficient (polynomial-time) algorithms.
I Convex relaxations for non-convex problems.
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Uncertainties are a pain!!

In practice, problem data is uncertain:
I Estimation errors affect problem parameters.
I Implementation errors affect the decision taken.

Uncertainties often lead to highly unstable solutions, or much
degraded realized performance.

These problems are compounded in problems with multiple decision
periods.
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Robust counterpart

“Nominal” optimization problem:

min
x

f0(x) : fi (x) ≤ 0, i = 1, . . . ,m.

Robust counterpart:

min
x

max
u∈U

f0(x , u) : ∀ u ∈ U , fi (x , u) ≤ 0, i = 1, . . . ,m

I functions fi now depend on a second variable u, the “uncertainty”,
which is constrained to lie in given set U .

I Inherits convexity from nominal. Very tractable in some practically
relevant cases.

I Complexity is high in general, but there are systematic ways to
get relaxations.
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Robust chance counterpart

(Assume for simplicity there are no constraints)

min
x

max
p∈P

Epf0(x , u).

I Uncertainty is now random, obeys distribution p.
I Distribution p is only known to belong to a class P (e.g.,

unimodal, given first and second moments).
I Complexity is high in general, but there are systematic ways to

get relaxations.
I Rich variety of related models, including Value-at-Risk

constraints.

In this lecture: our main goal is to introduce some important concepts
in robust optimization, e.g. robust counterparts, affine recourse,
distributional robustness.
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Uncertainty models

Nominal problem:

min
x

cT x : aT
i x ≤ bi , i = 1, . . . ,m.

We assume that ai = âi + ρui , where
I âi ’s are the nominal coefficients.
I ui ’s are the uncertain vectors, with ui ∈ Ui but otherwise unknown.
I ρ ≥ 0 is a measure of uncertainty.

Assumption that uncertainties affect each constraint independently is
done without loss of generality.
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Robust counterpart

Robust counterpart:

min
x

cT x : ∀ui ∈ Ui , (âi + ρui )
T x ≤ bi , i = 1, . . . ,m.

Solution may be hard, but becomes easy when:
I Ui are polytopic, given by their vertices (“scenarios”);
I Ui ’s are “simple” sets such as ellipsoids, boxes, LMI sets, etc.
I Complexity governed by the support functions of sets Ui .

Robust LP with ellipsoidal uncertainty.
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Basic idea

Nominal LP:
min

x
cT x : Ax ≤ b.

We assume that A, b are affected by uncertainty in affine fashion. We
assume uncertainty is available to “known by” some decision variables
(e.g., price revealed as time unfolds).

We seek an affinely adjusted robust solution (i.e., a linear feedback).
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Example

Nominal LP:
min

x
cT x : Ax ≤ b.

Assume that
I Right-hand side b is subject to uncertainty, b(u) = b̂ + Bu with

u ∈ U .
I Decision variable can depend on (parts of) u: x(u) = x̂ + Xu.

Model information on u available to x(·) as X ∈ X .

Affinely Adjustable Robust counterpart (AARC):

min
x̂,X∈X

max
u∈U

cT x(u) : ∀ u ∈ U , Ax(u) ≤ b(u).

Above is tractable (provided U is).
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Example

Assume U = [−ρ, ρ]m, we obtain the AARC

min
x̂,X∈X

cT x̂−ρ‖cT X‖1 : Ax̂+ρs ≤ b̂, si ≥ ‖eT
i (AX−B)‖1, i = 1, . . . ,m.

We recover the “pure” robust counterpart with X = 0.
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Case with coefficient uncertainty

Approach can be extended to cases when A, c are also uncertain.

I AARC is usually not tractable.
I Efficient approximations via SDP.
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Chance constraints
Simple case

Consider an LP, and assume one of the constraints is aT x ≤ b, where
x ∈ Rn is the decision variable.

If a is random, we can often deal with the chance constraint

Prob
{

aT x ≤ b
}
≥ 1− ε

easily. For example, if a is Gaussian with mean â and covariance
matrix Γ, above is equivalent to

âT x + κ(ε)‖Γ1/2x‖2 ≤ b,

where κ(·) is a known function that is positive when ε < 0.5.
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More complicated chance constraints

Often, the random variable enters quadratically in the constraint. This
happens for example when x includes affine recourse, and a depends
linearly on some random variables.

We are led to consider

Prob
{

(u, 1)T W (u, 1) > 0
}
≤ ε

where W depends affinely on the decision variables. Above is hard,
even in the Gaussian case.
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Distributional robustness

Consider instead

sup
p∈P

Probp

{
(u, 1)T W (u, 1) > 0

}
≤ ε

where the sup is taken with respect to all distributions p in a specific
class P, specifying e.g.:

I Moments.
I Symmetry, unimodality.

Fact: when P is the set of distributions having zero mean and unit
covariance, the condition supp∈P Pwc ≤ ε is equivalent to the LMI in
M, v :

Tr M ≤ εv , M � 0, M � vJ + W ,

where J is all zero but a 1 in the bottom-right entry.
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Example

Transaction costs In many financial decision problems, the transaction
costs can be modeled with

T (x , u) = ‖A(x)u + b(x)‖1,

for appropriate affine A(·), b(·).

Example:
T∑

t=1

|xt+1 − xt |

with decision variable xt an affine function of u.

This leads to consider quantities such as

max
u∼(0,I)

E T (x , u)

where u ∼ (0, I) refers to distributions with zero mean and unit
covariance matrices.
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A useful result

For given m × d matrix A and d-vector b, define

φ := max
u∼(0,I)

E ‖Au + b‖1

Let ai denote the i-th row of A (1 ≤ i ≤ m). Then

2
π
ψ ≤ φ ≤ ψ,

where

ψ :=
m∑

i=1

∥∥∥∥( ai

bi

)∥∥∥∥
2
.

Note: ψ is convex in A, b, which allows to minimize it if A, b are affine
in the decision variables.
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Dynamic programming
I Finite-state, discrete-time Markov decision process.
I Finite-horizon control problem: minimize expected cost.
I a ∈ A denote actions, s ∈ S states, and ct (s, a) the cost for

action a in state s at time t .

Bellman recursion (value iteration):

vt (s) = min
a∈A

ct (s, a) + pt (a)T vt+1, s ∈ S

with pt (a) the transition probabilities at time t under action a.
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Uncertainty on transition matrix

We assume that at each stage , “nature” picks a transition probability
vector pt (a) in a given set Pt (a).

Robust counterpart: the robust control problem, with “nature” the
adversary.

Robust Bellman recursion:

vt (s) = min
a∈A

ct (s, a) + max
p∈Pt (a)

pT vt+1, s ∈ S.

For a wide variety of sets Pt (a), inner problem very easy to solve.
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Entropy uncertainty model

A natural way to model uncertainty in the transition matrices involves
relative entropy bounds

P =

p ≥ 0 :
∑

j

pj log
pj

qj
≤ β,

∑
j

pj = 1

 .

where β > 0 is a measure of uncertainty, and q is the nominal
distribution.

The corresponding inner problem can be solved in O(n) via bisection.
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Example
Robust path planning

Nilim and El Ghaoui: Robust Control of Markov Decision Processes with Uncertain Transition Matrices
Operations Research 53(5), pp. 780–798, © 2005 INFORMS 793

of ith row variables. These assume a similar shape, that
of an ellipsoid intersected with the probability simplex,
specifically,

!i!"#=
{

p$ p! 0% pT 1= 1%
∑ !pi!j#− fi!j##

2

fi!j#
" &2

}

%

where &2 $= 2!"max − "#. We refer to the above model as
the constrained ellipsoidal model.
In the constrained likelihood case, the inner problem

assumes the form

max
p

vT p$ p! 0% pT 1= 1%
∑ !p!j#− f !j##2

f !j#
" &2'

Using an interior-point method (Boyd and Vandenberghe
2004), the above problem can be solved with absolute accu-
racy ( in worst-case time of O!n1'5 log!vmax/(##, and with
a practical complexity of O!n log!vmax/(##.
In statistics, it is a standard practice to further simplify

the description above, by relaxing the inequality constraints
P ! 0 in the definition of !!"#. This would bring down
the worst-case complexity to O!n log!vmax/(##. However, if
sign constraints are omitted, Theorem 1 does not necessar-
ily hold, and we would only compute an upper bound on
the value of the problem.

8. Example: Robust Aircraft Routing
We consider the problem of routing an aircraft whose path
is obstructed by stochastic obstacles, representing storms.
In practice, the stochastic model must be estimated from
past weather data. This makes this particular application a
good illustration of our method.

8.1. The Nominal Problem

In Nilim et al. (2001), we introduce an MDP representation
of the problem, in which the evolution of the storms is
modelled as a perfectly known stationary Markov chain.
The term nominal here refers to the fact that the transition
matrix of the Markov process corresponding to the weather
is not subject to uncertainty. The goal is to minimize the
expected delay (flight time). The weather process is a fully
observable Markov chain: At each decision stage (every
15 minutes in our example), we learn the actual state of the
weather.
The air space is represented as a rectangular grid. The

state vector comprises the current position of the aircraft
on the grid, as well as the current states of each storm. The
action in the MDP corresponds to the choice of nodes to
fly towards, from any given node. There are k obstacles,
represented by a Markov chain with a 2k × 2k transition
matrix. The transition matrix for the routing problem is thus
of order N2k, where N is the number of nodes in the grid.
We solved the MDP via the Bellman recursion (Nilim

et al. 2001). Our framework avoids the potential “curse
of dimensionality” inherent in generic Bellman recursions,

by considerable pruning of the state space and action sets.
This makes the method effective for up to a few storms,
which corresponds to realistic situations. For more details
on the nominal problem and its implementation, we refer
the reader to Nilim et al. (2001).
In the example below, the problem is two-dimensional

in the sense that the aircraft flies at a fixed altitude. In a
coordinate system where each unit is equal to 1 nautical
mile, the aircraft is initially positioned at !0%0# and the
destination point is at !360%0#. The velocity of the aircraft
is fixed at 480 n.mi/hour. The air space is described by a
rectangular grid with N = 210 nodes, with edge length of
24 n.mi. There is a possibility that a storm might obstruct
the flight path. The storm zone is a rectangular space with
the corner points at !160%192#, !160%−192#, !168%192#,
and !168%−192# (Figure 1).
Because there is only one potential storm in the

area, storm dynamics is described by a 2 × 2 transition
matrix Pweather. Together with N = 210 nodes, this results in
a state space of total dimension 420. By limiting the angular
changes in the heading of the aircraft, we can prune out the
action space and reduce its cardinality at each step tom= 4.
This implies that the transition matrices are very sparse; in
fact, they are sparse, affine functions of the transition matrix
Pweather. Sparsity implies that the nominal Bellman recursion
only involves 8 states at each step.

8.2. The Robust Version

In practice, the transition matrix Pweather is estimated from
past weather data, and thus it is subject to estimation errors.
We assumed a likelihood model of uncertainty on this

transition matrix. This results in a likelihood model of
uncertainty on the state transition matrix, which is as sparse
as the nominal transition matrix. Thus, the effective state
pruning that takes place in the nominal model can also take

Figure 1. Aircraft path planning scenario.
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Figure 2. −! (negative lower bound on the log-likeli-
hood function) vs. UL (uncertainty level in %
of the transition matrices).
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place in the robust counterpart. In our example, we chose
the numerical value

Pweather =
(

0"9 0"1
0"1 0"9

)

for the maximum-likelihood estimate of Pweather.
The likelihood model involves a lower bound ! on the

likelihood function, which is a measure of the uncertainty
level. Its maximum value !max corresponds to the case with
no uncertainty, and decreasing values of ! correspond to a
higher uncertainty level. To !, we may associate a measure
of uncertainty that is perhaps more readable: The uncer-
tainty level, denoted by UL, is defined as a percentage and
its complement 1−UL can be interpreted as a probabilistic
confidence level in the context of large samples. The one-
to-one correspondence of UL and ! is precisely described
in Appendix D.

In Figure 2, we plot UL against decreasing values of the
lower bound on the log-likelihood function (!). We see that
UL = 0, which refers to a complete certainty of the data, is
attained at != !max, the maximum value of the likelihood
function. The value of UL decreases with ! and reaches the
maximum value, which is 100%, at !=−" (not drawn in
this plot). Point to be noted: The rate of increase of UL is
maximum at != !max and increases with !.

8.3. Comparing Robust and Nominal Strategies

In Figure 3, we compare various strategies: We plot the
relative delay, which is the relative increase (in percentage)
in flight time with respect to the flight time corresponding
to the most direct route (straight line), against the negative
of the lower bound on the likelihood function !.

We compare three strategies. The conservative strategy
is to avoid the storm zone altogether. If we take != !max,

the uncertainty set becomes a singleton #UL = 0$ and hence
we obtain the solution computed via the classical Bellman
recursion; this is referred to as the nominal strategy. The
robust strategy corresponds to solving our robust MDP with
the corresponding value of !.

The plot in Figure 3 shows how the various strategies
fare, as we decrease the bound on the likelihood function !.
For the nominal and the robust strategies, and a given
bound !, we can compute the worst-case delay using recur-
sion (10), which provides the worst-case value function.

The conservative strategy incurs a 51.5% delay with
respect to the flight time corresponding to the most direct
route. This strategy is independent of the transition matrix,
so it appears as a straight line in the plot. If we know
the value of the transition matrix exactly, then the nomi-
nal strategy is extremely efficient and results in a delay of
8.02% only. As ! deviates from !max, the uncertainty set
gets bigger. In the nominal strategy, the optimal value is
very sensitive in the range of values of ! close to !max: the
delay jumps from 8% to 25% when ! changes by 7.71%
with respect to !max (the uncertainty level UL changes from
0% to 5%). In comparison, the relative delay jumps by only
6% with the robust strategy. In both strategies, the slope of
the optimal value with respect to the uncertainty is almost
infinite at != !max, which shows the high sensitivity of the
value function with respect to the uncertainty.

We observe that the robust solution performs better than
the nominal solution as the estimation error increases. The
plot shows an average of 19% decrease in delay with
respect to the nominal strategy when uncertainty is present.
Further, as the uncertainty level increases, the nominal
strategy very quickly reaches delay values comparable to
those obtained with the conservative strategy. In fact, the
conservative strategy even outperforms the nominal strategy
at !=−1"84, which corresponds to UL = 69"59%. In this
sense, even for moderate uncertainty levels, the nominal

Figure 3. Optimal value vs. uncertainty level (negative
lower bound on the log-likelihood function)
for the classical Bellman recursion and its
robust counterpart.
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