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Optimization models " Vaching Loaring

5. Robust Optimization
“Nominal” optimization problem:

Overview

min f(x) : fi(x) <0, i=1,...,m
X
fo, fi’'s are convex.
» Includes many problems arising in decision making, statistics.

» Efficient (polynomial-time) algorithms.
» Convex relaxations for non-convex problems.



Uncertainties are a pain!! ¥ Vaching Loarning -

5. Robust Optimization
In practice, problem data is uncertain:

» Estimation errors affect problem parameters. el
» Implementation errors affect the decision taken.

Uncertainties often lead to highly unstable solutions, or much
degraded realized performance.

These problems are compounded in problems with multiple decision
periods.



Robust counterpart ¥ Vaching Loarning -
5. Robust Optimization
“Nominal” optimization problem:
. . Overview
min fo(x) : fi(x) <0, i=1,...,m.
X
Robust counterpart:

min max fo(x,u) : Yuel, fix,u) <0, i=1,....,m
X ueld

» functions fi now depend on a second variable u, the “uncertainty”,
which is constrained to lie in given set U.

» Inherits convexity from nominal. Very tractable in some practically
relevant cases.

» Complexity is high in general, but there are systematic ways to
get relaxations.



Robust chance counterpart ¥ Vaching Loarning -
5. Robust Optimization
(Assume for simplicity there are no constraints)
. E f Overview
min m .
i e Eoh(x. )

» Uncertainty is now random, obeys distribution p.

» Distribution p is only known to belong to a class P (e.g.,
unimodal, given first and second moments).

» Complexity is high in general, but there are systematic ways to
get relaxations.

» Rich variety of related models, including Value-at-Risk
constraints.

In this lecture: our main goal is to introduce some important concepts
in robust optimization, e.g. robust counterparts, affine recourse,
distributional robustness.
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Uncertainty models ¥ Vaching Loarning -

5. Robust Optimization
Nominal problem:

. T T .
mxlncx:a,-xgb,-, i=1,....m. Robust LP

We assume that a; = &; + pu;, where
» 3's are the nominal coefficients.
» u;’s are the uncertain vectors, with u; € U; but otherwise unknown.
» p > 0is a measure of uncertainty.

Assumption that uncertainties affect each constraint independently is
done without loss of generality.



Robust Optimization &
Machine Learning
5. Robust Optimization

Robust counterpart

Robust counterpart:
min ¢’ x : Yu € U;, (?a,-—i—pu,-)Txg b, i=1,...,m.
X Robust LP
Solution may be hard, but becomes easy when:
» U; are polytopic, given by their vertices (“scenarios”);
» U;’s are “simple” sets such as ellipsoids, boxes, LMI sets, etc.
» Complexity governed by the support functions of sets ;.

Robust LP with ellipsoidal uncertainty.
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. . Robust Optimization &
BaSlC |dea Machine Learning
5. Robust Optimization

Nominal LP:
min c’x : Ax < b.
X

Affine Recourse

We assume that A, b are affected by uncertainty in affine fashion. We
assume uncertainty is available to “known by” some decision variables
(e.g., price revealed as time unfolds).

We seek an affinely adjusted robust solution (i.e., a linear feedback).



Robust Optimization &
Example Machine Learning

5. Robust Optimization
Nominal LP:
min c’x : Ax < b.
X
Assume that

» Right-hand side b is subject to uncertainty, b(u) = b + Bu with
uecu.

» Decision variable can depend on (parts of) u: x(u) = X + Xu.
Model information on u available to x(-) as X € X.

Affine Recourse

Affinely Adjustable Robust counterpart (AARC):

min max ¢’ x(u) : Yuel, Ax(u) < b(u).
X, Xex ueu

Above is tractable (provided U/ is).



Robust Optimization &

Example Machine Learning
5. Robust Optimization
Assume U = [—p, p]”, we obtain the AARC
_min_ c"x—plc"X||1 : Ax+ps < b, s> |e/ (AX=B)|s, i=1,...,m.
x,Xe

Affine Recourse

We recover the “pure” robust counterpart with X = 0.



Case with coefficient uncertainty ¥ Vaching Loarning -

5. Robust Optimization

Approach can be extended to cases when A, ¢ are also uncertain.

» AARC is usually not tractable.
» Efficient approximations via SDP.

Affine Recourse



Outline

Overview
Robust LP
Affine Recourse

Chance Constraints

Robust Dynamic Programming

References

«O>» «Fr <

DA




Robust Optimization &

Chance constraints Vel

X 5. Robust Optimization
Simple case

Consider an LP, and assume one of the constraints is a’ x < b, where
x € R" is the decision variable.

Chance Constraints

If ais random, we can often deal with the chance constraint
Prob {aTx < b} >1—¢

easily. For example, if ais Gaussian with mean & and covariance
matrix ', above is equivalent to

&' x + r(e)[Ir"/2x|l2 < b,

where «(-) is a known function that is positive when ¢ < 0.5.



More complicated chance constraints ¥ Vaching Loarning -

5. Robust Optimization
Often, the random variable enters quadratically in the constraint. This
happens for example when x includes affine recourse, and a depends
linearly on some random variables.

Chance Constraints

We are led to consider
Prob {(u,1)TW(u,1) > o} <e

where W depends affinely on the decision variables. Above is hard,
even in the Gaussian case.



Distributional robustness e Laiming
5. Robust Optimization
Consider instead
sup Prob), {(u,1)TW(u, 1) > 0} <e
peP

Chance Constraints

where the sup is taken with respect to all distributions p in a specific
class P, specifying e.g.:

» Moments.

» Symmetry, unimodality.

Fact: when P is the set of distributions having zero mean and unit
covariance, the condition sup,.» Pw. < € is equivalent to the LMl in
M, v:

TTM<ev, M=0, M=vJ+ W,

where J is all zero but a 1 in the bottom-right entry.



Robust Optimization &
Example Machine Learning

5. Robust Optimization
Transaction costs In many financial decision problems, the transaction
costs can be modeled with

T(x,u) = [[A(x)u + b(x)]l1,

Chance Constraints

for appropriate affine A(-), b(-).

Example:
.
Z [Xt11 — Xt
t=1

with decision variable x; an affine function of u.

This leads to consider quantities such as

max E T(x, u)
u~(0,1)

where u ~ (0, /) refers to distributions with zero mean and unit
covariance matrices.



A useful result

For given m x d matrix A and d-vector b, define

¢ = max E|Au+ b
u~(0,/)
Let a; denote the i-th row of A (1 < i < m). Then

<<,
T

(%)

where
m

v=3

i=1

2

Note: 1 is convex in A, b, which allows to minimize it if A, b are affine

in the decision variables.

Robust Optimization &
Machine Learning
5. Robust Optimization

Chance Constraints
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Robust Optimization &

Dynamic programming Machine Learning

5. Robust Optimization

» Finite-state, discrete-time Markov decision process.
» Finite-horizon control problem: minimize expected cost.

» a € Adenote actions, s € S states, and ci(s, a) the cost for
action ain state s at time .

Robust Dynamic
Programming

Bellman recursion (value iteration):

vi(s) = min ci(s,a) + pi(a) Vi, SES

with p;(a) the transition probabilities at time t under action a.



Uncertainty on transition matrix ¥ Vaching Loarning -

5. Robust Optimization
We assume that at each stage , “nature” picks a transition probability
vector p:(a) in a given set P;(a).

Robust Dynamic
Programming

Robust counterpart: the robust control problem, with “nature” the
adversary.

Robust Bellman recursion:

vi(s) = m|n ci(s,a)+ max p' v, SES.
pEPi(a)

For a wide variety of sets P:(a), inner problem very easy to solve.



Entropy uncertainty model " Vaching Loaring
5. Robust Optimization
A natural way to model uncertainty in the transition matrices involves

relative entropy bounds

P=<p>0: Zp,log </3, ZPJJ

Robust Dynamic
Programming

where 3 > 0 is a measure of uncertainty, and g is the nominal
distribution.

The corresponding inner problem can be solved in O(n) via bisection.



Example

Robust path planning
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Nominal
strategy

Conservative
strategy
Robust Dynamic
Programming
Robust
strategy
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