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What is unsupervised learning?

In unsupervised learning, we are given a matrix of data points
X = [x1, . . . , xm], with xi ∈ Rn; we wish to learn some condensed
information from it.

Examples:
I Find one or several direction of maximal variance.
I Find a low-rank approximation or other structured approximation.
I Find correlations or some other statistical information (e.g.,

graphical model).
I Find clusters of data points.
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The empirical covariance matrix
Definition

Given p × n data matrix A = [a1, . . . , am] (each row representing say a
log-return time-series over m time periods), the empirical covariance
matrix is defined as the p × p matrix

S =
1
m

m∑
i=1

(ai − â)(ai − â)T , â :=
1
m

m∑
i=1

ai .

We can express S as

S =
1
m

AcAT
c ,

where Ac is the centered data matrix , with p columns (ai − â),
i = 1, . . . ,m.
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The empirical covariance matrix
Link with directional variance

The (empirical) variance along direction x is

var(x) =
1
m

m∑
i=1

[xT (ai − â)]2 = xT Sx =
1
m
‖Acx‖2

2.

where Ac is the centered data matrix.

Hence, covariance matrix gives information about variance along any
direction.
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Eigenvalue decomposition for symmetric matrices

Theorem (EVD of symmetric matrices)
We can decompose any symmetric p × p matrix Q as

Q =

p∑
i=1

λiuiuT
i = UΛUT ,

where Λ = diag(λ1, . . . , λp), with λ1 ≥ . . . ≥ λn the eigenvalues, and
U = [u1, . . . , up] is a p × p orthogonal matrix (UT U = Ip) that contains
the eigenvectors of Q. That is:

Qui = λiui , i = 1, . . . , p.
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Singular Value Decomposition (SVD)

Theorem (SVD of general matrices)
We can decompose any non-zero p ×m matrix A as

A =
r∑

i=1

σiuivT
i = UΣV T , Σ = diag(σ1, . . . , σr , 0, . . . , 0︸ ︷︷ ︸

n − r times

)

where σ1 ≥ . . . ≥ σr > 0 are the singular values, and
U = [u1, . . . , um], V = [v1, . . . , vp] are square, orthogonal matrices
(UT U = Ip, V T V = Im). The first r columns of U,V contains the left-
and right singular vectors of A, respectively, that is:

Avi = σiui , AT ui = σivi , i = 1, . . . , r .
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Links between EVD and SVD

The SVD of a p ×m matrix A is related to the EVD of a (PSD) matrix
related to A.

If A = UΣV T is the SVD of A, then
I The EVD of AAT is UΛUT , with Λ = Σ2.
I The EVD of AT A is V ΛV T .

Hence the left (resp. right) singular vectors of A are the eigenvectors
of the PSD matrix AAT (resp. AT A).
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Variational characterizations
Largest and smallest eigenvalues and singular values

If Q is square, symmetric:

λmax(Q) = max
x : ‖x‖2=1

xT Qx .

If A is a general rectangular matrix:

σmax(A) = max
x : ‖x‖2=1

‖Ax‖2.

Similar formulae for minimum eigenvalues and singular values.
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Variational characterizations
Other eigenvalues and singular values

If Q is square, symmetric, the k -th largest eigenvalue satisfies

λk = max
x∈Sk , : ‖x‖2=1

xT Qx ,

where Sk is the subspace spanned by {uk , . . . , up}.

A similar result holds for singular values.
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Low-rank approximation

For a given p ×m matrix A, and integer k ≤ m, p, the k-rank
approximation problem is

A(k) := arg min
X
‖X − A‖F : Rank(X ) ≤ k ,

where ‖ · ‖F is the Frobenius norm (Euclidean norm of the vector
formed with all the entries of the matrix). The solution is

A(k) =
k∑

i=1

σiuivT
i ,

where A = UΣV T is an SVD of the matrix A.
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Low-rank approximation
Interpretation: rank-one case

Assume data matrix A ∈ Rp×m represents time-series data (each row
is a time-series). Assume also that A is rank-one, that is,
A = uvT ∈ Rp×m, where u, v are vectors. Then

A =

 aT
1
...

aT
m

 , aj (t) = u(j)v(t), 1 ≤ j ≤ p, 1 ≤ t ≤ m.

Thus, each time-series is a “scaled” copy of the time-series
represented by v , with scaling factors given in u. We can think of v as
a “factor” that drives all the time-series.
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Low-rank approximation
Interpretation: low-rank case

When A is rank k , that is,

A = UV T , U ∈ Rp×k , V ∈ Rm×k , k << m, p,

we can express the j-th row of A as

aj (t) =
k∑

i=1

ui (j)vi (t), 1 ≤ j ≤ p, 1 ≤ t ≤ m.

Thus, each time-series is the sum of scaled copies of k time-series
represented by v1, . . . , vk , with scaling factors given in u1, . . . , uk . We
can think of vi ’s as the few “factors” that drive all the time-series.
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Motivation

Votes of US Senators, 2002-2004. The plot is impossible to read. . .

I Can we project data on a lower dimensional subspace?
I If so, how should we choose a projection?
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Principal Component Analysis
Overview

Principal Component Analysis (PCA) originated in psychometrics in
the 1930’s. It is now widely used in

I Exploratory data analysis.
I Simulation.
I Visualization.

Application fields include
I Finance, marketing, economics.
I Biology, medecine.
I Engineering design, signal compression and image processing.
I Search engines, data mining.
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Solution principles

PCA finds “principal components” (PCs), i.e. orthogonal directions of
maximal variance.

I PCs are computed via EVD of covariance matrix.
I Can be interpreted as a “factor model” of original data matrix.
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Variance maximization problem
Definition

Let us normalize the direction in a way that does not favor any
direction.

Variance maximization problem:

max
x

var(x) : ‖x‖2 = 1.

A non-convex problem!

Solution is easy to obtain via the eigenvalue decomposition (EVD) of
S, or via the SVD of centered data matrix Ac .



Robust Optimization &
Machine Learning
4. Unsupervised

Learning

Overview
Unsupervised learning

Matrix facts

PCA
Motivations

Variance maximization

Deflation

Factor models

Example

Sparse PCA
Basics

SAFE

Relaxation

Algorithms

Examples

Variants

Sparse Covariance
Selection
Sparsity

Penalized
maximum-likelihood

Example

References

Variance maximization problem
Solution

Variance maximization problem:

max
x

xT Sx : ‖x‖2 = 1.

Assume the EVD of S is given:

S =

p∑
i=1

λiuiuT
i ,

with λ1 ≥ . . . λp, and U = [u1, . . . , up] is orthogonal (UT U = I). Then

arg max
x : ‖x‖2=1

xT Sx = u1,

where u1 is any eigenvector of S that corresponds to the largest
eigenvalue λ1 of S.
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Variance maximization problem
Example: US Senators voting data

Projection of US Senate voting data on random direction (left panel) and direction of maximal variance (right panel). The latter
reveals party structure (party affiliations added after the fact). Note also the much higher range of values it provides.
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Finding orthogonal directions
A deflation method

Once we’ve found a direction with high variance, can we repeat the
process and find other ones?

Deflation method:
I Project data points on the subspace orthogonal to the direction

we found.
I Fin a direction of maximal variance for projected data.

The process stops after p steps (p is the dimension of the whole
space), but can be stopped earlier (to find only k directions, with
k << p).
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Finding orthogonal directions
Result

It turns out that the direction that solves

max
x

var(x) : xT u1 = 0

is u2, an eigenvector corresponding to the second-to-largest
eigenvalue.

After k steps of the deflation process, the directions returned are
u1, . . . , uk .
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Factor models

PCA allows to build a low-rank approximation to the data matrix:

A =
k∑

i=1

σiuivT
i

Each vi is a particular factor, and ui ’s contain scalings.



Robust Optimization &
Machine Learning
4. Unsupervised

Learning

Overview
Unsupervised learning

Matrix facts

PCA
Motivations

Variance maximization

Deflation

Factor models

Example

Sparse PCA
Basics

SAFE

Relaxation

Algorithms

Examples

Variants

Sparse Covariance
Selection
Sparsity

Penalized
maximum-likelihood

Example

References

Example
PCA of market data

Data: Daily log-returns of 77 Fortune 500 companies,
1/2/2007—12/31/2008.

I Plot shows the eigenvalues of
covariance matrix in
decreasing order.

I First ten components explain
80% of the variance.

I Largest magnitude of
eigenvector for 1st component
correspond to financial sector
(FABC, FTU, MER, AIG, MS).
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Motivation

One of the issues with PCA is that it does not yield principal directions
that are easily interpretable:

I The principal directions are really combinations of all the relevant
features (say, assets).

I Hence we cannot interpret them easily.
I The previous thresholding approach (select features with large

components, zero out the others) can lead to much degraded
explained variance.
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Sparse PCA
Problem definition

Modify the variance maximization problem:

max
x

xT Sx − λCard(x) : ‖x‖2 = 1,

where penalty parameter λ ≥ 0 is given, and Card(x) is the
cardinality (number of non-zero elements) in x .

The problem is hard but can be approximated via convex relaxation.
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Safe feature elimination

Express S as S = RT R, with R = [r1, . . . , rp] (each ri corresponds to
one feature).

Theorem (Safe feature elimination [2])
We have

max
x : ‖x‖2=1

xT Sx − λCard(x) = max
z : ‖z‖2=1

p∑
i=1

max(0, (rT
i z)2 − λ).
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SAFE

Corollary
If λ > ‖ri‖2

2 = Sii , we can safely remove the i-th feature (row/column of
S).

I The presence of the penalty parameter allows to prune out
dimensions in the problem.

I In practice, we want λ high as to allow better interpretability.
I Hence, interpretability requirement makes the problem easier in

some sense!
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Relaxation for sparse PCA
Step 1: l1-norm bound

Sparse PCA problem:

φ(λ) := max
x

xT Sx − λCard(x) : ‖x‖2 = 1,

First recall Cauchy-Schwartz inequality:

‖x‖1 ≤
√

Card(x)‖x‖2,

hence we have the upper bound

φ(λ) ≤ φ(λ) := max
x

xT Sx − λ‖x‖2
1 : ‖x‖2 = 1.
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Relaxation for sparse PCA
Step 2: lifting and rank relaxation

Next we rewrite problem in terms of (PSD, rank-one) X := xxT :

φ = max
X

Tr SX − λ‖X‖1 : X � 0, Tr X = 1, Rank(X ) = 1.

Drop the rank constraint , and get the upper bound

λ ≤ ψ(λ) := max
X

Tr SX − λ‖X‖1 : X � 0, Tr X = 1.

I Upper bound is a semidefinite program (SDP).
I In practice, X is found to be (close to) rank-one at optimum.



Robust Optimization &
Machine Learning
4. Unsupervised

Learning

Overview
Unsupervised learning

Matrix facts

PCA
Motivations

Variance maximization

Deflation

Factor models

Example

Sparse PCA
Basics

SAFE

Relaxation

Algorithms

Examples

Variants

Sparse Covariance
Selection
Sparsity

Penalized
maximum-likelihood

Example

References

Sparse PCA Algorithms
I The Sparse PCA problem remains challenging due to the huge

number of variables.
I Second-order methods become quickly impractical as a result.
I SAFE technique often allows huge reduction in problem size.
I Dual block-coordinate methods are efficient in this case [7].
I Still area of active research. (Like SVD in the 70’s-90’s. . . )
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Example 1
Sparse PCA of New York Times headlines

Data: NYTtimes text collection contains 300, 000 articles and has a
dictionary of 102, 660 unique words.

The variance of the features (words) decreases very fast:

0 2 4 6 8 10 12

x 10
4

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Word Index

V
a
ri
a
n
c
e

Sorted variances of 102,660 words in NYTimes data.

With a target number of words less than 10, SAFE allows to reduce
the number of features from n ≈ 100, 000 to n = 500.
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Example
Sparse PCA of New York Times headlines

Words associated with the top 5 sparse principal components in NYTimes

1st PC 2nd PC 3rd PC 4th PC 5th PC
(6 words) (5 words) (5 words) (4 words) (4 words)
million point official president school
percent play government campaign program
business team united states bush children
company season u s administration student
market game attack
companies

Note: the algorithm found those terms without any information on the
subject headings of the corresponding articles (unsupervised
problem).
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NYT Dataset
Comparison with thresholded PCA

Thresholded PCA involves simply thresholding the principal
components.

k = 2 k = 3 k = 9 k = 14
even even even would
like like we new

states like even
now we
this like
will now

united this
states will

if united
states
world

so
some

if

1st PC from Thresholded PCA for various cardinality k . The results contain a
lot of non-informative words.
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Robust PCA

PCA is based on the assumption that the data matrix can be
(approximately) written as a low-rank matrix:

A = LRT ,

with L ∈ Rp×k , R ∈ Rm×k , with k << m, p.

Robust PCA [1] assumes that A has a “low-rank plus sparse”
structure:

A = N + LRT

where “noise” matrix N is sparse (has many zero entries).

How do we discover N, L,R based on A?
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Robust PCA model

In robust PCA, we solve the convex problem

min
N
‖A− N‖∗ + λ‖N‖1

where ‖ · ‖∗ is the so-called nuclear norm (sum of singular values) of
its matrix argument. At optimum, A− N has usually low-rank.

Motivation: the nuclear norm is akin to the l1-norm of the vector of
singular values, and l1-norm minimization encourages sparsity of its
argument.
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CVX syntax

Here is a matlab snippet that solves a robust PCA problem via CVX,
given integers n,m, a n ×m matrix A and non-negative scalar λ exist
in the workspace:

cvx_begin
variable X(n,m);
minimize( norm_nuc(A-X)+ lambda*norm(X(:),1))

cvx_end

Not the use of norm_nuc, which stands for the nuclear norm.
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Motivation

We’d like to draw a graph that describes the links between the
features (e.g., words).

I Edges in the graph should exist when some strong, natural metric
of similarity exist between features.

I For better interpretability, a sparse graph is desirable.
I Various motivations: portfolio optimization (with sparse risk term),

clustering, etc.

Here we focus on exploring conditional independence within features.
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Gaussian assumption

Let us assume that the data points are zero-mean, and follow a
multi-variate Gaussian distribution: x ' N (0,Σ), with Σ a p × p
covariance matrix. Assume Σ is positive definite.

Gaussian probability density function:

p(x) =
1

(2π det Σ)p/2 exp((1/2)xT Σ−1x).

where X := Σ−1 is the precision matrix.
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Conditional independence

The pair of random variables xi , xj are conditionally independent if,
for xk fixed (k 6= i , j), the density can be factored:

p(x) = pi (xi )pj (xj )

where pi , pj depend also on the other variables.

I Interpretation: if all the other variables are fixed then xi , xj are
independent.

I Example: Gray hair and shoe size are independent, conditioned
on age.
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Conditional independence
C.I. and the precision matrix

Theorem (C.I. for Gaussian RVs)
The variables xi , xj are conditionally independent if and only if the i, j
element of the precision matrix is zero:

(Σ−1)ij = 0.

Proof.
The coefficient of xixj in log p(x) is (Σ−1)ij .
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Sparse precision matrix estimation

Let us encourage sparsity of the precision matrix in the
maximum-likelihood problem:

max
X

log det X − Tr SX − λ‖X‖1,

with ‖X‖1 :=
∑

i,j |Xij |, and λ > 0 a parameter.

I The above provides an invertible result, even if S is not
positive-definite.

I The problem is convex, and can be solved in a large-scale setting
by optimizing over column/rows alternatively.
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Dual

Sparse precision matrix estimation:

max
X

log det X − Tr SX − λ‖X‖1.

Dual:
min

U
− log det(S + U) : ‖U‖∞ ≤ λ.

Block-coordinate descent: Minimize over one column/row of U
cyclically. Each step is a QP.
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Example
Data: Interest rates
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Using covariance matrix (λ = 0).
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Using λ = 0.1.

The original precision matrix is dense, but the sparse version reveals
the maturity structure.
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Example
Data: US Senate voting, 2002-2004

Sparse logistic regression analysis for ’gay’, NYT headlines, Jan81 !! Jan07
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Figure 1: Left panel: Sparse logistic regression allowing to visualize the image of the term “gay” in
New York Times headlines from 1981 to 2007. Right panel: sparse graphical model of Senate voting
data, obtained by recursive application of sparse logistic regression.

headlines containing the topic “gay” from those not containing that term. Thus for each month we
obtained a short list of terms that are good predictors of the appearance of the query term in any
headline. Our proposed visualization of all the lists obtained in a sliding window fashion is shown
in the left panel of figure 1. The vertical axis refers to the terms in the resulting collection of lists,
shown by order of appearance. Thus, the plot shows a staircase pattern, where we have highlighted
the terms with large weights; these terms tell a consistent story of the evolution of the term, from
“chorus” (when the term was not associated in the New York Times with homosexual behavior but
only with New York’s “gay men chorus” troupe) to ”rights” to “marriage”. Some terms, such as
“marriage”, occur over many years, as expected from the fact that they represent a current issue
discussed in the media. The plot confirms that it is possible to obtain, based on a purely statistical
analysis, a historical summary of the evolution of the “image” of a topic in any text corpora.

Sparse graphical models. We can build on sparse logistic regression models by regressing each
feature against all the others, in recursive fashion. The method (described in [5]) allows to compute
a sparse graphical model, where the absence of an edge denotes conditional independence. The right
panel of figure 1 illustrates the results obtained on Senate voting data (2004-2006), and clearly
shows that it allows to go beyond the simplistic results obtained via classical clustering methods
(which typically only “discover” party lines), and discover clusters, as well as important Senators
that bridge these clusters. Applying the method to marketing data would allow to discover such
clusters and bridges of features (brands, industries, terms, etc).

Sparse principal component analysis. Often it is desirable to obtain a global view of data,
without any specific topic in mind. For example, it can be interesting to plot different brands on a
two-dimensional plot, or to picture them in a graph.

Classical methods for doing so, such as principal component analysis, lack in a crucial aspect: the
axes on which data is projected do not have any meaningful interpretation. We have recently pro-
posed in [3] sparse principal component analysis to provide such an interpretation: in that method,
the axes on which data is projected are sparse, which means that they involve only a few features.

3

Again the sparse version reveals information, here political blocks
within each party.
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