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Optimization problem
A standard form

An optimization problem is a problem of the form

p∗ := min
x

f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m,

where
I x ∈ Rn is the decision variable ;
I f0 : Rn → R is the objective (or, cost ) function;
I fi : Rn → R, i = 1, . . . ,m represent the constraints ;
I p∗ is the optimal value .

Often the above is referred to as a “mathematical program” (for
historical reasons).
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Example
Least-squares regression

min
w
‖X T w − y‖2

where
I X = [x1, . . . , xm] is a n ×m matrix of data points (xi ∈ Rn);
I y is a response vector;
I ‖ · ‖2 is the l2 (i.e., Euclidean) norm.
I Many variants (with e.g., constraints) exist (more on this later).
I Perhaps the most popular / useful optimization problem.
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Example
Linear classification

min
w,b

m∑
i=1

max(0, 1− yi(wT xi + b))

where
I X = [x1, . . . , xm] is a n ×m matrix of data points (xi ∈ Rn);
I y ∈ {−1, 1} is a binary response vector;
I Many variants (with e.g., constraints) exist (more on this later).
I Very useful for classifying data (e.g., text documents).
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Nomenclature
A toy optimization problem

min
x

0.9x2
1 − 0.4x1x2 − 0.6x2

2 − 6.4x1 − 0.8x2

s.t. −1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 3.

I Feasible set in light blue.
I 0.1- suboptimal set in darker

blue.
I Unconstrained minimizer : x0;

optimal point: x∗.
I Level sets of objective function in

red lines.
I A sub-level set in red fill.
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Other standard forms

Equality constraints. We may single out equality constraints, if any:

min
x

f0(x) subject to hi(x) = 0, i = 1, . . . , p,
fi(x) ≤ 0, i = 1, . . . ,m,

where hi ’s are given. Of course, we may reduce the above problem to
the standard form above, representing each equality constraint by a
pair of inequalities.

Abstract forms. Sometimes, the constraints are described abstractly
via a set condition, of the form x ∈ X for some subset X of Rn. The
corresponding notation is

min
x∈X

f0(x).
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Minimization vs. maximization

Some problems come in the form of maximization problems. Such
problems are readily cast in standard form via the expression

max
x∈X

f0(x) = −min
x∈X

: g0(x),

where g0 := −f0.

I Minimization problems correspond to loss, cost or risk
minimization.

I Maximization problems typically correspond to utility or return
(e.g., on investment) maximization.
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Penalization

A trade-off between two objecgives is commonly accomplished via a
penalized problem:

max
x

f (x) + λg(x),

where f and g represent loss and risk functions, and λ > 0 is a
risk-aversion parameter.

Example: penalized least-squares

min
w
‖X T w − y‖2

2 + λ‖w‖2
2

Here, the risk term ‖w‖2
2 controls the variance associated with noise

in X .
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Robust optimization
Definition

In many instances the problem data is not known exactly. Assume that
the functions fi in the original problem also depend on an “uncertainty”
vector u that is unknown, but bounded: u ∈ U , with the set U given.

Robust counterpart:

min
x

max
u∈U

f0(x , u)

subject to ∀ u ∈ U , fi(x , u) ≤ 0, i = 1, . . . ,m.

I Robust counterparts are sometimes tractable.
I If not, systematic procedures exist to generate approximations.
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Robust optimization
Geometry

Given a ∈ Rn, b ∈ R, consider the constraint in x ∈ Rn

(a + u)T x ≤ b,

with u’s components are only known within a given set U . The robust
counterpart is:

∀ u ∈ U : (a + u)T x ≤ b.

Robust counterpart when A is a box (left panel) and a sphere (right panel).
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Stochastic optimization
Definition

In stochastic programming, the uncertainty is described by a random
variable, with known distribution.

Two-stage stochastic linear program with recourse:

min
x∈X

aT x + f (x) : f (x) = E
w
[ min
y∈Y(x,w)

c(w)T y ].

I x-variables correspond to decisions taken now.
I y -variables correspond to decisions taken when uncertainty w is

revealed.

I Stochastic problems are usually very hard.
I Most known approaches are very expensive to solve.
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Global vs. local minima
The curse of optimization

I Point in red is globally optimal
(optimal for short).

I Point in green is only locally
optimal.

I In many applications, we are
interested in global minima.

Curse of optimization
Optimization algorithms for general problems can be trapped in local
minima.
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Convex function
Definition

A function f : Rn → R is convex if it satisfies the condition

∀ x , y ∈ Rn, λ ∈ [0, 1] : f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Geometrically, the graph of the function is “bowl-shaped”.

Convex function. Non-convex function.
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Convexity and local minima

When trying to minimize convex functions, specialized algorithms will
always converge to a global minimum, irrespective of the starting
point, provided some (weak) assumptions on the function hold.

The Newton algorithm.
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Convex optimization
Definition

The problem in standard form

p∗ := min
x

f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m,

is convex if the functions f0, . . . , fm are all convex.

Examples:
I Linear programming (f0, . . . , fm affine).
I Quadratic programming (f0 convex quadratic, f1, . . . , fm affine).
I Second-order cone programming (f0 linear, fi ’s of the form
‖Aix + bi‖2 + cT

i x + di , for appropriate data Ai , bi , ci , di ).
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Software for convex optimization
I Free (if you have matlab): CVX [3], Yalmip, Mosek’s student

version [1].
I Really free: [4] (in development).
I Commercial: Mosek, CPLEX, etc.
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Non-convex problems
Examples

I Boolean/integer optimization: some variables are constrained to
be Boolean or integers. Convex optimization can be used for
getting (sometimes) good approximations.

I Cardinality-constrained problems: we seek to bound the number
of non-zero elements in a vector variable. Convex optimization
can be used for getting good approximations.

I Non-linear programming: usually non-convex problems with
differentiable objective and functions. Algorithms provide only
local minima.

Not all non-convex problems are hard! e.g., low-rank approximation
problem.
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