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Abstract

This paper addresses the problem of maximum likelihood parameter estimation in
linear models affected by gaussian noise, whose mean and covariance matrix are
uncertain. The proposed estimate maximizes a lower bound on the worst-case (with
respect to the uncertainty) likelihood of the measured sample, and is computed
solving a semidefinite optimization problem (SDP). The problem of linear robust
estimation is also studied in the paper, and the the statistical and optimality prop-
erties of the resulting linear estimator are discussed.
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1 Introduction

The problem of estimating parameters from noisy observed data has a long his-
tory in engineering and experimental science in general. When the observations
and the unknown parameters are related by a linear model, and a stochastic
setting is assumed, then the application of the Maximum Likelihood (ML)
principle (see for instance the monograph [3]) leads to the well-known Least
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Squares (LS) parameter estimate. However, the well-established ML princi-
ple assumes that the true parametric model for the data is exactly known, a
seldom verified assumption in practice, where models only approximate real-
ity; [18], Ch. 5. This paper introduces a family of estimators that are based
on a robust version of the ML principle, where uncertainty in the underlying
statistical model is explicitly taken into account. In particular, we will study
estimators that maximize a lower bound on the worst-case (with respect to
model uncertainty) value of the likelihood function. Next, we will analyze the
case of linear robust estimation, and discuss the bias, variance and optimality
properties of the resulting estimator.

The undertaken minimax approach to robustness is in the spirit of the dis-
tributional robustness approach discussed in [16] for parametrized families of
distributions. In our case, the minimax is performed with respect to unknown-
but-bounded parameters appearing in the underlying statistical model. The
techniques introduced in this paper may also be viewed as the stochastic coun-
terpart of the deterministic robust estimation methods that appeared recently
in [7,10]. In particular, the model uncertainty will here be represented using
the Linear Fractional Transformation (LFT) formalism [10], which allows to
treat cases where the regression matrix has a particular form, such as Toeplitz
or Vandermonde, and where the uncertainty affects the data in a structured
way. Robust estimation trades accuracy, which is best achieved using standard
techniques as LS or TLS (Total Least Squares, [22]), with robustness, i.e. in-
sensitvity with respect to parameters variations. In this latter context, links
between robust estimation, sensitivity, and regularization techniques, such as
Tikhonov regularization [21], may be found in [4,9,10] and references therein.
Here, we will treat a mixed-uncertainty problem, where the regression ma-
trix is affected by deterministic, structured and norm-bounded uncertainty,
while the measure is affected by gaussian noise whose covariance matrix is
also uncertain. In this setting, we will compute a robust (with respect to
the deterministic model uncertainty) estimate via semidefinite programming

(SDP).

The main focus of this paper is on introducing a theoretical framework in
which robust estimation problems may be solved efficiently (i.e. in polynomial-
time) using available numerical tools for semidefinite programming; see e.g.
[13]. Since the problem we treat is an extension of the classical stochastic least
squares framework, we believe that there are countless diverse areas of possible
application. Therefore, the subject is here treated in its generality, without
reference to any specific area of application. An example of application of
the introduced theory to the estimation of dynamic parameters of a robot
manipulator from real experimental data is instead presented in Section 4.



1.1 Notation

For a square matrix X, X > 0 (resp. X > 0) means X is symmetric, and
positive-definite (resp. semidefinite). \;..(X), where X = X7 denotes the
maximum eigenvalue of X. || X|| denotes the operator (maximum singular
value) norm of X. For P € R™", with P > 0, and z € R", the notation
x ~ N(Z, P) means that x is a gaussian random vector with expected value
Z and covariance matrix P.

2 Problem Statement

We consider the problem of estimating a parameter from noisy observations
that are related to the unknown parameter by a linear statistical model.
To set up the problem, we shall take the Bayesian point of view, and as-
sume an a-priori normal distribution on the unknown parameter x € R", i.e.
x ~ N(Z, P(A,)), where T € R” is the expected value of x, and the a-priori
covariance P(A,) € R™" depends on a matrix A, of uncertain parameters, as
it will be discussed in detail in Section 2.1. Similarly, the observations vector
y € R™ is assumed to be independent of x, and with normal distribution
y ~ N(y,D(Ay)), with g € R™, and D(A4) € R™™. The linear statistical
model assumes further that the expected values of x and y are related by a
linear relation which, in our case, is also uncertain

g =C(A.)Z.

Given some a-priori estimate =, of x, and given the vector of measurements
Ys, We seek an estimate of Z that maximizes a lower bound on the worst-
case (with respect to the uncertainty) a-posteriori probability of the observed
event. When no deterministic uncertainty is present on the model, this is
the celebrated maximum likelihood (ML) approach to parameter estimation,
which enjoys special properties such as efficiency and unbiasedness, see for
instance [3,15,19]. For the important special case of linear estimation, we will
discuss in Section 3.2 how these properties extend to the robust estimator,
and how the resulting estimate is related to the minimum a-posteriori variance
estimator.

To cast our problem in a ML setting, the log-likelihood function £ is defined
as the logarithm of the a-posteriori joint probability density of x,y

L(Z, Alry,y,) = log (f:c(xS)fy(yS)) )

where f;, f, are the probability density functions of x,y, respectively. Since



x,y are independent gaussian vectors, maximizing the log-likelihood is equiv-
alent to minimizing the following function

Uz,8) = (2, = 2) " P7H D) (@ = 7) + (4, — C(Ac)2) D™ (Ad) (ys — C(A)7),

where A is the total uncertainty matrix, containing the blocks A,, Ay, A.. We
notice that, for fixed A, computing the ML estimate reduces to solving the
following standard norm minimization problem

Eyr(A) = argmin ||F(A)z — g(A)]1%,

where
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If now A is allowed to vary in a given norm-bounded set, as precised in the
next section, we define the worst-case maximum likelihood (WCML) estimate

ITwcecMmL as

Twemr = arg mjin max |F(A)z — g(A)||2. (2)

The WCML estimate provides therefore a guaranteed level of the likelihood
function, for any possible value of the uncertainty. In the next section, we detail
the uncertainty model used troughout the paper, and state a fundamental
technical lemma.

2.1 LFT Uncertainty Models

We shall consider matrices subject to structured uncertainty in the so called
linear-fractional (LFT) form

M(A) =M+ LA(I — HA)'R, (3)

where M, L, H, R are constant matrices, while the uncertainty matrix A be-
longs to the set A;, where Ay = {Ae€ A:|A| <1}, and A is a linear
subspace. The norm used is the spectral (maximum singular value) norm.
The subspace A, referred to as the structure subspace in the sequel, defines
the structure of the perturbation, which is otherwise only bounded in norm.



Together, the matrices M, L, H, R and the subspace A, constitute a linear-
fractional representation of an uncertain model. We will make from now on
the standard assumption that all LF'T models are well-posed over A;, mean-
ing that det(/ — HA) # 0, for all A € Ay, see [14]. We also introduce the
following linear subspace B(A), referred to as the scaling subspace

B(A) ={(S,T,G) | SA = AT, GA =—ATG" for every A € A}.

LF'T models of uncertainty are general and now widely used in robust control
[14,25] (especially in conjunction with SDP techniques, see for instance [1]), in
identification [23], and filtering [12,24]. This uncertainty framework includes
the case when parameters perturb each coefficient of the data matrices in a
(polynomial or) rational manner, as stated in the representation lemma in [8].

2.2 Robustness Lemma

The main results in this paper rely on the following lemma, which provides
a sufficent condition for a linear matrix inequality (LMI, [5]) to hold for any
allowed value of the uncertainty. Given a LFT model (3) in the matrix variable
A € RP? and given a real symmetric matrix W, we seek a sufficient LMI
condition ensuring

det(I — HA) # 0 (4)

and

ura) 1| W T 1]T>o (5)

for all A € A;. This is expressed in the following lemma.

Lemma 1 The conditions (4), (5) hold for all A € Ay, if there exist a triple
(S,T,G) € B(A) such that

S>0,T>0,and (6)
T T
ML M L R H T G RH
w - >~ 0. (7)
10 10 01 GT -S 0171

The above conditions are also necessary when A = RPY, i.e. in the case of
unstructured perturbation.



The proof of the above lemma, is reported in Appendix A.
Remark 2 The above lemma provides in general a sufficient condition only.
A discussion on the tightness of this condition and its approximation error is

out of the scope of this paper; general results and a further discussion may be

found in [2,11].

3 Robust Estimation

In order to compute a robust estimate, we first set up the complete uncertainty
model for (2) in LFT form. Let C(A,) be given in the LFT form as

C(Ac) =C+ LCAC(I - HCAC)_IRC’

and let

D 12(Ag) = D Y2 4 LyAy(I — HgAg) 'Ry,
Pil/Q(A;IJ) = P71/2 + LPAP(I - HPAP)ilRPﬂ

be the LEFT representation of the Cholesky factors of D(A,) and P(A,), re-
spectively. Then, using the common rules for LET operation (see for instance
[25]) we obtain an LFT representation of

[P 9(a)| = [F o] + 280 - A Ry R, |,

where F'(A), g(A) are given in (1), A is a structured matrix containing the
(possibly repeated) blocks A., A4, A, on the diagonal, and

D71/2C D71/2ys
F = ;g = ) (8)
P—1/2 P—1/2$S

The WCML estimation problem (2) may then be cast in the form

My = argming, n? subject to

[F(A)z — g(A)[I <n?, VA€ A,



which may in turn be rewritten as a robust semidefinite optimization problem
(SDP, see [11]) as

Moo = argming , 1 subject to
1 F(A)x — g(A
(A)z = g(A) “0, (9)
(F(A)z — g(A)T n?
VA € A;.

3.1 Robust ML Estimation

The WCML estimate Ty o, is defined as the value of x at the optimum of
problem (9). However, the solution of the above problem is in general numer-
ically hard to compute, [2,11]. In order to obtain a computable solution, we
shall apply the robustness lemma to the robust LMI constraint (9). In this
way, we obtain a convex inner approximation of the feasible set, and the min-
imization of n? subject to this new constraint will provide an upper bound
on the optimal objective of (9). The so-obtained solution Z gy, will be called
a robust maximum likelihood estimate (RML). This is summarized in the
following theorem.

Theorem 3 The robust mazximum likelihood estimate Ty %S obtained solv-
ing the SDP

771%{ML = arg wénél%n n? subject to (10)
(S,G,T) e B(A),S > 0,T > 0, (11)
Fz—g
0(S,G,T)

RF.T - Rg - 0, (12)

772

(Fz — g)T (Rpx — Rg)T]
where

I— LTI —~L(THT + G)
o(8,G,T) = . (13)
—(HT + GT)LT S — HTHT — HG — GTHT

The optimal upper bound nrary, s exact (i.e. Nryr = Mwoms) when A = RPT,



PROOF. The result in the theorem follows immediately from the application
of Lemma 1 to the LMI constraint in (9). In particular, the result is obtained
setting

FT 0 RE
M(A) = +| T AT = HTA) LT 0);
gt 0 RY
010 &
~ i
W=10|T0]|; 2=
-1
z710 n?

Remark 4 When there is no model uncertainty, we can set L = 0,H =
0,Rp = 0,R, = 0. In this case, the results of the previous theorem reduce
to the standard LS estimate, and the robust estimate is consistent with the
idealized (uncertainty free) model.

While the result of the previous theorem is useful to obtain a numerical es-
timate of the parameters, due to complicated non-linear dependence of the
estimate on the data z,, y,, it is ackward to study further the statistical prop-
erties of the resulting estimator. To pursue this study, in the next section we
will cosider the additional constraint that the estimator should be linear in
the data.

3.2 Robust Linear Estimation

The goal of this section is to compute a robust estimate which is linear in the
observations. This is done in order to recover some of the nice features related
to linear estimators, and to allow for further analysis of the bias and variance
characteristics of the estimate. To this end, let K be an unknown gain matrix,
and let z = Kz, with z = [y] 27", K = [K, K|, and A = [FT RE]T,
h=[g" RI|" = Gz, where G is some given matrix that can be deduced from
(1), (8). Then, the main result on the optimal robust linear estimate (RLE)
is provided by the following theorem.

Theorem 5 Let

Vi, p = arg min v?  subject to (14)

K,S,G, T,
(S,G,T) € B(A),S = 0,T > 0, (15)



6(5,G,T) |AK - g
(AK - )| 121

>0, (16)

and let Kgpp be the value of K at the optimum of (14), then
Trie = Kripz = Kpx, + Kyy,

is a robust linear estimate (RLE) guaranteeing that |F(A)z — g(A)|| < nree
for all admissible values of the uncertainty, where

TRLE = ||Z||VRLE-

Thus, Nrre is a minimized upper bound on Nryr (i-e- NrLe > Nrmi), and the
optimal gain K,y s independent of the observations z.

PROOF. We start from the result of Theorem 3, assume that z # 0 (the
case z = 0 may be trivially considered aside) and introduce a new variable K
such that z = Kz. We now rewrite problem (10) in the equivalent form

2 ~ 2 -
— 1
Npur, = a1g  min, n° subject to (17)

(S,G,T) € B(A),S = 0,T » 0, (18)
o(,G.T) |(AK - g)
ZT(AK_g)T‘ 7

(19)

The previous is only a restatement of (10), and the resulting estimate is not yet
linear in the observations, as the optimal gain K will depend on z. However, we
now show that condition (19) is satisfied whenever condition (16) is satisfied.
This is because, taking Schur complements, (19) is equivalent to

00, (20)
n’>z" (AK — G)"O 7 (AK — G)=. (21)
Since

7 (AK = G)'O7H(AK — )z < [|2[I"Amas (AK — G)"O7H(AK — ),

then (21) is implied by 1 > ||2||* ez ((AK — G)TO 1 (AK — G)). Introducing
the new variable v = n/||z||, this latter condition, together with (20), may be
restated in the form of (16), applying again the Schur complement rule. As the
initial constraint has been replaced by a more stringent one, it immediately
follows that all solutions to (14) will be feasible for (10), therefore Z will be a



robust estimate, and 7gzr an upper bound on 7gasr- Minimizing over v (i.e.
solving problem (14)) amounts to finding the best possible upper bound on
NrymL, based on the premise that the estimate is linear in the samples. O

3.8 Bias and Variance of the Robust Linear Estimate

In this section, we examine the bias and variance characteristics of the linear
robust estimator, and present a result for the computation of a robust linear
unbiased estimator.

The estimation bias is defined as
b= E{% — z},

where Z is the (unknown) expected value of x, and Z is a linear estimate in
the form

T = Kyzs + Kyys. (22)

We then have that

b=0b(A,) = E (Kyzs + Kyys — ) = B(A,)z,

where

B(A,) = B+ K,LA(I - HA,) 'R; B=K,—I1+K,C, (23)

therefore, the bias is a linear function of the unknown mean z, with uncertain
coefficients.
Notice that the robust estimate will be in general affected by bias. A condition

for having robustly zero bias is of course given by B(A.) = 0, that is

(24)

The first condition requires in particular that K, = I — K,C, which means
that the estimate should be in the classical “innovations” form

T =1x,+ Ky(ys — Cxy).

10



The second condition requires orthogonality between the gain K, and the
matrix L. describing the uncertainty on the regression matrix C'(A.). In par-
ticular, when there is no uncertainty on C (but we still allow for uncertainty
in the covariance matrices D(Ay), P(4,)), we have L, = 0, and we can have
unbiased estimates, provided that B = 0, i.e. K; = I — K,C. Further, notice
that both conditions (24) impose linear constraints on the gain K, which may
be easily added (i.e. the resulting problem is still an SDP) to the constraints
of problem (14), in order to compute linear robust unbiased estimates. Notice
also that the additional constraints on the gain will not destroy feasibility, but
simply decrease the level of the achievable robust ML performance.

Our result on robust linear unbiased estimation (RLUE) is summarized in the
following theorem.

Theorem 6 Assume no uncertainty acts on the regression matrix C, i.e. L, =
0. Let

Trive = s + Krove(ys — Cs),
where Kgrryg s the value of K, at the optimum of

Varug = arg KyrgliGnTV v* subject to (25)
(S,G,T) € B(A),S > 0,T >0, (26)
o(S,G,T AK, I-K,C]—G
61 K, =K -G
(K, T-K,C]-6)| VI

Then, TrLur is a robust linear unbiased estimate (RLUE) guaranteeing that
|IF(A)Z — g(A)|| < nrrue for all admissible values of the uncertainty, where

NRLUE = ||Z||VRLUE-

NrLve S the best possible upper bound on ngre, based on the premise that the
robust estimate must be linear and unbiased, therefore Nrruve > MRLE = MRML-

PROOF. The proof follows from the previous discussion.

3.3.1 Covariance of the Robust Linear Estimate

In this section, we discuss the a-posteriori covariance properties of the esti-
mator in the parameter space. For a generic linear estimate in the form (22),
the a-posteriori covariance matrix is defined as R = E{(z — z)(z — z)T}. A
standard manipulation then yields

R(A) = K, P(A) K] + K,D(A) K] + B(A.)zz" B (A,), (28)

11



where B(A,) is defined as in (23).

We notice that (28) depends on the unknown mean Z, therefore an empirical
estimate of the covariance may be obtained substituting the estimated value
Z in the place of the unknown z. However, the significance of the covariance
matrix in case of biased estimate may be questionable. A more interesting
result is obtained in the case of unbiased estimates (obtained by means of
Theorem 6, when C' is exactly known), where R(A) reduces to

R(A) = K,P(A,) K] + K,D(Ag) K. (29)

Remark 7 Notice that, using standard rules for operations with LFT’s, one
can determine an LFT representation for R(A), and use it in a recursive es-
timation framework, collecting a new observation ys, and setting xs < TrruE,
P(A.) < R(A), etc. Further study is however needed to analyze the behaviour
of the recursive RLUE.

It is important at this point to make some observations. It is well-known that,
when the linear model is perfectly known, the application of the ML principle
provides estimates which are unbiased and efficient, in the sense that the a-po-
steriori covariance in parameter space reaches the Cramér-Rao lower bound,
see for instance [18], Sec. 6.4. In our context of robust estimation, we saw
that unbiased estimates can be obtained (Theorem 6) only if no uncertainty
is acting on the regression matrix C', while allowing for uncertainty in P(A,)
and D(A4). When this is not the case, estimation bias will be unavoidable due
to imperfect knowledge of the linear relation § = C(A.)Z between the mean
values of x,y.

As for the a-posteriori parameter covariance, one may ask how the robust
maximization of the likelihood function is related to robust minimization of
the a-posteriori covariance. The answer to this question is that our robust ML
linear estimator is also the one that minimizes an upper bound on the worst-
case a-posteriori covariance, therefore the estimate provided by Theorem 6
is also a minimum variance unbiased estimate (MVUE), in the robust sense
explained above. The reason for this resides in a deep and general duality
result between the maximization of the log-likelihood function and the min-
imization (in matrix sense) of the a-posteriori covariance. For linear models,
both problems have an equivalent formulation, provided that suitable dual
bases are chosen to write the optimization problem; for a thorough discussion
of this issue, the reader is referred to [17], Ch. 15. Finally, we remark that
the robust estimation framework proposed in this paper has similarities with
the minimax approach to ML estimates and minimax variance estimates dis-
cussed in [16], Ch. 4, where robustness issued are considered with respect to
parametrized families of distributions.

12



4 Example

In this section, we report a result of the application of the presented method-
ology to the experimental estimation of dynamic parameters of a SCARA
two-link IMI manipulator available at the Politecnico di Torino Robotics Lab.
Details related to the experimental setup, manipulator model and data treat-
ment are discussed in [6]. The goal is to estimate eight dynamic and fric-
tion parameters of the manipulator from noisy joint torque data. Denoting
by ¢" = [q1,¢] the joint positions, and by 77 = [r, 5] the measured joint
torques, the following manipulator model was developed for identification

7=Cs(q,4,9)0 + d,

where § € R® is the vector of identifiable parameters, d € R? is a zero mean
gaussian noise vector, and C(q, ¢, ) € R*® is the nominal regression matrix,
which is a non-linear function of ¢, ¢, §. From data acquired over repetitions
of a given reference trajectory, we estimated the measurement covariance as
0? = 5.23 N?m?, 62 = 0.075 N?m?, therefore D = diag (0%, 02). Similarly,
we determined confidence bounds for the angular positions measurements and
velocity and acceleration data, obtaining 7, = 0.053 rad, ree = 0.056 rad,
rs = 0.082 rad/s, rj = 0.085 rad/s, ry = 0.589 rad/s?, rg = 1.648 rad/s?.
Each position, velocity and acceleration data is therefore assumed to be of
the form q1(5) =1 + T'q151, QQ((S) = ({2 + T'q252, q1(5) = c]1 + 7‘4153, etc..., with
6T = [61,02,---,06], ||0]|co < 1. No prior information on @ is assumed, therefore
P — .

To take into account the structured uncertainty entering the regression matrix
C, we developed a linearized model for the uncertainty in the LF'T form. For
given data g, ¢, ¢, the regression matrix is first expressed as

6
Cs=C+)_ 6,
i1
and then rewritten in LF'T format as Cs = C + LAR, where C; = L;R; is a

full-rank factorization of C;, r; = Rank C;, and

Ry
L= [L1 L(;], R = 3 A:diag((slfn,...,(sﬁlm).

Rg

For the actual estimation of 6, we collected data at six time instants on the
reference trajectory, and then stacked the relative torque measurements and

13



LFT regression models. This gave an augmented regression model
7=(C+LAR)O +d,
where 7 € R'2, C € R™?>®, A = diag (611,,, ..., 0361, ). The robust estimate

was then computed solving (10) by means of a MATLAB code based on the
LMITOOL SDP solver; [13]

éRML:[3.9689, 0.0027, 0.0270, —0.0000, —0.9811, 12.2065, 1.3067, 0.8017].

The least squares estimate obtained from the same torque measurements,
using C' as regression matrix is

.5 = [4.1593, 0.5295, —0.1146, —0.1889, —1.6205, 14.5631, 1.1408, 1.2199).

It is worth to remind that on the estimation data set the LS estimate yields a
smaller residual than the robust estimate, indeed we have e g = ||[D~'/?(F —
ééLs)” = 3.24 and €ERML = ||D_1/2(7~'—ééRML)|| = 3.54. HOWGVGI", the quality
of the two parameter estimates should be compared on data sets different from
the one used for the estimation (validation data sets). We therefore computed
the residuals €5 and €gpsr, using data collected over several different trajecto-
ries. The result are shown in Figure 1, where each point in the plot represents
the estimation residual computed for a group of six time samples.

16
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Fig. 1. Torque estimation residuals (rms values) computed for 70 groups of 6 time
samples over various manipulator trajectories. LS estimate: solid line; Robust esti-
mate: dotted line.

Considering the data of Figure 1, the average residual resulted to be 6.2 for the
robust estimate and 6.76 for the LS estimate. More interestingly, if we compare
the peak values of the residuals we obtain 10.1 for the robust estimate and 15.1
for the LS estimate, which is about 50% worse. Also, we notice that the robust

14



estimate is more “regular” than the LS estimate; regularity may be measured
by the variance of the residuals, which is 2.65 for the robust estimate and 4.52
for the LS estimate, which is again about 70% worst than the robust estimate.

5 Conclusions

In this paper, we have shown that the maximum likelihood estimation problem
with uncertainty in the regression matrix and in the observations covariance
can be solved in a worst-case setting using convex programming. This implies
that in practice these problems can be solved efficently in polynomial time
using available software [13].

The paper also presents specialized results for robust linear estimation and
unbiased robust linear estimation. In particular, this latter estimator recovers
most of the nice features of standard ML estimators, and seems to be suitable
for implementation in a recursive estimation framework.

Robust esitmation has been applied to an experimental problem of manipula-
tor parameters identification, which has inherent uncertainty in the regression
matrix. The reported results show that a consistent improvement can be ob-
tained over standard estimation methods.

A Appendix

Proof of Lemma 1

We first observe that the lower-right block of the matrix in (7) is HITH +
HTG+GTH — S, therefore the condition (7) implies well-posedness of the LFT
(3), see for instance [14] for a proof. Now, if the LFT for M (A) is well-posed,
then condition (5) is satisfied if and only if

T T
U M L M L u

fO(uap) = W >0
P 10 I 0 |p

for all u, p such that p = A(Ru+ Hp) for some A € A;. Let then ¢ = Ru+ Hp,
and (S,T,G) € B(A), with T > 0. The condition p = Aq for some A € A,
implies that

¢"Gp=q"GAq =0,

15



by skew-symmetry of GA. In addition we have

¢"Tq—p"Sp = ¢" (T — ATSA)q
— qTT1/2(I _ T—1/2ATAT1/2)T1/2q > 0.

In the above, we have used the fact that SA = AT, and that the matrix
T-2ATATY? is actually symmetric, and has eigenvalues less or equal to
one. We conclude that

:

for every u,p such that p = A(Ru + Hp) for some A € Ay, and every triple
(S,T,G) € B(A) with T > 0. Based on this fact, we obtain a sufficient
condition for (5) to hold, i.e. that for every non-zero pair (u,p), we have

T T

RH
01

T G
GT -S

RH
01

u

p

T T -
U M L M L U
W
P I 0 I 0| {|p
U R H T G R H U
>
P 01 GT -S 01 P

for some triple (S,7T,G) € B(A), with T > 0. The above condition is exactly
the one stated in the theorem.

It remains to prove that our condition is also necessary in the unstructured
case, A = RPY. In this case, the set B(A) reduces to the set of triples
(S,T,G), with S =71,, T = 11,, 7 € R, and G = 0. First, we note that the
well-posedness sufficient condition H'TH + H'G + GTH — S = 0 for some
(S,T,G) € B(A) is equivalent to ||H|| < 1, which is the exact well-posedness
condition. Second, we note that for every u,p, we have p = A(Ru + Hp) for
some A, ||A]| <1 if and only if

T T

RH
01

RH
01

u u

I, 0
0 -1,

>0

fl(u:p) = {

p p

We note that the above inequality is strictly feasible, that is there exists a
pair (ug,po) such that fi(ug,po) > 0 (since ||H|| < 1, it suffices to choose
uo = 0 and py # 0). In this case, the S-procedure [5] provides a necessary and
sufficient condition for the quadratic constraint fo(u,p) > 0 to hold for every
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non-zero pair (u, p) such that f;(u,p) > 0. This condition is that there exists a
scalar 7 > 0 such that, for every non-zero (u, p), we have fy(u,p) > 7f1(u,p).
This is exactly the condition of the theorem in the unstructured case, written
with S =71, T =71l;,and G=0. O
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