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tWhen 
onstru
ting a 
lassi�er, the probability of 
orre
t 
lassi�-
ation of future data points should be maximized. In the 
urrentpaper this desideratum is translated in a very dire
t way into anoptimization problem, whi
h is solved using methods from 
on-vex optimization. We also show how to exploit Mer
er kernels inthis setting to obtain nonlinear de
ision boundaries. A worst-
asebound on the probability of mis
lassi�
ation of future data is ob-tained expli
itly.1 Introdu
tionConsider the problem of 
hoosing a linear dis
riminant by minimizing the probabil-ities that data ve
tors fall on the wrong side of the boundary. One way to attemptto a
hieve this is via a generative approa
h in whi
h one makes distributional as-sumptions about the 
lass-
onditional densities and thereby estimates and 
ontrolsthe relevant probabilities. The need to make distributional assumptions, however,
asts doubt on the generality and validity of su
h an approa
h, and in dis
rimina-tive solutions to 
lassi�
ation problems it is 
ommon to attempt to dispense with
lass-
onditional densities entirely.Rather than avoiding any referen
e to 
lass-
onditional densities, it might be usefulto attempt to 
ontrol mis
lassi�
ation probabilities in a worst-
ase setting; thatis, under all possible 
hoi
es of 
lass-
onditional densities. Su
h a minimax ap-proa
h 
ould be viewed as providing an alternative justi�
ation for dis
riminativeapproa
hes. In this paper we show how su
h a minimax programme 
an be 
arriedout in the setting of binary 
lassi�
ation. Our approa
h involves exploiting thefollowing powerful theorem due to Isii [6℄, as extended in re
ent work by Bertsimas� http://roboti
s.ee
s.berkeley.edu/~gert/



and Sethuraman [2℄:sup PrfaTy � bg = 11 + d2 ; with d2 = infaTy�b (y � �y)T�y�1(y � �y); (1)where y is a random ve
tor, where a and b are 
onstants, and where the supremumis taken over all distributions having mean �y and 
ovarian
e matrix �y. Thistheorem provides us with the ability to bound the probability of mis
lassifying apoint, without making Gaussian or other spe
i�
 distributional assumptions. Wewill show how to exploit this ability in the design of linear 
lassi�ers.One of the appealing features of this formulation is that one obtains an expli
itupper bound on the probability of mis
lassi�
ation of future data: 1=(1 + d2).A se
ond appealing feature of this approa
h is that, as in linear dis
riminant analysis[7℄, it is possible to generalize the basi
 methodology, utilizing Mer
er kernels andthereby forming nonlinear de
ision boundaries. We show how to do this in Se
tion3.The paper is organized as follows: in Se
tion 2 we present the minimax formulationfor linear 
lassi�ers, while in Se
tion 3 we deal with kernelizing the method. Wepresent empiri
al results in Se
tion 4.2 Maximum probabilisti
 de
ision hyperplaneIn this se
tion we present our minimax formulation for linear de
ision boundaries.Let x and y denote random ve
tors in a binary 
lassi�
ation problem, with meanve
tors and 
ovarian
e matri
es given by x � (�x;�x) and y � (�y;�y), respe
tively,where \�" means that the random variable has the spe
i�ed mean and 
ovarian
ematrix but that the distribution is otherwise un
onstrained. Note that x; �x;y; �y 2Rn and �x;�y 2 Rn�n .We want to determine the hyperplane aT z = b (a; z 2 Rn and b 2 R) that separatesthe two 
lasses of points with maximal probability with respe
t to all distributionshaving these means and 
ovarian
e matri
es. This boils down to:max�;a;b � s.t. inf PrfaTx � bg � � (2)inf PrfaTy � bg � �or, max�;a;b � s.t. 1� � � sup PrfaTx � bg (3)1� � � sup PrfaTy � bg:Consider the se
ond 
onstraint in (3). Re
all the result of Bertsimas and Sethura-man [2℄:sup PrfaTy � bg = 11 + d2 ; with d2 = infaTy�b (y � �y)T�y�1(y � �y) (4)We 
an write this as d2 = inf
Tw�d wTw, wherew = �y�1=2(y��y), 
T = aT�y1=2and d = b� aT �y. To solve this, �rst noti
e that we 
an assume that aT �y � b (i.e.�y is 
lassi�ed 
orre
tly by the de
ision hyperplane aT z = b): indeed, otherwise wewould �nd d2 = 0 and thus � = 0 for that parti
ular a and b, whi
h 
an never bean optimal value. So, d > 0. We then form the Lagrangian:L(w; �) = wTw+ �(d � 
Tw); (5)



whi
h is to be maximized with respe
t to � � 0 and minimized with respe
t to w.At the optimum, 2w = �
 and d = 
Tw, so � = 2d
T 
 and w = d

T 
 . This yields:d2 = infaTy�b (y � �y)T�y�1(y � �y) = (b� aT �y)2aT�ya (6)Using (4), the se
ond 
onstraint in (3) be
omes 1�� � 1=(1+d2) or d2 � �=(1��).Taking (6) into a

ount, this boils down to:b� aT �y � �(�)qaT�ya where �(�) =r �1� � (7)We 
an handle the �rst 
onstraint in (3) in a similar way (just write aTx � b as�aTx � �b and apply the result (7) for the se
ond 
onstraint). The optimizationproblem (3) then be
omes:max�;a;b � s.t. �b+ aT �x � �(�)paT�xa (8)b� aT �y � �(�)qaT�ya:Be
ause �(�) is a monotone in
reasing fun
tion of �, we 
an write this as:max�;a;b � s.t. �b+ aT �x � �paT�xa (9)b� aT �y � �qaT�ya:From both 
onstraints in (9), we getaT �y + �qaT�ya � b � aT �x� �paT�xa; (10)whi
h allows us to eliminate b from (9):max�;a � s.t. aT �y + �qaT�ya � aT �x� �paT�xa: (11)Be
ause we want to maximize �, it is obvious that the inequalities in (10) willbe
ome equalities at the optimum. The optimal value of b will thus be given byb� = aT� �x� ��qaT��xa� = aT� �y + ��qaT��ya�: (12)where a� and �� are the optimal values of a and � respe
tively. Rearranging the
onstraint in (11), we get:aT (�x� �y) � ��paT�xa+qaT�ya� : (13)The above is positively homogeneous in a: if a satis�es (13), sa with s 2 R+ alsodoes. Furthermore, (13) implies aT (�x� �y) � 0. Thus, we 
an restri
t a to be su
hthat aT (�x� �y) = 1. The optimization problem (11) then be
omesmax�;a � s.t. 1� �paT�xa+qaT�ya (14)aT (�x� �y) = 1;whi
h allows us to eliminate �:mina paT�xa+qaT�ya s.t. aT (�x� �y) = 1; (15)



or, equivalently mina k�x1=2ak2 + k�y1=2ak2 s.t. aT (�x � �y) = 1: (16)This is a 
onvex optimization problem, more pre
isely a se
ond order 
one program(SOCP) [8,5℄. Furthermore, noti
e that we 
an write a = a0+Fu, where u 2 Rn�1 ,a0 = (�x � �y)=k�x� �yk2, and F 2 Rn�(n�1) is an orthogonal matrix whose 
olumnsspan the subspa
e of ve
tors orthogonal to �x� �y.Using this we 
an write (16) as an un
onstrained SOCP:minu k�x1=2(a0 +Fu)k2 + k�y1=2(a0 +Fu)k2: (17)We 
an solve this problem in various ways, for example using interior-point methodsfor SOCP [8℄, whi
h yield a worst-
ase 
omplexity of O(n3). Of 
ourse, the �rst andse
ond moments of x;y must be estimated from data, using for example plug-in es-timates x̂; ŷ; �̂x; �̂y for respe
tively �x; �y;�x;�y. This brings the total 
omplexityto O(ln3), where l is the number of data points. This is the same 
omplexity as thequadrati
 programs one has to solve in support ve
tor ma
hines.In our implementations, we took an iterative least-squares approa
h, whi
h is basedon the following form, equivalent to (17):minu;Æ;� Æ + 1Æ k�x1=2(a0 +Fu)k22 + �+ 1� k�y1=2(a0 +Fu)k22: (18)At iteration k, we �rst minimize with respe
t to Æ and � by setting Æk = k�x1=2(a0+Fuk�1)k2 and �k = k�y1=2(a0 + Fuk�1)k2. Then we minimize with respe
t to uby solving a least squares problem in u for Æ = Æk and � = �k, whi
h gives usuk. Be
ause in both update steps the obje
tive of this COP will not in
rease, theiteration will 
onverge to the global minimum k�x1=2(a0 + Fu�)k2 + k�y1=2(a0 +Fu�)k2, with u� an optimal value of u.We then obtain a� as a0 + Fu� and b� from (12) with �� = 1=(paT��xa� +paT��ya�). Classi�
ation of a new data point znew is done by evaluatingsign(aT� znew � b�): if this is +1, znew is 
lassi�ed as from 
lass x, otherwise znew is
lassi�ed as from 
lass y.It is interesting to see what happens if we make distributional assumptions; inparti
ular, let us assume that x � N (�x;�x) and y � N (�y;�y). This leads to thefollowing optimization problem:max�;a;b � s.t. �b+ aT �x � ��1(�)paT�xa (19)b� aT �y � ��1(�)qaT�ya:where �(z) is the 
umulative distribution fun
tion for a standard normal Gaussiandistribution. This has the same form as (8), but now with �(�) = ��1(�) insteadof �(�) =q �1�� (
f. a result by Cherno� [4℄). We thus solve the same optimizationproblem (� disappears from the optimization problem be
ause �(�) is monotonein
reasing) and �nd the same de
ision hyperplane aT z = b. The di�eren
e lies inthe value of � asso
iated with ��: � will be higher in this 
ase, so the hyperplanewill have a higher predi
ted probability of 
lassifying future data 
orre
tly.



3 KernelizationIn this se
tion we des
ribe the \kernelization" of the minimax approa
h des
ribed inthe previous se
tion. We seek to map the problem to a higher dimensional featurespa
e Rf via a mapping ' : Rn 7! Rf , su
h that a linear dis
riminant in the featurespa
e 
orresponds to a nonlinear dis
riminant in the original spa
e. To 
arry outthis programme, we need to try to reformulate the minimax problem in terms of akernel fun
tion K(z1; z2) = '(z1)T'(z2) satisfying Mer
er's 
ondition.Let the data be mapped as x 7! '(x) � ('(x);�'(x)) and y 7! '(y) �('(y);�'(y)) where fxigNxi=1 and fyigNyi=1 are training data points in the 
lasses
orresponding to x and y respe
tively. The de
ision hyperplane in Rf is then givenby aT'(z) = b with a; '(z) 2 Rf and b 2 R. In Rf , we need to solve the followingoptimization problem:mina qaT�'(x)a+qaT�'(y)a s.t. aT ('(x) � '(y)) = 1; (20)where, as in (12), the optimal value of b will be given byb� = aT� '(x) � ��qaT��'(x)a� = aT� '(y) + ��qaT��'(y)a�; (21)where a� and �� are the optimal values of a and � respe
tively. However, we donot wish to solve the COP in this form, be
ause we want to avoid using f or 'expli
itly.If a has a 
omponent in Rf whi
h is orthogonal to the subspa
e spanned by '(xi),i = 1; 2; : : : ; Nx and '(yi), i = 1; 2; : : : ; Ny, then that 
omponent won't a�e
t theobje
tive or the 
onstraint in (20). This implies that we 
an write a asa = NxXi=1 �i'(xi) + NyXj=1 �j'(yj): (22)Substituting expression (22) for a and estimates ['(x) = 1Nx PNxi=1 '(xi) , ['(y) =1Ny PNyi=1 '(yi), �̂'(x) = 1Nx PNxi=1('(xi) �['(x))('(xi) �['(x))T and �̂'(y) =1Ny PNyi=1('(yi) �['(y))('(yi) �['(y))T for the means and the 
ovarian
e matri-
es in the obje
tive and the 
onstraint of the optimization problem (20), we seethat both the obje
tive and the 
onstraints 
an be written in terms of the kernelfun
tion K(z1; z2) = '(z1)T'(z2). We obtain:min
 r 1Nx 
T ~KTx ~Kx
 +s 1Ny 
T ~KTy ~Ky
 s.t. 
T (~kx � ~ky) = 1; (23)where 
 = [�1 �2 � � � �Nx �1 �2 � � � �Ny ℄T , ~kx 2 RNx+Ny with [~kx℄i =1Nx PNxj=1K(xj ; zi), ~ky 2 RNx+Ny with [~ky℄i = 1Ny PNyj=1K(yj ; zi), zi = xi fori = 1; 2; : : : ; Nx and zi = yi�Nx for i = Nx + 1; Nx + 2; : : : ; Nx +Ny. ~K is de�nedas: ~K = �Kx � 1Nx~kTxKy � 1Ny ~kTy� = � ~Kx~Ky� (24)where 1m is a 
olumn ve
tor with ones of dimension m. Kx and Ky 
ontainrespe
tively the �rst Nx rows and the last Ny rows of the Gram matrix K (de�nedas Kij = '(zi)T'(zj) = K(zi; zj)). We 
an also write (23) asmin
 k ~KxpNx 
k2 + k ~KypNy 
k2 s.t. 
T (~kx � ~ky) = 1; (25)



whi
h is a se
ond order 
one program (SOCP) [5℄ that has the same form as theSOCP in (16) and 
an thus be solved in a similar way. Noti
e that, in this 
ase,the optimizing variable is 
 2 RNx+Ny instead of a 2 Rn . Thus the dimension ofthe optimization problem in
reases, but the solution is more powerful be
ause thekernelization 
orresponds to a more 
omplex de
ision boundary in Rn .Similarly, the optimal value b� of b in (21) will then be
omeb� = 
T� ~kx � ��r 1Nx 
T� ~KTx ~Kx
� = 
T� ~ky + ��s 1Ny 
T� ~KTy ~Ky
�; (26)where 
� and �� are the optimal values of 
 and � respe
tively.On
e 
� is known, we get �� = 1=�q 1Nx 
T� ~KTx ~Kx
� +q 1Ny 
T� ~KTy ~Ky
�� and thenb� from (26). Classi�
ation of a new data point znew is then done by evaluatingsign(aT� '(znew)�b�) = sign��PNx+Nyi=1 [
�℄iK(zi; znew)�� b�� (again only in termsof the kernel fun
tion): if this is +1, znew is 
lassi�ed as from 
lass x, otherwiseznew is 
lassi�ed as from 
lass y.4 ExperimentsIn this se
tion we report the results of experiments that we 
arried out to testour algorithmi
 approa
h. The validity of 1 � � as the worst 
ase bound on theprobability of mis
lassi�
ation of future data is 
he
ked, and we also assess theusefulness of the kernel tri
k in this setting. We 
ompare linear kernels and Gaussiankernels.Experimental results on standard ben
hmark problems are summarized in Table 1.The Wis
onsin breast 
an
er dataset 
ontained 16 missing examples whi
h were notused. The breast 
an
er, pima, diabetes, ionosphere and sonar data were obtainedfrom the UCI repository. Data for the twonorm problem data were generated asspe
i�ed in [3℄. Ea
h dataset was randomly partitioned into 90% training and10% test sets. The kernel parameter (�) for the Gaussian kernel (e�kx�yk2=�) wastuned using 
ross-validation over 20 random partitions. The reported results arethe averages over 50 random partitions for both the linear kernel and the Gaussiankernel with � 
hosen as above.The results are 
omparable with those in the existing literature [3℄ and with thoseobtained with Support Ve
tor Ma
hines. Also, we noti
e that � is indeed smallerTable 1: � and test-set a

ura
y (TSA) 
ompared to BPB (best performan
e in [3℄)and to the performan
e of an SVM with linear kernel (SVML) and an SVM withGaussian kernel (SVMG)Dataset Linear kernel Gaussian kernel BPB SVML SVMG� TSA � TSATwonorm 80.2 % 96.0 % 83.6 % 97.2 % 96.3 % 95.6 % 97.4 %Breast 
an
er 84.4 % 97.2 % 92.7 % 97.3 % 96.8 % 92.6 % 98.5 %Ionosphere 63.3 % 85.4 % 89.9 % 93.0 % 93.7 % 87.8 % 91.5 %Pima diabetes 31.2 % 73.8 % 33.0 % 74.6 % 76.1 % 70.1 % 75.3 %Sonar 62.4 % 75.1 % 87.1 % 89.8 % - 75.9 % 86.7 %



than the test-set a

ura
y in all 
ases. Furthermore, � is smaller for a linear de
isionboundary then for the nonlinear de
ision boundary obtained via the Gaussian ker-nel. This 
learly shows that kernelizing the method leads to more powerful de
isionboundaries.5 Con
lusionsThe problem of linear dis
rimination has a long and distinguished history. Manyresults on mis
lassi�
ation rates have been obtained by making distributional as-sumptions (e.g., Anderson and Bahadur [1℄). Our results, on the other hand, makeuse of re
ent work on moment problems and semide�nite optimization to obtaindistribution-free results for linear dis
riminants. We have also shown how to ex-ploit Mer
er kernels to generalize our algorithm to nonlinear 
lassi�
ation.The 
omputational 
omplexity of our method is 
omparable to the quadrati
 pro-gram that one has to solve for the support ve
tor ma
hine (SVM). While we haveused a simple iterative least-squares approa
h, we believe that there is mu
h togain from exploiting analogies to the SVM and developing spe
ialized, more eÆ-
ient optimization pro
edures for our algorithm, in parti
ular tools that break thedata into subsets. The extension towards large s
ale appli
ations is a 
urrent fo-
us of our resear
h, as is the problem of developing a variant of our algorithm formultiway 
lassi�
ation and fun
tion regression. Also the statisti
al 
onsequen
es ofusing plug-in estimates for the mean ve
tors and 
ovarian
e matri
es needs to beinvestigated.A
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