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Abstract

We consider the problem of fitting a
large-scale covariance matrix to multivariate
Gaussian data in such a way that the inverse
is sparse, thus providing model selection. Be-
ginning with a dense empirical covariance
matrix, we solve a maximum likelihood prob-
lem with an l1-norm penalty term added to
encourage sparsity in the inverse. For mod-
els with tens of nodes, the resulting problem
can be solved using standard interior-point
algorithms for convex optimization, but these
methods scale poorly with problem size. We
present two new algorithms aimed at solv-
ing problems with a thousand nodes. The
first, based on Nesterov’s first-order algo-
rithm, yields a rigorous complexity estimate
for the problem, with a much better de-
pendence on problem size than interior-point
methods. Our second algorithm uses block
coordinate descent, updating row/columns
of the covariance matrix sequentially. Ex-
periments with genomic data show that our
method is able to uncover biologically inter-
pretable connections among genes.

1. Introduction

The estimation of large-scale covariance matrices from
data is a common problem, with applications in many
fields, ranging from bioinformatics to finance. For
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jointly Gaussian data, this problem is equivalent to
model selection among undirected Gaussian graphical
models. Such models, sometimes called concentration
graphs (or gene relevance networks in bioinformatics),
have been shown to be valuable for evaluating pat-
terns of association among variables (see (Dobra et al.,
2004), for example). Zeros in the inverse covariance
matrix correspond to conditional independence prop-
erties among the variables, as well as to missing edges
in the associated graphical model. In this setting, a
sparse inverse covariance matrix, if it fits the data well,
is very useful to practitioners, as it simplifies the un-
derstanding of the data. Sparsity is also often justified
from a statistical viewpoint, as it results in a more
parsimonious, and also more robust, model.

Estimating an underlying p×p covariance matrix Σ be-
comes a non-trivial task when p is large. In analyzing
multivariate data, the empirical covariance matrix S,
the maximum likelihood estimate, is often used. How-
ever, when the number of samples n is small relative
to p, this matrix cannot be considered a good estimate
of the true covariance. Furthermore, for n " p, the
empirical covariance S is singular so that we cannot
even access information about all conditional indepen-
dencies.

A large body of literature is devoted to the estimation
of covariance matrices in a large-scale setting. Re-
cent work in this area includes the shrinkage approach
proposed by (Schäfer & Strimmer, 2005), where the
authors analytically calculate the optimal shrinkage
intensity, yielding a good, computationally inexpen-
sive estimate. Our focus is an estimate with the prop-
erty that the corresponding inverse covariance matrix
is sparse.
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Dempster (Dempster, 1972) introduced the concept of
covariance selection, where the number of parameters
to be estimated is reduced by setting to zero some el-
ements of the inverse covariance matrix. Covariance
selection can lead to a more robust estimate of Σ if
enough entries of its inverse are set to zero. Tradi-
tionally, a greedy forward/backward search algorithm
is employed to determine the zero pattern (Lauritzen,
1996). However, this method quickly becomes compu-
tationally infeasible as p grows.

Alternatively, the set of neighbors of any particular
node in the graph may be found by regressing that
variable against the remaining p−1 variables. This has
been explored successfully by (Dobra & West, 2004;
Dobra et al., 2004), who use a stochastic algorithm
to manage tens of thousands of variables. In (Mein-
shausen & Bühlmann, 2005), the authors have studied
a GGM inference technique using the LASSO of (Tib-
shirani, 1996), in which an l1-norm penalty is added to
each regression problem to make the graph as sparse
as possible.

In this paper we investigate the following related idea.
Beginning with a dense empirical covariance matrix
S, we compute a maximum likelihood estimate of Σ
with an l1-norm penalty added to encourage sparsity
in the inverse. The authors of (Li & Gui, 2005) intro-
duce a gradient descent algorithm in which they ac-
count for the sparsity of the inverse covariance matrix
by defining a loss function that is the negative of the
log likelihood function. Recently, (Huang et al., 2005;
Dahl et al., 2005) considered penalized maximum like-
lihood estimation, and (Dahl et al., 2005) in partic-
ular, proposed a set of large scale methods to solve
problems where a sparse structure of Σ−1 is known a
priori. Here, we will not make this assumption, and
instead try to discover structure (the zero pattern) as
we search for a regularized estimate.

Our contribution is threefold: we present a provably
convergent algorithm that is efficient for large-scale in-
stances, yielding a sparse, invertible estimate of Σ−1,
even for n < p; we obtain some basic complexity es-
timates for the problem; and finally we test our algo-
rithm on synthetic data as well as gene expression data
from two datasets.

The paper is organized as follows: we specify the prob-
lem and outline some of its basic properties (section
2); we present a convergent algorithm based on block
coordinate descent (section 3) and make a connection
to the LASSO. We describe how one can apply a re-
cent methodology for convex optimization due to Nes-
terov (Nesterov, 2005), and obtain as a result a com-
putational complexity estimate that has a much better

dependence on problem size than interior-point algo-
rithms (section 4). In section 5 we present the re-
sults of some numerical experiments comparing these
two algorithms, involving in particular gene expression
data. Finally in section 6 we briefly state our conclu-
sions.

Notation

For a p×p matrix X, X $ 0 means X is symmetric and
positive semi-definite; ‖X‖ denotes the largest singular
value norm, ‖X‖1 the sum the absolute values of its
elements, and ‖X‖∞ their largest magnitude.

2. Preliminaries

In this section we set up the problem and discuss some
of its properties.

2.1. Problem Setup

Let S $ 0 be a given empirical covariance matrix, for
data drawn from a multivariate Gaussian distribution.
Let the variable X be our estimate of the inverse co-
variance matrix. We consider the penalized maximum-
likelihood problem

max
X#0

log detX − 〈S,X〉 − ρ‖X‖1 (1)

where 〈S,X〉 = trace(SX) denotes the scalar product
between two symmetric matrices S and X, and the
term ‖X‖1 :=

∑

i,j |Xij | penalizes nonzero elements
of X.

Here, the scalar parameter ρ > 0 controls the size of
the penalty, hence the sparsity of the solution. The
penalty term involving the sum of absolute values of
the entries of X is a proxy for the number of its non-
zero elements, and is often used—albeit with vector,
not matrix, variables— in regression techniques, such
as LASSO in (Tibshirani, 1996), when sparsity of the
solution is a concern. The authors of (d’Aspremont
et al., 2004), have used a similar penalization approach
for sparse principal component analysis.

The classical maximum likelihood estimate of Σ is re-
covered for ρ = 0, and is simply S, the empirical co-
variance matrix. Due to noise in the data, however, S
may not have a sparse inverse, even if there are many
conditional independence properties in the underlying
distribution. Since we strike a trade-off between maxi-
mality of the likelihood and the number of non-zero el-
ements in the inverse covariance matrix, our approach
is potentially useful for discovering conditional inde-
pendence properties. Furthermore, as noted above, for
p ( n, the matrix S is likely to be singular. It is de-
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sirable for our estimate of Σ to be invertible. We shall
show that our proposed estimator performs some reg-
ularization, so that our estimate is invertible for every
ρ > 0.

2.2. Robustness, Duality, and Bounds

By introducing a dual variable U , we can write (1) as

max
X#0

min
‖U‖∞≤ρ

log detX + 〈X,S + U〉,

Here ‖U‖∞ denotes the maximal absolute value of the
entries of U . This corresponds to seeking an estimate
with maximal worst-case likelihood, over all compo-
nentwise bounded additive perturbations S +U of the
empirical covariance matrix S. Such a ”robust opti-
mization” interpretation can be given to a number of
estimation problems, most notably support vector ma-
chines for classification.

We can obtain the dual problem by exchanging the
max and the min:

min
U

{− log det(S+U)−p : ‖U‖∞ ≤ ρ, S+U * 0} (2)

The diagonal elements of an optimal U are simply
Ûii = ρ. The corresponding covariance matrix esti-
mate is Σ̂ := S + Û . Since the above dual problem has
a compact feasible set, the primal and dual problems
are equivalent. The optimality conditions relate the
primal and dual solutions by Σ̂X = I.

The following theorem shows that adding the l1-norm
penalty regularizes the solution.

Theorem 1 For every ρ > 0, the optimal solution to
the penalized ML problem (1) is unique, and bounded
as follows: α(p)I + X + β(p)I, where

α(p) :=
1

‖S‖ + ρp
, β(p) :=

p

ρ
.

Proof: An optimal X satisfies X = (S + U)−1, where
‖U‖∞ ≤ ρ. Thus, we can without loss of generality
impose that X $ α(p)I, where α(p) is defined in the
theorem. Likewise, we can show that X is bounded
above. Indeed, at optimum, the primal-dual gap is
zero:

0 = − log det(S + U) − p − log detX
+〈S,X〉 + ρ‖X‖1

= −p + 〈S,X〉 + ρ‖X‖1,

where we have used (S + U)X = I. Since S,X are
both positive semi-definite, we obtain

‖X‖ ≤ ‖X‖F ≤ ‖X‖1 ≤ β(p)I,

as claimed. ♠

Problem (2) is smooth and convex. When p(p + 1)/2
is in the low hundreds, the problem can be solved by
existing software that uses an interior point method
(see (Vandenberghe et al., 1998) for example). The
complexity to compute an ε-suboptimal solution using
such second-order methods, however, is O(p6 log(1/ε)),
making them infeasible for even moderately large p.

The authors of (Dahl et al., 2005) developed a set of
algorithms to estimate the nonzero entries of Σ−1 when
the sparsity pattern is known a priori and corresponds
to an undirected graphical model that is not chordal.
Here our focus is on relatively large, dense problems,
for which the sparsity pattern is not known a priori.
Note that we cannot expect to do better than O(p3),
which is the cost of solving the non-penalized problem
(ρ = 0) for a dense sample covariance matrix S.

2.3. Choice of Regularization Parameter ρ

In this section we provide a simple heuristic for choos-
ing the penalty parameter ρ, based on hypothesis test-
ing. We emphasize that while the choice of ρ is an im-
portant issue that deserves a thorough investigation,
it is not the focus of this paper. We include this here
to clarify our numerical experiments of section 5.3.

The heuristic is based on the observation that if ρ <
|Sij | then there cannot be zero in that element of our

estimate of the covariance matrix: Σ̂ij -= 0. Suppose
we choose ρ according to

ρ =
tn−2(γ)maxi,j SiiSjj
√

n − 2 + t2n−2(γ)
(3)

where tn−2(γ) denotes the two-tailed 100γ% point of
the t-distribution, for n − 2 degrees of freedom. With
this choice, and using the fact that S $ 0, it can be
shown that ρ < |Sij | implies the condition for rejecting
the null hypothesis that variables i and j are indepen-
dent in the underlying distribution, under a likelihood
ratio test of size γ (see (Muirhead, 1982) for example).

We note that this choice yields an asymptotically con-
sistent estimator. As n → ∞, we recover the sample
covariance S as our estimate of the covariance matrix,
and S converges to the true covariance Σ.

3. Block Coordinate Descent Method

In this section we present an efficient algorithm for
solving the dual problem (2) based on block coordinate
descent.
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3.1. Algorithm

We first describe a method for solving (2) by optimiz-
ing over one column and row of S + U at a time. Let
W := S + U be our estimate of the true covariance.
The algorithm begins by initializing W 0 = S + ρI.
The diagonal elements of W 0 are set to their optimal
values, and are left unchanged in what follows.

We can permute rows and columns of W , so that we
are optimizing over the last column and row. Partition
W and S as

W =

(

W11 w12

wT
12 w22

)

S =

(

S11 s12

sT
12 s22

)

where w12, s12 ∈ Rp−1. The update rule is found
by solving the dual problem (2), with U fixed except
for its last column and row. This leads to a box-
constrained quadratic program (QP):

ŵ12 := arg min
y

{yT W−1
11 y : ‖y − s12‖∞ ≤ ρ} (4)

We cycle through the columns in order, solving a QP
at each step. After each sweep through all columns,
we check to see if the primal-dual gap is less than ε, a
given tolerance. The primal variable is related to W
by X = W−1. The duality gap condition is then

〈S,X〉 + ρ‖X‖1 ≤ p + ε.

3.2. Convergence and Property of Solution

The iterates produced by the coordinate descent al-
gorithm are strictly positive definite. Indeed, since
S $ 0, we have that W 0 * 0 for any ρ > 0.
Now suppose that, at iteration k, W * 0. This im-
plies that the following Schur complement is positive:
w22 − wT

12W
−1
11 w12 > 0. By the update rule (4), we

have

w22 − ŵ12W
−1
11 ŵ12 > w22 − wT

12W
−1
11 w12 > 0

which, using Schur complements again, implies that
the new iterate satisfies Ŵ * 0. Note that since the
method generates a sequence of feasible primal and
dual points, the stopping criterion is nonheuristic.

As a consequence, the QP (4) to be solved at each it-
eration has a unique solution. This implies that the
method converges to the true solution of (2), by virtue
of general results on block-coordinate descent algo-
rithms (Bertsekas, 1998).

The above results shed some interesting light on the so-
lution to problem (2). Suppose that the column s12 of
the sample covariance satisfies |s12| ≤ ρ, where the in-
equalities hold componentwise. Then the correspond-
ing column of the solution is zero: Σ̂12 = 0. Indeed, if

the zero vector is in the constraint set of the QP (4),
then it must be the solution to that QP. As the con-
straint set will not change no matter how many times
we return to that column, the corresponding column
of all iterates will be zero. Since the iterates converge
to the solution, the solution must have zero for that
column. This property can be used to reduce the size
of the problem in advance, by setting to zero columns
of W that correspond to columns in the sample covari-
ance S that meet the above condition.

Using the work of (Luo & Tseng, 1992), it is possible to
show that the local convergence rate of this method is
at least linear. In practice we have found that a small
number of sweeps through all columns, independent of
problem size p, is sufficient to achieve convergence. For
a fixed number of K sweeps, the cost of the method is
O(Kp4), since each iteration costs O(p3).

3.3. Connection to LASSO

The dual of (4) is

min
x

xT W11x − sT
12x + ρ‖x‖1 (5)

Strong duality obtains so that problems (5) and (4)
are equivalent. If we let Q denote the square root of
W11, and b := 1

2Q−1s12, then we can write (5) as

min
x

‖Qx − b‖2
2 + ρ‖x‖1

The above is a penalized least-squares problem, of-
ten referred to as LASSO. If W11 were a principal mi-
nor of the sample covariance S, then the above would
be equivalent to a penalized regression of one variable
against all others. Thus, the approach is reminiscent of
the approach explored by (Meinshausen & Bühlmann,
2005), but there are two major differences. First, we
begin with some regularization, and as a consequence,
each penalized regression problem has a unique solu-
tion. Second, and more importantly, we update the
problem data after each regression; in particular, W11

is never a minor of S. In a sense, the coordinate de-
scent method can be interpreted as a recursive LASSO
method.

4. Nesterov’s Method

In this section we apply the recent results due to (Nes-
terov, 2005) to obtain a first-order method for solving
(1). Our main goal is not to obtain another algorithm,
as we have found that the coordinate descent is al-
ready quite efficient; rather, we seek to use Nesterov’s
formalism to derive a rigorous complexity estimate for
the problem, improved over that delivered by interior-
point methods.
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As we will see, Nesterov’s framework allows us to ob-
tain an algorithm that has a complexity of O(p4.5/ε),
where ε > 0 is the desired accuracy on the objective
of problem (1). This is to be contrasted with the
complexity of interior-point methods, O(p6 log(1/ε)).
Thus, Nesterov’s method provides a much better de-
pendence on problem size, at the expense of a degraded
dependence on accuracy. In our opinion, obtaining an
estimate that is accurate numerically up to dozens of
digits has little practical value, as it is much more im-
portant to be able to solve larger problems with less
accuracy. Note also that the memory requirements
for Nesterov’s methods are much better than those of
interior-point methods.

4.1. Idea of Nesterov’s Method

Nesterov’s method applies to a class of non-smooth,
convex optimization problems, of the form

min
x

{f(x) : x ∈ Q1} (6)

where the objective function is described as

f(x) = f̂(x) + max
u

{〈Ax, u〉2 : u ∈ Q2}.

Here, Q1 and Q2 are bounded, closed, convex sets,
f̂(x) is differentiable (with Lipschitz continuous gra-
dient) and convex on Q1, and A is a linear operator.
Observe that we can write (1) in this form if we impose
bounds on the eigenvalues of the solution, X. To this
end, we let

Q1 := {X : αI + X + βI},

Q2 := {U : ‖U‖∞ ≤ ρ},

where α,β (0 < α < β) are given. (Note that
Theorem 1 allows us to set α and β if no such a
priori bounds are given.) We also define f̂(X) :=
− log detX + 〈S,X〉, and A := ρI.

To Q1 and Q2, we associate norms and continu-
ous, strongly convex functions, called prox-functions,
d1(X) and d2(U). For Q1 we choose the Frobenius
norm, and a prox-function d1(X) = − log detX+log β.
For Q2, we choose the Frobenius norm again, and a
prox-function d2(U) = ‖U‖2

F /2.

The method applies a smoothing technique to the non-
smooth problem (6), which replaces the objective of
the original problem, f(X), by a penalized function
involving the prox-function d2(U):

f̃(X) = f̂(X) + max
U∈Q2

{〈AX,U〉 − µd2(U)}. (7)

The above function turns out to be a smooth uniform
approximation to f everywhere. It is differentiable,

convex on Q1, and has a Lipschitz-continuous gradi-
ent, with a constant L that can be computed as de-
tailed below. A specific gradient scheme is then ap-
plied to this smooth approximation, with convergence
rate O(L/ε).

4.2. Algorithm and Complexity Estimate

To detail the algorithm and compute the complexity,
we must first calculate some parameters correspond-
ing to our definitions above. First, the strong convex-
ity parameter for d1(X) on Q1 is σ1 = 1/β2, in the
sense that ∇2d1(X)[H,H] = trace(X−1HX−1H) ≥
β−2‖H‖2

F for every symmetric H. Furthermore, the
center of the set Q1 is X0 := arg minX∈Q1

d1(X) =
βI, and satisfies d1(X0) = 0. With our choice, we have
D1 := maxX∈Q1

d1(X) = p log(β/α).

Similarly, the strong convexity parameter for d2(U) on
Q2 is σ2 := 1, and we have D2 := maxU∈Q2

d2(U) =
p2/2. With this choice, the center of the set Q2 is
U0 := arg minU∈Q2

d2(U) = 0.

For a desired accuracy ε, we set the smoothness pa-
rameter µ := ε/2D2, and start with the initial point
X0 = βI. The algorithm proceeds as follows:

For k ≥ 0 do

1. Compute ∇f̃(Xk) = −X−1
k + S + U∗(Xk), where

U∗(X) solves (7).

2. Find Yk = arg minY {〈∇f̃(Xk), Y − Xk〉 +
1
2L(ε)‖Y − Xk‖2

F : Y ∈ Q1}.

3. Find Zk = arg minX {L(ε)
σ1

d1(X) +
∑k

i=0
i+1
2 〈∇f̃(Xi), X − Xi〉 : X ∈ Q1}.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk.

In our case, the Lipschitz constant for the gradient of
our smooth approximation to the objective function
is L(ε) := M + D2‖A‖2/(2σ2ε), where M := 1/α2 is
the Lipschitz constant for the gradient of f̃ , and the
norm ‖A‖ is induced by the Frobenius norm, and is
equal to ρ. The algorithm is guaranteed to produce
an ε-suboptimal solution after a number of steps not
exceeding

N(ε) := 4‖A‖
√

D1D2

σ1σ2
· 1

ε
+

√

MD1

σ1ε

=
κ
√

p(log κ)

ε
(4pαρ +

√
ε).

(8)

where κ = β/α is a bound on the condition number of
the solution.
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Now we are ready to estimate the complexity of the
algorithm. For step 1, the gradient of the smooth ap-
proximation is readily computed in closed form, via
the computation of the inverse of X. Step 2 essentially
amounts to projecting on Q1, and requires an eigen-
value problem to be solved; likewise for step 3. In fact,
each iteration costs O(p3). The number of iterations
necessary to achieve an objective with absolute accu-
racy less than ε is given in (8) by N(ε) = O(p1.5/ε),
if the condition number κ is fixed a priori. Thus, the
complexity of the algorithm is O(p4.5/ε).

5. Numerical Results

In this section we present some numerical results.

5.1. Recovering Structure

We begin with a small synthetic example to test the
ability of the method to recover a sparse structure from
a noisy matrix. Starting with a sparse matrix A, we
obtain S by adding a uniform noise of magnitude σ =
0.1 to A−1. In figure 1 we plot the sparsity patterns of
A, S−1, and the solution X̂ to (1) using S and ρ = σ.
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Figure 1. Recovering the sparsity pattern. We plot the un-
derlying sparse matrix A, the inverse of the noisy version
of A−1, and the solution to problem (1) for ρ equal to the
noise level.

We next perform the following experiment to see what
happens to the solution of (1) as we vary the parame-
ter ρ above and below the noise level σ. For each value
of ρ, we randomly generate 10 sparse matrices A of size
n = 50. We then obtain sample covariance matrices
S as above, again using σ = 0.1. Next, we count the
number of misclassifed zero and nonzero elements in
the solution to (1). In figure 2, we plot the percentage
of errors versus log(ρ/σ), as well as error bars corre-
sponding to one standard deviation. As shown, for
ρ = σ, we can almost exactly recover the underlying
sparsity pattern, but even for a wide range of values of
ρ above and below σ, the percentage of errors is small.
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Figure 2. Recovering structure: Average and standard de-
viation of the percentage of errors (false positives + false
negatives) versus ρ on random problems.

5.2. CPU Times Versus Problem Size

For a sense of the practical performance of the
Nesterov method and the block coordinate descent
method, we randomly selected 10 sample covariance
matrices S for problem sizes p ranging from 400 to
1000. In each case, the number of samples n was cho-
sen to be about a third of p. In figure 3 we plot the
average CPU time to achieve a duality gap of ε = 0.1.
CPU times were computed using an AMD Athlon 64
2.20Ghz processor with 1.96GB of RAM.
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Figure 3. Average CPU times vs. problem size using block
coordinate descent. We plot the average CPU time (in
seconds) to reach a gap of ε = 0.1 versus problem size p.

As shown, we are typically able to solve a problem of
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size p = 1000 in about two and half hours.

5.3. Trial on Gene Expression Profiles

For illustration, we tested our method on two genomic
data sets.

Rosetta Inpharmatics compendium dataset.
We first applied the block coordinate descent method
to the Rosetta Inpharmatics Compendium (Hughes
et al., 2000). The 300 experiment compendium dataset
contains n = 253 samples with p = 6136 variables.
With a view towards obtaining a very sparse graph,
we set γ = 0.1 in the heuristic formula (3) of section
(2.3) to obtain ρ = 0.0313.

Applying the property of the solution discussed in sec-
tion (3.2), the size of the problem was reduced to
p̂ = 537. Three sweeps through all columns were re-
quired to achieve a duality gap of ε = 0.146, with a
total computing time of 18 minutes 34 seconds. The re-
sulting estimate of the inverse covariance matrix Σ̂−1

is 99% sparse and has a condition number of 21.84.
Figure (4) shows a sample subgraph obtained from
Σ̂−1, generated using the GraphExplore program de-
veloped by (Dobra & West, 2004). The method has
picked out a cluster of genes associated with amino
acid metabolism, as described by (Hughes et al., 2000).

Figure 4. Application to Hughes dataset. We applied our
method to the Rosetta Inpharmatics compendium, using
ρ = 0.0313. Shown above is a sample subgraph containing
some genes associated with amino acid metabolism.

Iconix microarray dataset. Next we analyzed a
subset of a 10, 000 gene microarray dataset from 160
drug treated rat livers (Natsoulis et al., 2005). In this
study, rats were treated with a variety of fibrate, sta-

Table 1. Predictor genes for LDL receptor.

Accession Gene

BF553500 Cbp/p300-interacting transactivator
BF387347 EST
BF405996 calcium channel, voltage dependent
NM 017158 cytochrome P450, 2c39
K03249 enoyl-CoA, hydratase/3-hydroxyacyl Co A dehydrog.
BE100965 EST
AI411979 Carnitine O-acetyltransferase
AI410548 3-hydroxyisobutyryl-Co A hydrolase
NM 017288 sodium channel, voltage-gated
Y00102 estrogen receptor 1
NM 013200 carnitine palmitoyltransferase 1b

tin, or estrogen receptor agonist compounds. The 500
most variable genes were submitted to the block coor-
dinate descent approach. Again setting γ = 0.1 in the
heuristic formula (3), we obtained ρ = 0.0853.

The sample covariance for the data has rank(S) = 159.
By applying the property of the solution discussed in
section (3.2), the size of the problem was reduced to
p̂ = 339. Six sweeps through all the columns were re-
quired to achieve a duality gap of ε = 0.01, with a total
computing time of about 10 minutes. The solution has
a condition number of 41.55.

The first order neighbors of any node in a Gaussian
graphical model form the set of predictors for that vari-
able. Using this method, we found that LDL receptor
had one of the largest number of first-order neighbors
in the Gaussian graphical model. The LDL receptor is
believed to be one of the key mediators of the effect of
both statins and estrogenic compounds on LDL choles-
terol. Table 1 lists some of the first order neighbors of
LDL receptor.

It is perhaps not surprising that several of these
genes are directly involved in either lipid or
steroid metabolism (K03249, AI411979, AI410548,
NM 013200, Y00102). Other genes such as Cbp/p300
are known to be global transcriptional regulators. Fi-
nally, some are un-annotated ESTs. Their connection
to the LDL receptor in this analysis may provide clues
to their function.

6. Conclusions

As we have seen, the penalized maximum likelihood
problem formulated here is useful for recovering a
sparse underlying precision matrix Σ−1 from a dense
sample covariance matrix S, even when the number of
samples n is small relative to the number of variables
p. In preliminary tests, the method appears to be a
potentially valuable tool for analyzing gene expression
data, although further testing is required.
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By imposing a priori bounds on the condition number
of the solution we were able to improve the dependence
of the computational complexity estimate on problem
size p from O(p6 log(1/ε)) to O(p4.5/ε), where ε is the
desired accuracy. This is a substantial improvement
given that we cannot expect to do better than O(p3).
The block coordinate descent method performs well
in practice, typically solving problems with p = 1000
variables in about two and half hours on a desktop PC.
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