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Abstract. Given a sample covariance matrix, we solve a maximum likelihood problem penalized
by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a
sparse representation of the sample data and to highlight conditional independence relationships
between the sample variables. We first formulate a convex relaxation of this combinatorial problem,
we then detail two efficient first-order algorithms with low memory requirements to solve large-scale,
dense problem instances.

1. Introduction. We discuss a problem of model selection1. Given n variables
drawn from a Gaussian distribution N (0, C), where the true covariance matrix C
is unknown, we estimate C from a sample covariance matrix Σ by maximizing its
log-likelihood. Following [7], setting a certain number of coefficients in the inverse
covariance matrix Σ−1 to zero, a procedure known as covariance selection, improves
the stability of this estimation procedure by reducing the number of parameters to
estimate and highlights structure in the underlying model.

Here, we focus on the problem of discovering this pattern of zeroes in the inverse
covariance matrix. We seek to trade-off the log-likelihood of the solution with the
number of zeroes in its inverse, and solve the following estimation problem:

maximize log detX − 〈Σ,X〉 − ρCard(X)
subject to αIn � X � βIn

(1.1)

in the variable X ∈ Sn, where Σ ∈ S+
n is the sample covariance matrix, Card(X) is

the cardinality ofX, i.e. the number of nonzero components inX, ρ > 0 is a parameter
controlling the trade-off between log-likelihood and cardinality, finally α, β > 0 fix
bounds on the eigenvalues of the solution.

Zeroes in the inverse covariance matrix correspond to conditionally independent
variables in the model and this approach can be used to simultaneously determine
a robust estimate of the covariance matrix and, perhaps more importantly, discover
structure in the underlying graphical model. In particular, we can view (1.1) as a
model selection problem using Aikake (AIC, see [1]) or Bayes (BIC, see [5]) information
criterions. Both these problems can be written as in (1.1) with ρ = 2/N for the AIC
problem and ρ = 2 log(N/2)/N for the BIC problem, where N is the sample size.
This has applications in speech recognition (see [2, 3]) or gene networks analysis (see
[9, 8] for example).

The Card(X) penalty term makes the estimation problem (1.1) combinatorial
(NP-Hard in fact), and our first objective here is to derive a convex relaxation to this
problem which can be solved efficiently. We then derive two first-order algorithms
geared towards memory efficiency and large-scale, dense problem instances.

In [3], Bilmes proposed a method for covariance selection based on choosing sta-
tistical dependencies according to conditional mutual information computed using
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training data. Other recent work involves identifying those Gaussian graphical mod-
els that are best supported by the data and any available prior information on the
covariance matrix. This approach is used by [13, 9] on gene expression data. Recently,
[6, 12] also considered penalized maximum likelihood estimation for covariance selec-
tion. In contrast to our results here, [12] work on the Cholesky decomposition of X
using an iterative (heuristic) algorithm to minimize a nonconvex penalized likelihood
problem, while [6] propose a set of large scale interior point algorithms to solve sparse
problems, i.e. problems for which the conditional independence structure is already
known.

The paper is organized as follows, in Section 2, we detail our convex relaxation
of problem (1.1) and study the dual. In Section 3, we derive two efficient algorithms
to solve it. Finally, in Section 4 we describe some numerical results.

2. Problem setup.

2.1. Convex relaxation. Given a sample covariance matrix Σ ∈ S+
n , we can

write the following convex relaxation to the estimation problem (1.1):

maximize log detX − 〈Σ,X〉 − ρ1T |X|1
subject to αIn � X � βIn,

(2.1)

with variable X ∈ Sn, where 1 is the n-vector of ones, so that 1T |X|1 =
∑n

i,j=1 |Xij |.
The penalty term involving the sum of absolute values of the entries ofX is a proxy for
the number of its non-zero elements: the function 1T |X|1 can be seen as the largest
convex lower bound on Card(X) on the hypercube, an argument used by [11] for
rank minimization. It is also often used in regression techniques, such as the LASSO
studied by [19], when sparsity of the solution is a concern. This relaxation is provably
tight in certain cases (see [10]). In our model, the bounds (α, β) on the eigenvalues of
X are fixed, and user-chosen. Although we allow α = 0, β = +∞, such bounds are
useful in practice to control the condition number of the solution.

For ρ = 0, and provided Σ ≻ 0, problems (1.1) and (2.1) have a unique solution
X⋆ = Σ−1, and the corresponding maximum-likelihood estimate is Σ. Due to noise in
the data, in practice, the sample estimate Σ may not have a sparse inverse, even if the
underlying graphical model exhibits conditional independence properties. By striking
a trade-off between maximality of the likelihood and number of non-zero elements
in the inverse covariance matrix, our approach is potentially useful at discovering

structure, precisely conditional independence properties in the data. This means that
we have to focus on the case where the matrix X is dense. At the same time, it
serves as a regularization technique: when Σ is rank-deficient, there is no well-defined
maximum-likelihood estimate, whereas the solution to problem (2.1) is always unique
and well-defined for ρ > 0, as seen below.

2.2. Dual problem, robustness. We can rewrite the relaxation (2.1) as the
following min-max problem:

max
{X: αIn�X�βIn}

min
{U : |Uij |≤ρ}

log detX − 〈Σ + U,X〉(2.2)

which gives a natural interpretation of problem (2.1) as a worst-case robust maxi-

mum likelihood problem with componentwise bounded, additive noise on the sample
covariance matrix Σ. The corresponding Lagrangian is given by:

L(X,U, P,Q) = log detX − Tr((Σ + U +Q− P )X) − αTrP + βTrQ
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and we get the following dual to (2.1):

minimize − log det(Σ + U +Q− P ) − n+ αTrP − βTrQ
subject to P,Q � 0, |Uij | ≤ ρ, i, j = 1, . . . , n,

(2.3)

in the variables U,P,Q ∈ Sn.
When α = 0 and β = +∞, the first-order optimality conditions impose X(Σ +

U) = In, hence we always have:

X � α(n)In with α(n) :=
1

‖Σ‖ + nρ
,

zero duality gap also means Tr(ΣX) = n − ρ1T |X|1. Because X and Σ are both
positive semidefinite, we get:

‖X‖2 ≤ ‖X‖F ≤ 1T |X|1 ≤ n

ρ
,

which, together with Tr(ΣX) ≥ λmin(Σ)‖X‖2, means ‖X‖2 ≤ n/λmin(Σ). Finally
then, we must always have:

X � β(n)In with β(n) := nmin

(

1

ρ
, ‖Σ−1‖2

)

.

and 0 < α(n) ≤ λ(X) ≤ β(n) < +∞ at the optimum. Setting α = 0 and β = +∞ in
problem (2.1) is then equivalent to setting α = α(n) and β = β(n). Since the objective
function of problem (2.1) is strictly convex when 0 < α(n) ≤ λ(X) ≤ β(n) < +∞,
this shows that (2.1) always has a unique solution.

3. Algorithms. In this section, we present two algorithms for solving problem
(2.1), one based on an optimal first-order method developed in [18], the other based
on a block-coordinate gradient method.

Of course, problem (2.1) is convex and can readily be solved using interior point
methods (see [4] for example). However, such second-order methods become quickly
impractical for solving (1.1), since the corresponding complexity to compute an ǫ-
suboptimal solution is O(n6 log(1/ǫ)). Note however that we cannot expect to do
better than O(n3), which is the cost of solving the non-penalized problem for dense
covariance matrices Σ.

3.1. Smooth optimization. The recently-developed first-order algorithms due
to [18] trade-off a better dependence on problem size against a worst dependence
on accuracy, usually 1/ǫ instead of its logarithm and the method we describe next
has a complexity of O(n4.5/ǫ). In addition, the memory space requirement of these
first-order methods is much lower than that of interior-point methods, which involve
forming a dense Hessian, and hence become quickly prohibitive with a problem having
O(n2) variables.

Nesterov’s format. The algorithm in [18] supposes that the function to minimize
conforms to a certain representation. This is the case for our problem here, so we first
write (2.2) in the saddle-function format described in [18]:

min
X∈Q1

− log detX + 〈Σ,X〉 + ρ1T |X|1 ≡ min
X∈Q1

max
U∈Q2

f̂(X) + 〈A(X), U〉

where we define f̂(X) = − log detX + 〈Σ,X〉, A = ρIn2 , and

Q1 := {X ∈ Sn : αIn � X � βIn} , Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} .
3



The adjoint of this problem, corresponding to the dual problem (2.3), is then written:

max
U∈Q2

φ(U) where φ(U) := min
X∈Q1

− log detX + 〈Σ + U,X〉.(3.1)

When a function can be represented in this saddle function format, the method de-
scribed in [18] combines two steps. Regularization: by adding a strongly convex
penalty to the saddle function representation of f , the algorithm first computes a
smooth ǫ-approximation of f with Lipschitz continuous gradient. This can be seen as
a generalized Moreau-Yosida regularization step (see [14] for example). Optimal first

order minimization: the algorithm then applies the optimal first-order scheme for
functions with Lipschitz continuous gradients detailed in [16] to the regularized func-
tion. Each iteration requires efficiently computing the regularized function value and
its gradient. In all the semidefinite programming applications detailed here, this can
be done extremely efficiently, with a complexity of O(n3) and memory requirements
in O(n2). The method is only efficient if all these steps can be performed explicitly
or at least very efficiently. As we will see below, this is the case here.

Prox-functions and related parameters. To Q1 and Q2 we now associate norms
and so-called prox-functions. For Q1, we use the Frobenius norm, and a prox-function:

d1(X) = − log detX + log β.

The function d1 is strongly convex on Q1, with a convexity parameter of σ1 = 1/β2,
in the sense that ∇2d1(X)[H,H] = Tr(X−1HX−1H) ≥ β−2‖H‖2

F for every H. Fur-
thermore, the center of the set, X0 := arg minX∈Q1

d1(X) is X0 = βIn, and satisfies
d1(X0) = 0. With our choice, we have D1 := maxX∈Q1

d1(X) = n log(β/α).
To Q2, we also associate the Frobenius norm, and the prox-function d2(U) =

‖U‖2
F /2. With this choice, the center U0 of Q2 is U0 = 0. Furthermore, the function

d2 is strongly convex on its domain, with convexity parameter with respect to the
1-norm σ1 = 1, and we have D2 := maxU∈Q2

d2(U) = n2/2.

The function f̂ has a gradient that is Lipschitz-continuous with respect to the
Frobenius norm on the set Q1, with Lipschitz constant M = 1/α2. Finally, the norm
(induced by the Frobenius norm) of the operator A is ‖A‖ = ρ.

Smooth minimization. The method is based on replacing the objective of the
original problem, f(X), with fǫ(X), where ǫ > 0 is the desired accuracy, and fǫ is a
penalized function involving the prox-function d2, defined as:

fǫ(X) := f̂(X) + max
U∈Q2

〈X,U〉 − (ǫ/2D2)d2(U).(3.2)

The above function turns out to be a smooth uniform approximation to f everywhere,
with maximal error ǫ/2. Furthermore, the function fǫ is has a Lipschitz-continuous
gradient, with Lipschitz constant given by L(ǫ) := M + D2‖A‖2/(2σ2ǫ). A specific
first-order algorithm detailed in [16] for smooth, constrained convex minimization is
then applied to the function fǫ, with convergence rate in O(

√

L(ǫ)/ǫ).
Nesterov’s algorithm. Choose ǫ > 0 and setX0 = βIn, the algorithm then updates

primal and dual iterates Yk and Ûk using the following steps:

1. Compute ∇fǫ(Xk) = −X−1 + Σ + U∗(Xk), where U∗(X) solves (3.2).
2. Find Yk = argminY ∈Q1

{〈∇fǫ(Xk), Y −Xk〉 + 1
2L(ǫ)‖Y −Xk‖2

F }
3. Find Zk = argminZ∈Q1

{

L(ǫ)d1(Z)
σ1

+
∑k

i=0
i+1
2 (fǫ(Xi) + 〈∇fǫ(Xi), Z −Xi〉)

}

4. Update Xk = 2
k+3Zk + k+1

k+3Yk and Ûk = kÛk−1+2U∗(Xk)
(k+2)
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5. Repeat until the duality gap is less than the target precision:

− log detYk + 〈Σ, Yk〉 + ρ1T |Yk|1 − φ(Ûk) ≤ ǫ.

The key to the method’s success is that step 1-3 and 5 can be performed explicitly
and only involve an eigenvalue decomposition. Step one above computes the (smooth)
function value and gradient. The second step computes the gradient mapping, which
matches the gradient step for unconstrained problems (see [17, p.86]). Step three and
four update an estimate sequence [17, p.72] of fµ whose minimum can be computed
explicitly and gives an increasingly tight upper bound on the minimum of fµ. We
now present these steps in detail for our problem.

Step 1. The first step requires computing the gradient of the function

fǫ(X) = f̂(X) + max
u∈Q2

〈X,U〉 − (ǫ/2D2)d2(U).

This function can be expressed in closed form as fǫ(X) = f̂(X)+
∑

i,j ψµ(Xij), where

ψǫ(x) :=

{

|x| − (ǫ/4D2) if |x| ≥ (ǫ/2ρD2),
D2x

2/ǫ otherwise,

which is simply the Moreau-Yosida regularization of the absolute value and the gra-
dient of the function at X is

∇fµ(X) = −X−1 + Σ + U∗(X),

with

U∗(X) := max(min(X/µ, ρ),−ρ),

with min. and max. understood componentwise. The cost of this step is dominated
by that of computing the inverse of X, which is O(n3).

Step 2. This step involves a problem of the form

TQ1
(X) = arg min

Y ∈Q1

〈∇fǫ(X), Y −X〉 +
1

2
L‖Y −X‖2

F ,

where X ∈ Q1 is given. This problem can be reduced to one of projection on Q1,
namely

min
Y ∈Q1

‖Y −G‖2
F ,

where G := X − L−1∇fǫ(X). Using the rotational invariance of this problem, we
reduce it to a vector problem:

minλ

∑

i(λi − γi)
2 : α ≤ λi ≤ β, i = 1, . . . , n,

where γ is the vector of eigenvalues of G. This problem admits a simple explicit
solution:

λi = min(max(γi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V T diag(λ)V , where G = V T diag(γ)V is
the eigenvalue decomposition of G. The cost of this step is dominated by the cost of
forming the eigenvalue decomposition of G, which is O(n3).
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Step 3. The third step involves solving a problem of the form

Z := arg max
X∈Q1

d1(X) + 〈S,X〉,(3.3)

where S is given. Again, due to the rotational invariance of the objective and feasible
set, we can reduce the problem to a one-dimensional problem:

minλ

∑

i σiλi − log λi : α ≤ λi ≤ β,

where σ contains the eigenvalues of S. This problem has a simple, explicit solution:

λi = min(max(1/σi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V T diag(λ)V , where S = V T diag(σ)V is the
eigenvalue decomposition of S. Again, the cost of this step is dominated by the cost
of forming the eigenvalue decomposition of S, which is O(n3).

Computing φ(Ûk). For a given matrix Ûk the function φ is computed as in (3.1):

φ(Ûk) = min
X∈Q1

− log detX + 〈Σ + Ûk,X〉.

This means projecting (Σ + Ûk)−1 on Q1, i.e. only involves an eigenvalue decompo-
sition.

Complexity estimate. To summarize, for step 1, the gradient of fǫ is readily com-
puted in closed form, via the computation of the inverse of X. Step 2 essentially
amounts to projecting on Q1, and requires an eigenvalue problem to be solved; like-
wise for step 3. In fact, each iteration costs O(n3). The number of iterations necessary
to achieve an objective with absolute accuracy less than ǫ is then given by:

N(ǫ) := 4‖A‖1

ǫ

√

D1D2

σ1σ2
+

√

MD1

σ1ǫ
=
κ
√

n(log κ)

ǫ
(4nαρ+

√
ǫ),(3.4)

where κ = log(β/α) bounds the solution’s condition number. Thus, the overall com-
plexity when ρ > 0 is in O(n4.5/ǫ), as claimed.

3.2. Block-coordinate gradient methods. In this section, we focus on the
particular case where α = 0 and β = +∞ (hence implicitly α = α(n), β = β(n)) and
derive gradient minimization algorithms that take advantage of the problem structure.
We consider the following problem:

max
X

log detX − 〈Σ,X〉 − ρ1T |X|1(3.5)

in the variableX ∈ Sn, where ρ > 0 again controls the trade-off between log-likelihood
and sparsity of the inverse covariance matrix. Its dual is given by:

minimize − log det(Σ + U) − n
subject to |Uij | ≤ ρ, i, j = 1, . . . , n.

(3.6)

in the variable U ∈ Sn. We partition the matrices X and U in block format:

X =

(

Z x
xT y

)

and U =

(

V u
uT w

)

,
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where Z ≻ 0 and U are fixed and x, u ∈ R(n−1), y, w ∈ R are the variables (row
and column) we are updating. We also partition the sample matrix according to the
same block structure:

Σ =

(

A b
bT c

)

,

where A ∈ S(n−1), b ∈ R(n−1), c ∈ R. In the methods that follow, we will update
only one column (and corresponding row) at a time and without loss of generality we
can always assume that we are updating the last one.

Block-coordinate descent. The dual problem (3.6):

minimize − log det(Σ + U) − n
subject to |Uij | ≤ ρ, i, j = 1, . . . , n.

in the variable U ∈ Sn, can be written in block format as:

minimize − log det(A+ V ) − log
(

(w + c) − (b+ u)T (A+ V )−1(b+ u)
)

− n
subject to |w| ≤ ρ, |ui| ≤ ρ, i = 1, . . . , n.

in the variables u ∈ R(n−1) and w ∈ R (V is fixed at each iteration). We directly
get w = ρ so the diagonal of the optimal solution must be ρ1. The main step at each
iteration is then a box constrained quadratic program (QP):

minimize (b+ u)T (A+ V )−1(b+ u)
subject to |ui| ≤ ρ, i = 1, . . . , n,

(3.7)

in the variable u ∈ R(n−1). To summarize, the block coordinate descent algorithm
proceeds as follows:

1. Pick the row and column to update.
2. Compute (A+ V )−1.
3. Solve the box constrained QP in (3.7).
4. Repeat until duality gap is less than precision: 〈Σ,X〉 − n+ ρ1T |X|1 ≤ ǫ.

At each iteration, we need to compute the inverse of the submatrix (A+V ) ∈ S(n−1),
but we can update this inverse using the Sherman-Woodbury-Morrison formula on
two rank-two updates, hence it is only necessary to compute a full inverse at the first
iteration.

Block-coordinate ascent. For a fixed Z, problem (3.5) is equivalent to:

maximize log
(

y − xTZ−1x
)

− 2bTx− y(c+ ρ) − 2ρ‖x‖1

subject to y − xTZ−1x > 0, y > 0,

in the variables x ∈ R(n−1), y ∈ R, where Z ≻ 0 (given) and the Schur complement
constraints imply X ≻ 0. We can solve for the optimal y explicitly and the problem
in x becomes:

max
x

−xTQx− 2bTx− 2ρ‖x‖1,

where Q := (c+ ρ)Z−1. Its dual is also box-constrained QP:

minimize (b+ u)TZ(b+ u)
subject to ‖u‖∞ ≤ ρ,
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in the variable u ∈ R(n−1). At the optimum for this QP, we must have:

x = − 1

(c+ ρ)
Z(b+ u), and y =

1

(c+ ρ)
+

1

(c+ ρ)2
(b+ u)TZ(b+ u).

and we iterate as above.

Smooth optimization for box-constrained QPs. The two block-coordinate methods
detailed in this section both amount to solving a sequence of box-constrained quadratic
program of the form:

minimize xTAx+ bTx
subject to ‖x‖∞ ≤ ρ,

(3.8)

in the variable x ∈ Rn. The objective function has a Lipschitz continuous gradient
with constant L = 4cλmax(A)

√
n on the box B = {x ∈ Rn : ‖x‖∞ ≤ ρ}, where we

can define a prox function (1/2)‖x‖2 which is strongly convex with constant 1 and
bounded above by (1/2)nρ2 on B. From [16] or [18], we know that solving (3.8) up to
a precision ǫ will require at most 2n0.75

√

2ρ3λmax(A)/
√
ǫ iterations of the first-order

method detailed in [16], with each iteration equivalent to a matrix-vector product and
a projection on the box B. This means that the total complexity of solving (3.8) is
given by:

O

(

n2.75

√

ρ3λmax(A)

ǫ

)

Complexity estimate. Following [15], with block coordinate descent corresponding
to coordinate descent with the almost cyclic rule and using the fact that log det(X)
satisfies the strict convexity assumptions in [15, A2], we can show that the convergence
rate of the block coordinate descent method is at least linear. Each iteration requires
solving a box-constrained QP and takes O(n3log(1/ǫ)) operations using an interior
point solver or O(n2.75/

√
ǫ) using the optimal first-order scheme in [16]. We cannot

use the same argument to show convergence of block coordinate ascent but empirical
performance is comparable. In practice we have found that a small number of sweeps
through all columns, independent of problem size n, is sufficient for convergence.

Implementation. The block coordinate descent methods implemented here cor-
respond to coordinate descent using the almost cyclic rule, alternative row/column
selection rules could improve the convergence speed. Also, each iteration of the block
coordinate descent method corresponds to two rank-two updates of the inverse ma-
trix, hence the cost of maintaining the inverse submatrix using the Sherman Woodbury
Morrison formula is only O(n2).

4. Numerical results. In this section we test the performance of the methods
detailed above on some randomly generated examples. We first form a sparse matrix
A with a diagonal equal to one and a few randomly chosen, nonzero off-diagonal terms
equal to +1 or -1. We then form the matrix:

B = A−1 + σV

where V ∈ Sn is a symmetric, i.i.d uniform random matrix. Finally, we make B
positive definite by shifting its eigenvalues, and use this noisy, random matrix to test
our covariance selection methods.

8



   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse B−1Solution for ρ = 0.5Original inverse A

Fig. 4.1. Recovering the sparsity pattern. We plot the original inverse covariance matrix A,
the solution to problem (2.1) and the noisy inverse B−1.

In Figure 4.1, we plot the sparsity patterns of the original inverse covariance
matrix A, the solution to problem (2.1) and the noisy inverse B−1 in a randomly
generated example with n = 30, σ = 0.15 and ρ = 0.5. In Figure 4.2 we represent the
dependence structure of interest rates (sampled over a year) inferred from the inverse
covariance matrix. Each node represents a particular interest rate maturity and the
nodes are linked if the corresponding coefficient in the inverse covariance matrix is
nonzero (i.e. they are conditionally dependent). We compare the solution to problem
(2.1) on this matrix for ρ = 0 and ρ = 0.1 and notice that in the sparse solution the
rates appear clearly clustered by maturity.
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Fig. 4.2. We plot the network formed using the solution to problem (2.1) on an interest rate
covariance matrix for ρ = 0 (left) and ρ = 0.1 (right). In the sparse solution the rates appear clearly
clustered by maturity.

In Figure 4.3, we study computing times for various choices of algorithms and
problem sizes. On the left, we plot CPU time to reduce the duality gap by a factor 10−2

versus problem size n, on randomly generated problems, using the coordinate descent
code and the optimal first-order for solving box QPs. On the right, we plot duality
gap versus CPU time for both smooth minimization and block-coordinate algorithms
for a randomly generated problem of size n = 250. For the smooth minimization
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code, we set α = 1/λmax(B) and we plot computing time for both β = 1/(2λmin(B))
(Smooth. Opt. 1/2) and β = 2/λmin(B) (Smooth. Opt. 2).
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Fig. 4.3. Computing time. Left: We plot CPU time to reduce the duality gap by a factor 10−2

versus problem size n, on randomly generated problems, using the coordinate descent code and the
optimal first-order algorithm for solving box QPs. Right: We plot duality gap versus CPU time for
both smooth minimization and block-coordinate algorithms, for a problem of size n = 250.
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[14] C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau-Yosida regularization:
theoretical preliminaries, SIAM Journal on Optimization, 7 (1997), pp. 367–385.

[15] Z. Q. Luo and P. Tseng, On the convergence of the coordinate descent method for convex
differentiable minimization, Journal of Optimization Theory and Applications, 72 (1992),
pp. 7–35.

[16] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Mathematics Doklady, 27 (1983), pp. 372–376.

[17] , Introductory Lectures on Convex Optimization, Springer, 2003.

[18] , Smooth minimization of nonsmooth functions, Mathematical Programming, Series A,
103 (2005), pp. 127–152.

[19] R. Tibshirani, Regression shrinkage and selection via the LASSO, Journal of the Royal statis-
tical society, series B, 58 (1996), pp. 267–288.

11


