List of Suggested Papers

1. Adelson & Bergen, The Plenoptic Function and the Elements of Early 
Vision http://web.mit.edu/persci/people/adelson/pub_pdfs/elements91.pdf

2.Cavanagh, P. (1996). Vision is getting easier every day. Perception, 24, 
1227-1232.
http://visionlab.harvard.edu/Members/Patrick/PDF.files/2002%20pdfs/easy27.pdf

3.Cavanagh, P. (1991). What's up in top-down processing? In A. Gorea (ed.) 
Representations of Vision: Trends and Tacit Assumptions in Vision Research, 
Cambridge, UK: Cambridge University Press, 295-304. 
http://visionlab.harvard.edu/Members/Patrick/PDF.files/2002%20pdfs/what.pdf

4. Cavanagh, P. (1999). Pictorial art and vision. In Robert A. 
Wilson and Frank C. Keil (Eds.), MIT Encyclopedia of Cognitive Science, 
(pp. 648-651) Cambridge, MA: MIT Press. 
http://www.visionlab.harvard.edu/members/Patrick/PDF.files/artMITECS.pdf


Part I: Low-level Vision (images as texture)

5.  Olshausen & field, mergence of simple-cell receptive field properties 
by learning a sparse code for natural images, (1996) Nature, 381: 607-609.
http://www.ai.mit.edu/courses/6.899/papers/sparse-coding.pdf
(code available: http://redwood.berkeley.edu/bruno/sparsenet/)

6. Y. Rubner and C. Tomasi and L. J. Guibas. The Earth Mover's Distance as 
a Metric for Image Retrieval. International Journal of Computer Vision, 
40(2) November 2000, pages 99--121. 
http://vision.stanford.edu/public/publication/rubner/rubnerTr98.pdf
(code available: http://www.ofai.at/~elias.pampalk/ma/emd.zip)

7. Y. Rubner,J. Puzicha, C. Tomasi, and J. M. Buhmann. Empirical 
Evaluation of Dissimilarity Measures for Color and Texture. Computer 
Vision and Image Understanding Journal, 84(1):25-43, October 2001.
http://www.cs.duke.edu/~tomasi/papers/rubner/rubnerCviu01.pdf

8. Martin, Fowlkes, Malik, Learning to Detect Natural Image Boundaries 
Using Local Brightness, Color, and Texture Cues
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
26(5):530-549, May 2004. 
http://www.cs.bc.edu/~dmartin/papers/tpami2004.pdf
http://www.cs.bc.edu/~dmartin/papers/nips02.pdf (short version)
(code and data available: 
http://www.cs.berkeley.edu/projects/vision/grouping/segbench)

Scene Models

9. A. Torralba and A. Oliva.  (2003)
Statistics of Natural Image Categories
Network: Computation in Neural Systems. Vol. 14, 391-412. 
http://web.mit.edu/torralba/www/ne3302.pdf

10. A. Torralba, A. Oliva.  
Depth estimation from image structure (2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence. 24(9): 
1226-1238. September. 
http://cvcl.mit.edu/Papers/Torralba-Oliva02.pdf

11. A. Oliva, A. Torralba (2001).  Modeling the shape of the scene: a 
holistic representation of the spatial envelope.  International Journal of 
Computer Vision, Vol. 42(3): 145-175.
http://cvcl.mit.edu/Papers/IJCV01-Oliva-Torralba.pdf

12. Renninger, L.W. & Malik, J. (2004).  When is scene recognition just 
texture recognition?  Vision Research, 44, 2301-2311
http://www.ski.org/Verghese_Lab/laura/pubs/manuscripts/scenes.pdf
Data available:
http://www.ski.org/Verghese_Lab/laura/pubs/scenes.Zip

"Bag of Words" Models

13. G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with 
bags of keypoints. In Workshop on Statistical Learning in Computer Vision, 
ECCV, pages 1-22, 2004.
http://www.cs.huji.ac.il/~daphna/cbvis-papers/Csurka.pdf

14. J. Winn, A. Criminisi and T. Minka.
Object Categorization by Learned Universal Visual Dictionary
Proc. IEEE Intl. Conf. on Computer Vision (ICCV), Beijing 2005.

15. Ullman, S., Vidal-Naquet, M. , and Sali, E. (2002) Visual features of 
intermediate complexity and their use in classification. Nature 
Neuroscience, 5(7), 1-6
http://www.wisdom.weizmann.ac.il/~shimon/papers/NNeuroscience5_02.pdf

16. Michel Vidal-Naquet, Shimon Ullman: Object Recognition with 
Informative Features and Linear Classification. ICCV 2003
http://www.cs.huji.ac.il/~daphna/cbvis-papers/vidal.pdf

17.  Fei-Fei and P. Perona. A Bayesian hierarchical model for learning 
natural scene categories. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern  Recognition,
San Diego, CA, volume 2, pages 524-531, June 2005.
http://www.vision.caltech.edu/feifeili/Fei-Fei_CVPR2005.pdf
(code available: http://people.csail.mit.edu/fergus/iccv2005/bagwords.html)

18. Josef Sivic, Bryan Russell, Alexei A. Efros, Andrew Zisserman, Bill 
Freeman, Discovering Objects and thier Location in Images, ICCV 2005
http://people.csail.mit.edu/brussell/research/SREZF05.pdf
(code available: http://people.csail.mit.edu/fergus/iccv2005/bagwords.html)


Part II: Mid-level Vision (Image Segmentation)

15. Max Wertheimer, Laws of Organization in Perceptual Forms (1923)
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

16. Jianbo Shi; Malik, J. Normalized cuts and image segmentation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Aug. 2000, 
vol.22, (no.8):888-905.
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
(code available: http://www.cis.upenn.edu/~jshi/software/)

17. Meila, M. and Shi, J. Learning Segmentation with Random Walks. 
Advances in Neural Information Processing Systems 13 (NIPS 2000). 

18. Weiss, Y. Segmentation using eigenvectors: a unifying view. 
Proceedings of the Seventh IEEE International Conference on Computer 
Vision, Kerkyra, Greece, 20-27 Sept. 1999.

19.  Andrew Y. Ng, Michael I. Jordan, Yair Weiss, On Spectral Clustering: 
Analysis and an algorithm (2001) NIPS
http://citeseer.ist.psu.edu/rd/50624373%2C541173%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/26676/http:zSzzSzwww-2.cs.cmu.eduzSzGroupszSzNIPSzSzNIPS2001zSzpaperszSzpsgzzSzAA35.pdf/ng01spectral.pdf

20. Xiaofeng Ren and Jitendra Malik, 
Learning a Classification Model for Segmentation. in ICCV '03
(superpixel code: http://www.cs.sfu.ca/~mori/research/superpixels/)

21. Tu & Zhu, Image Segmentation by Data-Driven Markov Chain Monte Carlo,
PAMI (2002)
http://www.cnbc.cmu.edu/cns/papers/DDMCMC.pdf

22. D. Comaniciu, P. Meer: Mean Shift: A Robust Approach toward Feature 
Space Analysis, IEEE Trans. Pattern Analysis Machine Intell., Vol. 24, No. 
5, 603-619, 2002 
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

23. Boykov & Jolly, Interactive Graph. Cuts. for Optimal Boundary & Region 
Segmentation of. Objects in ND Images. ICCV 01
http://www.cse.ucsd.edu/classes/fa04/cse252c/tedeschi.pdf

24. Yin Li; Jian Sun; Chi-Keung Tang; Heung-Yeung Shum, Lazy Snapping, 
SIGGRAPH 04
http://www.research.microsoft.com/asia/dload_files/group/vc/2004/LazySnapping_SIGGRAPH04.pdf


Part III: 2D Recognition 
  
Window Scanning

25. H. Schneiderman and T. Kanade "Object Detection Using the Statistics 
of Parts"  International Journal of Computer Vision, 2004
http://scholar.google.com/url?sa=U&q=http://www.springerlink.com/index/M801592435802212.pdf
(demo available: http://demo.pittpatt.com/)

26. Viola, Jones,  Robust Real-time Object Detection
http://research.microsoft.com/~viola/Pubs/Detect/violaJones_IJCV.pdf
http://research.microsoft.com/~viola/Pubs/Detect/violaJones_CVPR2001.pdf 
(shorter)

27. Dalal, Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005
http://lear.inrialpes.fr/pubs/2005/DT05/hog_cvpr2005.pdf
(code might be available)


Correspondence Matching

28. Gavrila & Philomin, "Real-time Object Detection for Smart Vehicles", 1999 
http://www.cs.berkeley.edu/~malik/cs294/gavrila99.pdf

29. Olson & Huttenlocher, Automatic Target Recognition by Matching 
Oriented Edge Pixels, 1997
http://www.cs.berkeley.edu/~malik/cs294/olsonhuttenlocher97.pdf

30.  Belongie, Malik, Puzicha,
Shape Matching and Object Recognition Using Shape Contexts (2002) 
http://www.cs.berkeley.edu/~malik/papers/BMP-shape.pdf

31. A Berg, T Berg, J Malik, Shape Matching and Object Recognition using 
Low Distortion Correspondences, CVPR 2005
http://www.cnbc.cmu.edu/cns/papers/berg-cvpr05.pdf

32. M. Leordeanu and M. Hebert, A Spectral Technique for Correspondence 
Problems using Pairwise Constraints, ICCV 2005
http://www.ri.cmu.edu/pub_files/pub4/leordeanu_marius_2005_1/leordeanu_marius_2005_1.pdf

33. David G. Lowe, Object Recognition from Local Scale-Invariant Features, 
ICCV 1999
http://www.cs.ubc.ca/spider/lowe/papers/iccv99.pdf

34. Fitzgibbon, A. W. and Zisserman, A.
On Affine Invariant Clustering and Automatic Cast Listing in Movies, ECCV 2002
http://www.robots.ox.ac.uk/~vgg/publications/papers/fitzgibbon02.pdf

35. TF Cootes, GJ Edwards, CJ Taylor, Active Appearance Models, PAMI 2001
http://www.cs.ucsb.edu/~cs281b/winter2002/papers/ActiveAppearance.pdf

Recognition with Segmentation

36.  Eran Borenstein, Shimon Ullman: Class-Specific, Top-Down 
Segmentation. ECCV (2) 2002
http://courses.ece.uiuc.edu/ece598/ffl/papers_EE598/BorensteinUllman2002.pdf

37. Eran Borenstein, Shimon Ullman: Learning to Segment. ECCV (3) 2004
http://courses.ece.uiuc.edu/ece598/ffl/papers_EE598/BorensteinUllman2001.pdf

38. E. Borenstein, E. Sharon, S. Ullman, Combining Top-Down and Bottom-Up 
Segmentation, Proceedings IEEE workshop on Perceptual Organization in 
Computer Vision, IEEE Conference on Computer Vision and Pattern 
Recognition, Washington, DC, June 2004.
http://www.dam.brown.edu/people/eitans/publications/BorensteinSharonUllman-TDBUseg.pdf

39. Xiaofeng Ren, Charless Fowlkes and Jitendra Malik, in NIPS '05,
http://www.cs.berkeley.edu/~xren/publication/xren_nips05_grouping.pdf

40. Stella X. Yu and Jianbo Shi, Object-Specific Figure-Ground 
Segregation, CVPR 2003
http://cs.bc.edu/~syu/doc/yus_object.pdf

41. B Leibe, E Seemann, B Schiele, Pedestrian Detection in Crowded Scenes, 
CVPR 2005
http://www.wisdom.weizmann.ac.il/~boiman/reading/categorization_segmentation/leibe-crowdedscenes-cvpr05.pdf

42.  J. Winn and  N. Jojic, LOCUS: Learning Object Classes with 
Unsupervised Segmentation, To appear Proc. IEEE Intl. Conf. on Computer 
Vision (ICCV), Beijing 2005.
http://courses.ece.uiuc.edu/ece598/ffl/papers_EE598/WinnJojic2005.pdf

43. Image Parsing: Unifying Segmentation, Detection, and Recognition
Z Tu, X Chen, AL Yuille, SC Zhu - International Journal of Computer 
Vision, 2005 
http://scholar.google.com/url?sa=U&q=http://www.springerlink.com/index/G1886T6163340314.pdf

Words and Pictures

44. Tamara L. Berg, Alexander C. Berg, Jaety Edwards, Michael Maire, Ryan 
White, Yee Whye Teh, Erik Learned-Miller, David A. Forsyth, Names and 
Faces
http://www.cs.berkeley.edu/%7Eaberg/papers/journal_berg.pdf

45. Pinar Duygulu, Kobus Barnard, Nando de Freitas, and David Forsyth " 
Object recognition as machine translation: Learning a lexicon for a fixed 
image vocabulary," ECCV 2002.
http://kobus.ca/research/publications/ECCV-02-1/ECCV-02-1.pdf

46. Kobus Barnard, Pinar Duygulu, Nando de Freitas, David Forsyth, David 
Blei, and Michael I. Jordan, "Matching Words and Pictures," Journal of 
Machine Learning Research, 2003.
http://kobus.ca/research/publications/JMLR-03/JMLR-03.pdf


Part IV: Intrinsic Images

47. HG Barrow, JM Tenenbaum, Recovering Intrinsic Scene Characteristics 
from Images, 1978 (classic paper!)
(barrow78.pdf)

48. Adelson & Pentland, The Perception of Shading and Reflectance, 1996
http://web.mit.edu/persci/people/adelson/pub_pdfs/shading96.pdf

49. Sinha & Adelson: Recovering Reflectance in a World of Painted 
Polyhedra, ICCV 1993

50. Yair Weiss,  Deriving intrinsic images from image sequences, ICCV 2001
http://www.cs.huji.ac.il/~yweiss/iccv01.pdf
(code available: http://www.cs.huji.ac.il/~yweiss/intrinsic.tar)

51. GD Finlayson, MS Drew, C Lu, Intrinsic Images by Entropy Minimization,
ECCV 04
http://www2.cmp.uea.ac.uk/~pm/cp_web/intrinsicfromentropy.pdf

52.  Marshall F Tappen, William T Freeman, Edward H Adelson,
Recovering Intrinsic Images from a Single Image (2002)
http://citeseer.ist.psu.edu/cache/papers/cs/27823/http:zSzzSzwww.ai.mit.eduzSz~mtappenzSznips02_final.pdf/tappen02recovering.pdf

53. Hoiem, Efros, Hebert, Geometric Context from a Single Image, ICCV 2005
http://www.cs.cmu.edu/~dhoiem/projects/context/index.html

54. Ashutosh Saxena, Sung Chung, and Andrew Y. Ng. 
Learning Depth from Single Monocular Images, NIPS 2005.
http://books.nips.cc/papers/files/nips18/NIPS2005_0684.pdf

55. Tenenbaum, & Freeman, Separating Style and Content with Bilinear 
Models (1997)
http://web.mit.edu/cocosci/Papers/NC120601.pdf


Part V: Dealing with Data

56. A global geometric framework for nonlinear dimensionality reduction 
J. B. Tenenbaum, V. De Silva, J. C. Langford Science 290 (5500): 22 
December 2000. 
http://www.sciencemag.org/cgi/content/full/290/5500/2319
(code available: http://isomap.stanford.edu/)

57. Nonlinear dimensionality reduction by locally linear embedding. Sam 
Roweis & Lawrence Saul. Science v.290 no.5500, Dec.22, 2000. 
http://www.sciencemag.org/cgi/content/full/290/5500/2323
(code available: http://www.cs.toronto.edu/~roweis/lle/)

58. Learning the parts of objects by non-negative matrix factorization, D. 
D. Lee and H. S. Seung, Nature 401, 788-791 (1999).  
http://hebb.mit.edu/people/seung/papers/ls-lponm-99.pdf
(code available)

Part VI: Tracking & Motion Segmentation

59. Isard & Blake, CONDENSATION conditional density propagation for 
visual tracking (1998)
http://www.cs.ucsb.edu/~290stat/Papers/Condensation.pdf

60. Toyama & Blake, Probabilistic Tracking with Exemplars in a Metric 
Space, 2002
http://research.microsoft.com/vision/cambridge/papers/toyama_ijcv02.pdf

61.  Consistent segmentation for optical flow estimation
C. L. Zitnick, N. Jojic, S. B. Kang
IEEE Int'l Conf. on Computer Vision, 2005.
http://research.microsoft.com/users/larryz/ZitnickICCV05.pdf

62.  Ramanan, Forsyth, Zisserman.
Strike a Pose: Tracking People by Finding Stylized Poses, CVPR 2005
http://ttic.uchicago.edu/~ramanan/papers/pose/

63. MP Kumar, PHS Torr, A Zisserman, Learning Layered Motion Segmentations 
of Video, ICCV '05
http://www.robots.ox.ac.uk/~vgg/publications/papers/kumar05b.pdf