List of Suggested Papers

1. Adelson & Bergen, The Plenoptic Function and the Elements of Early 
Vision http://web.mit.edu/persci/people/adelson/pub_pdfs/elements91.pdf

2.Cavanagh, P. (1996). Vision is getting easier every day. Perception, 24, 
1227-1232.
http://visionlab.harvard.edu/Members/Patrick/PDF.files/2002%20pdfs/easy27.pdf

3.Cavanagh, P. (1991). What's up in top-down processing? In A. Gorea (ed.) 
Representations of Vision: Trends and Tacit Assumptions in Vision Research, 
Cambridge, UK: Cambridge University Press, 295-304. 
http://visionlab.harvard.edu/Members/Patrick/PDF.files/2002%20pdfs/what.pdf

4. Cavanagh, P. (1999). Pictorial art and vision. In Robert A. 
Wilson and Frank C. Keil (Eds.), MIT Encyclopedia of Cognitive Science, 
(pp. 648-651) Cambridge, MA: MIT Press. 
http://www.visionlab.harvard.edu/members/Patrick/PDF.files/artMITECS.pdf


Part I: Low-level Vision (images as texture)

5.  Olshausen & field, mergence of simple-cell receptive field properties 
by learning a sparse code for natural images, (1996) Nature, 381: 607-609.
http://www.ai.mit.edu/courses/6.899/papers/sparse-coding.pdf
(code available: http://redwood.berkeley.edu/bruno/sparsenet/)

6. Y. Rubner and C. Tomasi and L. J. Guibas. The Earth Mover's Distance as 
a Metric for Image Retrieval. International Journal of Computer Vision, 
40(2) November 2000, pages 99--121. 
http://vision.stanford.edu/public/publication/rubner/rubnerTr98.pdf
(code available: http://www.ofai.at/~elias.pampalk/ma/emd.zip)

7. Y. Rubner,J. Puzicha, C. Tomasi, and J. M. Buhmann. Empirical 
Evaluation of Dissimilarity Measures for Color and Texture. Computer 
Vision and Image Understanding Journal, 84(1):25-43, October 2001.
http://www.cs.duke.edu/~tomasi/papers/rubner/rubnerCviu01.pdf

8. Martin, Fowlkes, Malik, Learning to Detect Natural Image Boundaries 
Using Local Brightness, Color, and Texture Cues
IEEE Transactions on Pattern Analysis and Machine Intelligence, 
26(5):530-549, May 2004. 
http://www.cs.bc.edu/~dmartin/papers/tpami2004.pdf
http://www.cs.bc.edu/~dmartin/papers/nips02.pdf (short version)
(code and data available: 
http://www.cs.berkeley.edu/projects/vision/grouping/segbench)

9. Renninger, L.W. & Malik, J. (2004).  When is scene recognition just 
texture recognition?  Vision Research, 44, 2301-2311
http://www.ski.org/Verghese_Lab/laura/pubs/manuscripts/scenes.pdf
Data available:
http://www.ski.org/Verghese_Lab/laura/pubs/scenes.Zip

10. Csurka et al
http://www.cs.huji.ac.il/~daphna/cbvis-papers/Csurka.pdf

11. J. Winn, A. Criminisi and T. Minka.
Object Categorization by Learned Universal Visual Dictionary
Proc. IEEE Intl. Conf. on Computer Vision (ICCV), Beijing 2005.

12. A. Torralba and A. Oliva.  (2003)
Statistics of Natural Image Categories
Network: Computation in Neural Systems. Vol. 14, 391-412. 
http://web.mit.edu/torralba/www/ne3302.pdf

13. A. Torralba, A. Oliva.  
Depth estimation from image structure (2002)
IEEE Transactions on Pattern Analysis and Machine Intelligence. 24(9): 
1226-1238. September. 
http://cvcl.mit.edu/Papers/Torralba-Oliva02.pdf

14. A. Oliva, A. Torralba (2001).  Modeling the shape of the scene: a 
holistic representation of the spatial envelope.  International Journal of 
Computer Vision, Vol. 42(3): 145-175.
http://cvcl.mit.edu/Papers/IJCV01-Oliva-Torralba.pdf

Part II: Mid-level Vision (Image Segmentation)

15. Max Wertheimer, Laws of Organization in Perceptual Forms (1923)
http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

16. Jianbo Shi; Malik, J. Normalized cuts and image segmentation. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Aug. 2000, 
vol.22, (no.8):888-905.
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf
(code available: http://www.cis.upenn.edu/~jshi/software/)

17. Meila, M. and Shi, J. Learning Segmentation with Random Walks. 
Advances in Neural Information Processing Systems 13 (NIPS 2000). 

18. Weiss, Y. Segmentation using eigenvectors: a unifying view. 
Proceedings of the Seventh IEEE International Conference on Computer 
Vision, Kerkyra, Greece, 20-27 Sept. 1999.

19.  Andrew Y. Ng, Michael I. Jordan, Yair Weiss, On Spectral Clustering: 
Analysis and an algorithm (2001) NIPS
http://citeseer.ist.psu.edu/rd/50624373%2C541173%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/26676/http:zSzzSzwww-2.cs.cmu.eduzSzGroupszSzNIPSzSzNIPS2001zSzpaperszSzpsgzzSzAA35.pdf/ng01spectral.pdf

20. Xiaofeng Ren and Jitendra Malik, 
Learning a Classification Model for Segmentation. in ICCV '03
(superpixel code: http://www.cs.sfu.ca/~mori/research/superpixels/)

21. Tu & Zhu, Image Segmentation by Data-Driven Markov Chain Monte Carlo,
PAMI (2002)
http://www.cnbc.cmu.edu/cns/papers/DDMCMC.pdf

22. D. Comaniciu, P. Meer: Mean Shift: A Robust Approach toward Feature 
Space Analysis, IEEE Trans. Pattern Analysis Machine Intell., Vol. 24, No. 
5, 603-619, 2002 
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

23. Boykov & Jolly, Interactive Graph. Cuts. for Optimal Boundary & Region 
Segmentation of. Objects in ND Images. ICCV 01
http://www.cse.ucsd.edu/classes/fa04/cse252c/tedeschi.pdf

24. Yin Li; Jian Sun; Chi-Keung Tang; Heung-Yeung Shum, Lazy Snapping, 
SIGGRAPH 04
http://www.research.microsoft.com/asia/dload_files/group/vc/2004/LazySnapping_SIGGRAPH04.pdf

Part III: 2D Recognition 
Schniderman & Kanade 
Viola & Jones
Vidal-Naquet, Ullman (2003)
Torralba, Sharing Features


* Segmentation + Recognition
Ulman's horses
xren's horses
Schiele

* Correspondences
Distance Transform, Schanfer dist
Shape Context, Geometric Blur
Berg & Marius ??


* Dealing with data
Isomap
LLE
Style vs. Content
AAM (Cootes & Taylor) + Blinz & Vetter
NMF


* Intrinsic images
Adelson, Pentland, theatre workshop
Sinha, Adelson: World of painted polyhedra
Finlayson, ECCV 04
Weiss intrinsic
Freeman intrinsic
Hoiem, Efros, Hebert
Andrew Ng (3D)

* Tracking
Toyama & Blake
Particle Filtering ?
Condensation (Isard & Blake)
Larry Zitnik's superpixels
Ramanan, Strike a Pose
Torr, ICCV '05

* image + words
Kobus Barnard
Berg & Berg (Names and Faces)

* Object Category Discovery
LSA, pLSA, LDA
FeiFei (scenes)
Josef
Fergus (google)