
  
University	of	California	at	Berkeley	

	A	Personal	View	of	Real-Time	Computing	

Edward	A.	Lee	
Professor	of	the	Graduate	School	

	

École	Normale	Supérieure	
Paris,	France,	February	26,	2020	

Invited Talk 



  

Cyber	Physical	Systems	

2 

Predictability	requires	determinacy	and	depends	on	timing,	
including	execution	times	and	network	delays.	



  

What	is	Real	Time?	

•  fast	computation	
•  prioritized	scheduling	
•  computation	on	streaming	data	
•  bounded	execution	time	
•  temporal	semantics	in	programs	
•  temporal	semantics	in	networks	
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These	are	very	different	from	one	another.	
We	have	to	decide	which	to	focus	on.	



  

Correct execution of a program in all widely used 
programming languages, and correct delivery of a network 
message in all general-purpose networks has nothing to do 
with how long it takes to do anything. 
 

	
Programmers	have	to	step	outside	the	
programming	abstractions	to	specify	timing	
behavior.	
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Timing is not part of  
software and network semantics	



  

Achieving	Real	Time	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	
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Timing	of	programs	emerges	from	
the	implementation	

•  Pipeline	hazards	
•  Cache	effects	
•  Variable	DRAM	latencies	
•  Speculative	execution	
•  Interrupts	
•  Forwarding	
•  Dynamic	voltage/frequency	
•  …	
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Messy	Time	
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Model	Time	becomes	a	mess	with	
interrupts	and	threads	

IEEE	Computer,	May,	2006.	



  

Current	Trends	in		
Real-Time	Software	

•  Model	the	details	
•  Analyze	the	models	
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Even	deterministic	real-time	
models	can	lead	to	chaos.	
[Thiele	and	Kumar,	EMSOFT	2015]	

Result	is	expensive,	
intractable	models.	



  

Newtonian	Time	for	
Physical	Dynamics	

Physical	System	 Model	

Signal	 Signal	

Newtonian	time	advances	everywhere	
uniformly	in	a	continuum.	
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Image:	Wikimedia	Commons	



  

Pitfall	with	Newtonian	Time	(1)	

When	realized	in	a	software-based	model:	
1.  The	precision	of	time	should	be	finite	and	the	same	

for	all	observers.	
2.  The	precision	of	time	should	be	independent	of	the	

absolute	magnitude	of	the	time.		
3.  Addition	of	time	should	be	associative.	That	is,	for	

any	three	time	intervals	t1,	t2,	and	t3,	
(t1	+	t2)	+	t3	=	t1	+	(t2	+	t3)	

Floating	point	numbers	do	not	satisfy	these.	
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[1]	Broman,	et	al.	“Requirements	for	hybrid	cosimulation	standards.	HSCC	2015.	
[2]	Cremona,	et	al.,	“Hybrid	co-simulation:	it's	about	time,”	Software	and	Systems	Modeling	2017.	
	



  

Pitfall	with	Newtonian	Time	(2)	

•  “Continuum”	does	not	imply	“continuous.”	
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Signal	 Signal	
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Bring	the	Cyber	and	
the	Physical	Together	



  

Achieving	Real	Time	in	Practice	

•  overengineering	
•  using	old	technology	
•  response-time	analysis	
•  real-time	operating	systems	(RTOSs)	
•  specialized	networks	
•  extensive	testing	and	validation	
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Maybe	we	can	do	better?	



  

An	Epiphany	
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•  In	science,	the	value	of	a	model	lies	in	how	well	its	
behavior	matches	that	of	the	physical	system.	

•  In	engineering,	the	value	of	the	physical	system	lies	
in	how	well	its	behavior	matches	that	of	the	model.	

A	scientist	asks,	“Can	I	make	a	model	for	this	thing?”		
An	engineer	asks,	“Can	I	make	a	thing	for	this	model?”	

Lee,	Berkeley	 16 

The	Value	of	Models	



  

Models	vs.	Reality	

In	this	example,	
the	modeling	
framework	is	
calculus	and	
Newton’s	laws.	
	
Fidelity	is	how	
well	the	model	
and	its	target	
match	
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The	model	

The	target	
(the	thing	
being	
modeled).	



  

A	Model	
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Image	by	Dominique	Toussaint,	GNU	Free	Documentation	License,	Version	1.2	or	later.	
	



  

A	Physical	Realization	
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Model	Fidelity	

•  To	a	scientist,	the	model	is	flawed.	
•  To	an	engineer,	the	realization	is	flawed.	

To	a	realist,	both	are	flawed…	
Perhaps	we	should	be	making	our	realizations	
more	faithful	to	our	models	rather	than	the	
other	way	around?	

20 Lee,	Berkeley	



  

Useful	Models	and	Useful	Things	

“Essentially,	all	models	are	wrong,		
but	some	are	useful.”	

	
Box,	G.	E.	P.	and	N.	R.	Draper,	1987:	Empirical	Model-Building	and	Response	
Surfaces.	Wiley	Series	in	Probability	and	Statistics,	Wiley.		

	
“Essentially,	all	system	implementations		

are	wrong,	but	some	are	useful.”	
	
Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	

Lee,	Berkeley	 21 



  

The	Value	of	Simulation	

	
“Simulation	is	doomed	to	succeed.”	

[anonymous]	
	

Could	this	statement	be	confusing	engineering	
models	for	scientific	ones?	

22 Lee,	Berkeley	

Lee	and	Sirjani,	“What	good	are	models,”	FACS	2018.	



  

Changing	the	Question	

Is	the	question	whether	our	models	describe	the	
behavior	of	real-time	systems	(with	high	
fidelity)?	
	
Or	
	
Is	the	question	whether	we	can	build	real-time	
systems	where	behavior	matches	that	of	our	
models	(with	high	probability)?	

23 Lee,	Berkeley	



  

The hardware out of which we build 
computers is capable of delivering “correct” 
computations and precise timing… 

 
Synchronous digital logic delivers 
precise, repeatable timing. 
 
 
 
… but the overlaying software 
abstractions discard timing. 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

Lee,	Berkeley	 24 



  

PRET Machines – Giving Software the 
Capabilities its Hardware Already Has. 

•  PREcision-Timed processors = PRET 
•  Predictable, REpeatable Timing = PRET 
•  Performance with REpeatable Timing = PRET 

= PRET + 
Computing 

With time 

// Perform the convolution. 
for (int i=0; i<10; i++) { 
  x[i] = a[i]*b[j-i]; 
  // Notify listeners. 
  notify(x[i]); 
} 

http://chess.eecs.berkeley.edu/pret	
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Major	Challenges	
and	existence	proofs	that	they	can	be	met	

•  Pipelines	
–  fine-grain	multithreading	

•  Memory	hierarchy	
– memory	controllers	with	controllable	latency	

•  I/O	
–  threaded	interrupts	with	zero	effect	on	timing	

Lee,	Berkeley	 26 



  

Three	Generations	of	PRET	
Machines	at	Berkeley	

•  PRET1,	Sparc-based	(simulation	only)	
–  [Lickly	et	al.,	CASES,	2008]	

•  PTARM,	ARM-based	(FPGA	implementation)	
–  [Liu	et	al.,	ICCD,	2012]	

•  FlexPRET,	RISC-V-based	(FPGA	+	simulation)	
–  [Zimmer	et	al.,	RTAS,	2014,	PhD	Thesis	2015]	
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thread	Hardware	
thread	Hardware	
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Our Second Generation PRET 
PTArm, a soft core on a 
Xilinx Virtex 5 FPGA (2012) 
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Pipeline	Interleaving	is	Old	

First	used	in	the	CDC	6600.	

29 



  

Our	Third-Generation	PRET:	
Open-Source	FlexPRET	(Zimmer	2014/15)	

•  32-bit,	5-stage	thread	interleaved	pipeline,	RISC-V	ISA	
–  Hard	real-time	HW	threads:	
scheduled	at	constant	rate	for	isolation	and	repeatability.	

–  Soft	real-time	HW	threads:		
share	all	available	cycles	for	efficiency.	

•  Deployed	on	Xilinx	FPGA	

Lee,	Berkeley	 30	
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SRT thread 

Hardware	
thread	Hardware	
thread	Hardware	
thread	Hardware	
thread	

FlexPRET 
Hard-Real-Time (HRT) Threads 
Interleaved with Soft-Real-Time (SRT) Threads 
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Fact	

The	real-time	performance	of	a	FlexPRET	
machine	is	never	worse	than	that	of	a	
conventional	machine.	
	
Proof:	A	FlexPRET	machine	is	a	conventional	
machine	if	the	memory-mapped	registers	
controlling	HRT	and	SRT	threads	is	set	to	have	
only	one	thread,	a	SRT	thread.	

32 Lee,	Berkeley	



  

Benefits	

•  Four	hardware	threads	is	enough	to	eliminate	all	
pipeline	bubbles	and	memory	latency	variability.	

•  Unrealistic	task	models	become	realistic.	
– Exact,	known	WCET.	
– Zero-interference	tasks.	
–  Interrupts	enabled	at	all	times.	

•  High-precision	timing	instructions	
– Repeatable	nanosecond	precision	
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The	Cost	

[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	
34 Lee,	Berkeley	

Size:	



  

The	Cost	

A	baseline	RISC-V	without	any	complex	
instructions	(floating	point,	integer	division,	
packed	instructions)	can	be	realized	on	an	FPGA	
with	580	flip	flops	and	2,788	LUTs.	
A	4-thread	FlexPRET	can	be	realized	with	908	
flip	flops	and	3,943	LUTs,	an	increase	of	56%	and	
41%	respectively.	
	
Percentage	is	much	lower	with	floating	point,	division,	etc.	
[Zimmer,	Broman,	Shaver,	Lee,	RTAS	2014]	
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About	Interrupts	

“[M]any	a	systems	programmer’s	
grey	hair	bears	witness	to	the	
fact	that	we	should	not	talk	
lightly	about	the	logical	problems	
created	by	that	feature”	
	
	 	 	-	Edsger	Dijkstra	(1972)	
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Interrupts	

•  Nondeterministically	interleaved	with	program	
•  Make	response	time	>	execution	time	
•  Disrupt	cache	and	branch	predictors	
•  Overhead	of	context	switching	

•  For	WCET	analysis,	have	to	disable	interrupts	
•  Disabling	interrupts	increases	variability	in	
response	time	

37 Lee,	Berkeley	



  

Interrupts	

Scientific	solution:	
•  Model	all	these	effects	

Engineering	solution:	
•  Eliminate	all	these	effects	

The	latter	is	what	PRET	machines	do.	

38 Lee,	Berkeley	



  

Interrupt Handler Thread 

Hardware	
thread	Hardware	
thread	Hardware	
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FlexPRET I/O 
Interrupt Handler Thread Option 
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Such interrupts have  
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bounded effect on SRT threads! 

memory	
memory	
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Michael	Zimmer	

A	similar	strategy	is	
also	used	by	XMOS,	
but	with	less	isolation.	



  

Abstract	PRET	Machines	(APM)	

RTSS,	2017,	Paris.	
This	paper	shows	that	achieving	deterministic	response	
times	that	meet	deadlines,	when	that	is	feasible,	
comes	at	no	cost	in	worst-case	response	times.	
	

This	is	shown	for	a	task	model	of	N	sporadic	
independent	tasks	with	deadlines.	
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Intuition	

•  N	sporadic	real-time	tasks	with	minimum	
interarrival	time	Ti,	deadlines	Di,	and	WCET	Ci.	

Theorem:	When	Ti	=	Di,	PRET	yields	deterministic	
response	times	no	worse	than	the	worst	case	
response	time	of	a	conventional	architecture.	
	

When	Ti	>	Di,	if	any	processor	can	deliver	
deterministic	response	times,	PRET	will,	with	worst	
case	response	time	no	worse	than	a	conventional	
architecture.	

41 Lee,	Berkeley	



  

Avionics	Mixed	Criticality		
Test	Case	

42 
S.	Vestal,	“Preemptive	Scheduling	of	Multi-criticality	Systems	with	
Varying	Degrees	of	Execution	Time	Assurance,”	in	RTSS	2007.	
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Fig. 1: FlexPRET-8T executing a mixed-criticality avionics
case study.

•  Abstract	workload	of	
21	tasks	derived	
from	a	time-
partitioned	avionics	
system1	with	93%	
utilization	

•  Each	iteration	
performs	identical	
computation,	but…	

Deployed	on	8	HW	
threads	

‘A’	level	(most	critical)	
tasks	on	separate	

threads	

‘B’	level	(critical)	tasks	
on	a	thread	using	non-

preemptive	static	
scheduler	

‘B’	level	(critical)	tasks	
on	a	thread	using	rate-
monotonic	scheduler	

‘C’	and	‘D’	level	(less	
critical)	tasks	on	
threads	that	use	

earliest	deadline	first	
(EDF)	

Isolated	execution	time	

Execution	time	
dependent	on	HRTTs	

Zimmer,	PhD	Thesis,	2015.	



  

Programming:	
Basic	Timing	Control	in	PRET	

43 

Bui,	Lee,	Liu,	Patel,	and	Reineke,	“Temporal	isolation	
on	multiprocessing	architectures,”	DAC	2011.	

time r; 
get_time(r); 
while(1) { 

 add_ms(r, 10); 
 exception_on_expire(r); 
 task(); 
 deactivate_exception(); 
 delay_until(r); 

} 

	internal	clock	
value	(in	

nanoseconds)	

Compute	
future	time	

Execution	
interrupted	at	time	
r	(deadline	miss)	If	here,	no	deadline	

miss	so	deactivate	

Wait	until	next	
period,	SRTT	can	
use	allocated	

cycles	

Extended	RISC-V	ISA	with	timing	instructions.	
E.g.	Hard-real-time	periodic	task:	



  

Four Patterns of  
Timed Code Blocks 

[V1]	Best	effort:		
set_time r1, 1s 
// Code block 
delay_until r1 

[V2]	Late	miss	detection			
set_time r1, 1s 
// Code block 
branch_expired r1, <target> 
delay_until r1 
 

set_time r1, 1s 
exception_on_expire r1, 1 
// Code block 
deactivate_exception 1 
delay_until r1 
 

[V3]	Immediate	miss	detection			

[V4]	Exact	execution:		
set_time r1, 1s 
// Code block 
MTFD r1 

Lee,	Berkeley	 44 



  

But	Wait…	

	
	
The	whole	point	of	an	ISA	is	that	the	same	
program	does	the	same	thing	on	multiple	
hardware	realizations.	
	
Isn’t	this	incompatible	with	deterministic	timing?	

Lee,	Berkeley	 45 



  

Instruction	Set	Architecture	(ISA)	

The	concept	of	an	ISA	
hasn’t	changed	much	
since	the	1960s.	

46 
Fred	Brooks	

Photo	courtesy	of	computerhistory.org	



  

Parametric PRET  
Machines 

ISA that admits a variety of implementations: 
•  Variable clock rates and energy profiles 
•  Variable number of cycles per instruction 
•  Latency of memory access varying by address 
•  Varying sizes of memory regions 
•  … 

A given program may meet deadlines on only some 
realizations of the same parametric PRET ISA. 

set_time r1, 1s 
// Code block 
MTFD r1 
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Realizing the MTFD instruction on a  
Parametric PRET machine 

The goal is to make software that will run correctly on many implementations 
of the ISA, and that correctness can be checked for each implementation. 

set_time r1, 1s 
// Code block 
MTFD r1 

Lee,	Berkeley	 48 



  

Benefits	of	PRET	
(Even	if	you	don’t	care	about	determinism)	

•  Very	low	context	switch	overhead	
–  Up	to	the	number	of	hardware	threads.	
–  Conventional	overhead	above	that.	

•  Tighter	WCET	analysis	
–  Particularly	when	activating	enough	threads	to	eliminate	
pipeline	bubbles	and	memory	access	order	dependencies.	

•  No	longer	need	to	be	restricted	to	polling	I/O	
–  Effect	of	interrupts	is	bounded.	

49 Lee,	Berkeley	



  

Benefits	of	PRET	
(If	you	take	advantage	of	determinism)	

•  Modularity	
–  Non-interference	between	tasks.	
–  Interrupts	have	exactly	no	effect	on	hard-real-time	tasks.	

•  Exactness	
–  Can	get	not	just	WCET,	but	actual	ET.	
–  Not	just	ET,	but	response	time.	

•  Repeatability	
–  Works	in	the	field	like	on	the	bench.	
–  Event	ordering	can	be	made	invariant.	

•  Complexity	
–  More	hard-real-time	tasks	is	better	than	fewer.	

•  Certifiability	
–  Every	correct	execution	of	the	software	gives	the	same	behavior.	

•  Energy	
–  Reduce	voltage	and	frequency	to	the	bare	minimum	to	meet	deadlines.	

50 Lee,	Berkeley	



  

So	why	isn’t	every	modern	
processor	a	FlexPRET?	

Possibilities:	
	
•  Our	claims	look	too	good	to	be	true.	
•  It’s	a	paradigm	shift.	

•  Programming	models	that	can	take	advantage	
of	this	are	missing.	

51 



  

Today:	Lingua	Franca	

52 

A	polyglot	meta-
language	with	DE	
semantics	for	
implementation	
(not	simulation)	
of	deterministic,	
concurrent,	
time-sensitive	
systems.	

https://github.com/icyphy/lingua-franca/wiki	



  

Conclusion	

•  In	science,	the	value	of	a	model	lies	in	
how	well	its	behavior	matches	that	of	
the	physical	system.	

•  In	engineering,	the	value	of	the	physical	
system	lies	in	how	well	its	behavior	
matches	that	of	the	model.	

My	message:		
Do	less	science	and	more	engineering.	
	
	
http://ptolemy.berkeley.edu/pret	
https://github.com/icyphy/lingua-franca			 http://platoandthenerd.org		


