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Review of Previous Lectures and Outline

° Review Poisson equation

° Overview of Methods for Poisson Equation

° Jacobi’s method

° Gauss-Seidel method

° Red-Black SOR method

° FFT

° Multigrid

Reduce to sparse-matrix-vector multiply

Need them to understand Multigrid
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Poisson’s equation in 1D:    2u/x2 =  f(x)
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2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)

Algorithm Serial PRAM Memory #Procs

° Dense LU N3 N N2 N2

° Band LU N2  (N7/3) N N3/2  (N5/3) N (N4/3)

° Jacobi N2 (N5/3) N (N2/3) N N

° Explicit Inv. N2 log N N2 N2

° Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N

° Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N

° Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N

° FFT N*log N log N N N

° Multigrid N log2 N N N

° Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
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Multigrid Motivation

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only 
move information one grid cell at a time

• Take at least n steps to move information across n x n grid

° Can show that  decreasing error by fixed factor c<1 
takes W(log n) steps

• Convergence to fixed error < 1 takes W(log n) steps

° Therefore, converging in O(1) steps requires moving 
information across grid faster than to one 
neighboring grid cell per step

• One step can’t just do sparse-matrix-vector-multiply



Fall 2009
CS267 Lecture 16

Multigrid Motivation
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Big Idea used in multigrid and elsewhere

° If you are far away, problem looks simpler

• For gravity: approximate earth, distant galaxies, … by point masses

° Can solve such a coarse approximation to get an 
approximate solution, iterating if necessary

• Solve coarse approximation problem by using an even coarser 
approximation of it, and so on recursively

° Ex: Multigrid for solving PDE in O(n) time

• Use coarser mesh to get approximate solution of Poisson’s Eq.

° Ex: Fast Multipole Method, Barnes-Hut for computing 
gravitational forces on n particles in O(n log n) time:

• Approximate particles in box by total mass, center of gravity

• Good enough for distant particles; for close ones, divide box 
recursively

° Ex: Graph Partitioning (used to parallelize SpMV) 

• Replace graph to be partitioned by a coarser graph (CS267 for details)
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Fine and Coarse Approximations

Fine Coarse
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Multigrid Overview

° Basic Algorithm:

• Replace problem on fine grid by an approximation on a coarser 
grid

• Solve the coarse grid problem approximately, and use the 
solution as a starting guess for the fine-grid problem, which is 
then iteratively updated

• Solve the coarse grid problem recursively, i.e. by using a still 
coarser grid approximation, etc.

° Success depends on coarse grid solution being a 
good approximation to the fine grid
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Multigrid uses Divide-and-Conquer in 2 Ways

° First way:

• Solve problem on a given grid by calling Multigrid on a coarse 
approximation to get a good guess to refine

° Second way:

• Think of error as a sum of sine curves of different frequencies

• Same idea as FFT solution, but not explicit in algorithm

• Each call to Multgrid responsible for suppressing coefficients of sine 
curves of the lower half of the frequencies in the error (pictures later)
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Multigrid Sketch in 1D

° Consider a 2m+1 grid in 1D for simplicity

° Let P(i) be the problem of solving the discrete Poisson equation 
on a 2i+1 grid in 1D.  Write linear system as T(i) * x(i) = b(i)

° P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 
coarsest
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Multigrid Sketch (1D and 2D)

° Consider a 2m+1 grid in 1D (2m+1 by 2m+1 grid in 2D) for simplicity

° Let P(i) be the problem of solving the discrete Poisson equation 
on a 2i+1 grid in 1D  (2i+1 by 2i+1 grid in 2D)

• Write linear system as T(i) * x(i) = b(i)

° P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 
coarsest
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Multigrid Operators (write on board)

° For problem P(i) :

• b(i) is the RHS and 

• x(i) is the current estimated solution 

° All the following operators just average values on neighboring grid 
points (so information moves fast on coarse grids)

° The restriction operator R(i) maps P(i) to P(i-1)

• Restricts problem on fine grid P(i) to coarse grid P(i-1)

• Uses sampling or averaging

• b(i-1)= R(i) (b(i))

° The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)

• Interpolates solution on coarse grid P(i-1) to fine grid P(i)

• x(i) = In(i-1)(x(i-1))

° The solution operator S(i) takes P(i) and improves solution x(i) 

• Uses “weighted” Jacobi or SOR on single level of grid

• x improved (i) = S(i) (b(i), x(i))

° Overall algorithm, then details of operators

both live on grids of size 2i-1
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Multigrid V-Cycle Algorithm (write on board)

Function MGV ( b(i), x(i) )

… Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i)

… return an improved x(i)

if (i = 1) 

compute exact solution x(1) of P(1) only 1 unknown

return x(1)

else 

x(i) = S(i) (b(i), x(i))                                   improve solution by 

damping high frequency error

r(i)  = T(i)*x(i) - b(i)                                    compute residual

d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) ) solve T(i)*d(i) = r(i) recursively 

x(i) = x(i) - d(i)                                           correct fine grid solution

x(i) = S(i) ( b(i), x(i) )                                 improve solution again

return x(i)
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Why is this called a V-Cycle?

° Just a picture of the call graph

° In time a V-cycle looks like the following
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Cost (#flops) of a V-Cycle for 2D Poisson

° Constant work per mesh point (average with 
neighbors)

° Work at each level in a V-cycle is O(the number of 
unknowns)

° Cost of Level i is O((2i-1)2) = O(4 i)

° If finest grid level is m, total time is:

S     O(4 i) = O( 4 m) = O(# unknowns)
m

i=1
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Full Multigrid (FMG)

° Intuition:

• improve solution by doing multiple V-cycles

• avoid expensive fine-grid (high frequency) cycles

• analysis of why this works is beyond the scope of this class

Function FMG (b(m), x(m))

… return improved x(m) given initial guess

compute the exact solution x(1) of P(1)

for i=2 to m

x(i) = MGV ( b(i), In (i-1) (x(i-1) ) )

° In other words:

• Solve the problem with 1 unknown

• Given a solution to the coarser problem, P(i-1) , map it to starting guess 

for P(i)

• Solve the finer problem using the Multigrid V-cycle 
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Full Multigrid  Cost Analysis

° One V-cycle for each call to FMG 

• people also use “W cycles” and other compositions

° #Flops:         S      O(4 i) = O( 4 m) = O(# unknowns)
m

i=1
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Complexity of Solving Poisson’s Equation

° Theorem: error after one FMG call  c · error before, 
where c < 1/2, independent of # unknowns

° Corollary: We can make the error < any fixed 
tolerance in a fixed number of steps, independent of 
size of finest grid

° This is the most important convergence property of  
MG, distinguishing it from all other methods, which 
converge more slowly for large grids

° Total complexity just proportional to cost of one 
FMG call
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The Solution Operator S(i) – Details (on board)

° The solution operator, S(i), is a weighted Jacobi

° Consider the 1D problem

° At level i, pure Jacobi replaces:

x(j) :=  1/2 (x(j-1) + x(j+1) + b(j) )

° Weighted Jacobi uses:

x(j) :=  1/3 (x(j-1) + x(j) + x(j+1) + b(j) )

° In 2D, similar average of nearest neighbors

• Chosen so that  “high frequency “eigenvector components of 
error get  decreased by as much as possible (1/3)
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Eigenvalues of Solution Operator S(i)

1/3

-1/3

How much

High  Freq.

Error Damped

How much

Low  Freq.

Error Damped

High 

Frequencies

Low 

Frequencies
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Weighted Jacobi chosen to damp high frequency error

Initial error

“Rough”

Lots of high frequency components

Norm = 1.65

Error after 1 weighted Jacobi step

“Smoother”

Less high frequency component

Norm = 1.06

Error after 2 weighted Jacobi steps

“Smooth”

Little high frequency component

Norm = .92, 

won’t decrease much more
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Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part 
of the frequency domain
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Error on fine and coarse grids

smoothing

Finest Grid

First Coarse Grid

Restriction (R)
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The Restriction Operator R(i) - Details

° The restriction operator, R(i), takes 

• a problem P(i) with Right-Hand-Side (RHS) bfine and

• maps it to a coarser problem P(i-1) with RHS   bcoarse = R(i)( bfine )

° In 1D, average values of neighbors

• Simplest: Sampling:   bcoarse(k) = bfine(k)

• Better: Averaging: bcoarse(k) = 1/4 * bfine(k-1)   +   1/2 * bfine(k)   +   1/4 * bfine(k+1)

° In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)

Simplest: Sampling

Better: Averaging
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Interpolation Operator In(i-1): details

° The interpolation operator In(i-1), takes a function xcoarse on a 
coarse grid P(i-1) , and produces a function xfine on a fine grid P(i) :

° xfine = In(i-1)(xcoarse)

° In 1D, linearly interpolate nearest coarse neighbors

• xfine(k) = xcoarse(k) if the fine grid point  k is also a coarse one, else

• xfine(k) = 1/2 * xcoarse(left of k) + 1/2 * xcoarse(right of k)

° In 2D, interpolation requires averaging with 4 nearest 
neighbors (NW,SW,NE,SE)
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Convergence Picture of Multigrid in 1D
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Convergence Picture of Multigrid in 2D
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Multigrid V-Cycle Algorithm Analysis (1/2)

Function MGV ( b(i), x(i) )

… Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i)

… return an improved x(i)

if (i = 1) 

compute exact solution x(1) of P(1) only 1 unknown

return x(1)

else 

x(i) = S(i) (b(i), x(i))                                    x(i) =  S·x(i) + b(i)/3

r(i)  = T(i)*x(i) - b(i)                                    r(i)  =  T(i)*x(i) - b(i)

d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) )        d(i) =   P·(T(i-1)-1·(R·r(i)) )

(Note: we assume recursive solve is exact, for ease of analysis)

x(i) = x(i) - d(i)                                           x(i) =  x(i) - d(i)

x(i) = S(i) ( b(i), x(i) )                                 x(i) =  S·x(i) + b(i)/3

return x(i)
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Multigrid V-Cycle Algorithm Analysis (2/2)

Goal: combine these equations to get formula for error e(i) = x(i) – x:

x(i) =  S·x(i) + b(i)/3                        subtract  x = S·x + b(i)/3   to get   e(i) = S·e(i)

r(i)  =  T(i)*x(i) - b(i)                        subtract  0 = T(i)*x – b(i)  to get   r(i) = T(i)*e(i)

d(i) =   P·(T(i-1)-1·(R·r(i)) ) assume coarse problem solved exactly

x(i) =  x(i) - d(i)                               subtract x = x to get e(i) = e(i) – d(i)

x(i) =  S·x(i) + b(i)/3                        subtract  x = S·x + b(i)/3   to get   e(i) = S·e(i)

Substitute each equation into later ones to get

e(i) = S · (I - P·(T(i-1)-1·(R·T(i)) ) ) · S · e(i) ≡ M · e(i)

Theorem:  For 1D Poisson problem, the eigenvalues of M are either 0 or 1/9, 
independent of dimension.

This means multigrid converges in a bounded number of steps,        
independent of dimension.
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° What does it mean to do Multigrid anyway?

° Need to be able to coarsen grid (hard problem)

• Can’t just pick “every other grid point” anymore

• How to make coarse graph approximate fine one

• What if there are no grid points?

° Need to define R() and In()

• How do we convert from coarse to fine mesh and back?

• How do we define coarse matrix (no longer formula, like Poisson)

° Need to define S()

• How do we damp “high frequency” error?

° Dealing with coarse meshes efficiently

• Should we switch to another solver on coarsest meshes?

Generalizing Multigrid beyond Poisson, to unstructured meshes (1/2)
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Generalizing Multigrid beyond Poisson, to unstructured meshes (2/2)

° Given original problem, how do we generate a 
sequence of coarse approximations?

° For finite element problems, could regenerate matrix 
starting on coarser mesh

• Need access to original physical problem and finite element 
modeling system, i.e. a lot more than just the original matrix, so it 
may be impossible

• What does “coarse” mean, once very coarse?

° Geometric Multigrid

• Assume we know (x,y,z) coordinates of underlying mesh, and matrix

• Generate coarse mesh points, analogous to taking every other point 
in regular mesh

• Retriangulate to get new mesh

• Use finite element shape functions on coarse mesh to project fine 
matrix to coarse one

° Algebraic Multigrid

• Don’t even have (x,y,z) coordinates, just matrix
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Geometric Multigrid

° Need matrix, (x,y,z) coordinates of mesh points

• Not minimum information (just matrix), but a little more

• Based on work of Guillard, Chan, Smith

° Finite element intuition

• Goal is to compute function, represented by values at points

• Think of approximation by piecewise linear function connecting points

- Easy in 1D, need triangulated mesh in 2D, 3D uses tetrahedra

° Geometric coarsening

• Pick a subset of coarse points “evenly spaced” among fine points

- Use Maximal Independent Sets

- Try to keep important points, like corners, edges of object

• Retriangulate coarse points

- Try to approximate answer by piecewise linear function on new triangles

• Let columns of P (“prolongator”) be values at fine grid points given values at 
coarse ones

- Generalizes Interpolation operator “In” from before

• Acoarse = PT Afine P    – Galerkin method   
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Example of Geometric Coarsening
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Examples of meshes from geometric coarsening
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What can go wrong

• Care needed so coarse grid preserves geometric features of fine grid

• Label fine grid points as corner, edge, face, interior

• Delete edges between same-labeled points in different features

• Ex: delete edges between points on different faces

• Keeps feature represented on coarse meshes
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How to coarsen carefully
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Algebraic Multigrid

° No information beyond matrix needed

° Galerkin still used to get Acoarse = PT Afine P

° Prolongator P defined purely algebraically

• Cluster fine grid points into nearby groups

- Can use Maximal Independent Sets or Graph Partitioning

- Use magnitude of entries of  Afine to cluster

• Associate one coarse grid node to each group

• To interpolate coarse grid values to associated fine grid point, can use 
properties of PDE, eg elasticity:

- Rigid body modes of coarse grid point

- Let coarse grid point have 6 dof (3 translation, 3 rotation)

- Can be gotten from QR factorization of submatrix of Afine

• Can also apply smoother to resulting columns of P

• “Smoothed Aggregation” 

° Based on work of Vanek, Mandel, Brezina, Farhat, Roux, 
Bulgakov, Kuhn …
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Parallel Smoothers for Unstructured Multigrid

 Weighted Jacobi

 Easy to implement, hard to choose weight 

 Gauss-Seidel

 Works well, harder to parallelize because of triangular solve

 Polynomial Smoothers 

 Chebyshev polynomial p(Afine)

 Easy to implement (just SpMVs with Afine )

 Chebyshev chooses p(y) such that

 |1 - p(y) y | = min over  interval [* , max] estimated to contain 

eigenvalues of Afine 
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Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress
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Micro-Computed Tomography

CT @ 22 m resolution

Mechanical Testing

E, yield, ult, etc.

Methods: FE modeling

3D image

2.5 mm cube

44 m elements

FE mesh

Source: Mark Adams, PPPL

Up to 537M unknowns
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80 µm w/ shell

Vertebral Body With Shell

 Large deformation elasticity

 6 load steps (3% strain)

 Scaled speedup

 ~131K dof/processor

 7 to 537 million dof

 4 to 292 nodes

 IBM SP Power3

 14 of 16 procs/node used

 Up to 4088 processors

 Double/Single Colony switch

 Gordon Bell Prize, 2004

 Clinical application to predicting 
chance of fracture due to osteoporosis
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131K dof / proc - Flops/sec/proc  
.47 Teraflops - 4088 processors

537M dof !



Conclusions

° Multigrid can be very fast

• Provably “optimal” (does O(N) flops to compute N unknowns)   
for many problems in which one can show that using a coarse 
grid gives a good approximation

• Can be parallelized effectively

° Multigrid can be complicated to implement

• Lots of software available (see web page for pointers)

- PETSc  (includes many iterative solvers, interfaces to other 
packages, Python interface, runs in parallel)

- ACTS (repository for PETSc and other packages)

– Offers periodic short courses on using these packages

- MGNET

• Sample Matlab implementation for 1D and 2D Poisson

- See class web page under “Matlab Programs for Homework 
Assignments”

Fall 2010 Math 221
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Parallel 2D Multigrid

° Multigrid on 2D 
requires nearest 
neighbor (up to 8) 
computation at each 
level of the grid

° Start with n=2m+1 by 
2m+1 grid (here m=5)

° Use an s by s 
processor grid                   
(here s=4)
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Performance Model of parallel 2D Multigrid (V-cycle)

° Assume 2m+1 by 2m+1 grid of points, n= 2m-1, N=n2

° Assume p = 4k processors, arranged in 2k by 2k grid

• Processors start with 2m-k by 2m-k subgrid of unknowns

° Consider V-cycle starting at level m

• At levels m through k of V-cycle, each processor does some work

• At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of 
unknowns cannot occupy each processor

° Cost of one level in V-cycle

• If level j >= k, then cost = 

O(4j-k )       ….  Flops, proportional to the number of grid points/processor

+ O( 1 ) a       …. Send a constant # messages to neighbors

+ O( 2j-k) b    …. Number of words sent

• If level j < k, then cost = 

O(1)            ….  Flops, proportional to the number of grid points/processor

+ O(1) a …. Send a constant # messages to neighbors

+ O(1) b          .… Number of words sent

° Sum over all levels in all V-cycles in FMG to get complexity
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Comparison of Methods (in O(.) sense)

# Flops           # Messages        # Words sent

MG           N/p +               (log N)2 (N/p)1/2 +

log p * log N                             log p * log N

FFT          N log N / p       p1/2 N/p

SOR         N3/2 /p              N1/2 N/p

° SOR is slower than others on all counts

° Flops for MG and FFT depends on accuracy of MG

° MG communicates less total data (bandwidth)

° Total messages (latency) depends …

• This coarse analysis can’t say whether MG or FFT is better when 
a >> b
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Practicalities

° In practice, we don’t go all the way to P(1)

° In sequential code, the coarsest grids are negligibly 
cheap, but on a parallel machine they are not.

• Consider 1000 points per processor

• In 2D, the surface to communicate is 4xsqrt(1000) ~= 128, or 13%

• In 3D, the surface is 1000-83 ~= 500, or 50%

° See Tuminaro and Womble, SIAM J. Sci. Comp., 
v14, n5, 1993 for analysis of MG on 1024 nCUBE2

• on 64x64 grid of unknowns, only 4 per processor

- efficiency of 1 V-cycle was .02, and on FMG .008

• on 1024x1024 grid

- efficiencies were .7 (MG Vcycle) and .42 (FMG)

- although worse parallel efficiency, FMG is 2.6 times faster 
that V-cycles alone

• nCUBE had fast communication, slow processors
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Multigrid on an Adaptive Mesh

° For problems with very 
large dynamic range, 
another level of 
refinement is needed

° Build adaptive mesh 
and solve multigrid 
(typically) at each level

° Can’t afford to use finest mesh everywhere
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Multiblock Applications

° Solve system of equations on a union of rectangles

• subproblem of AMR

° E.g.,
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Adaptive Mesh Refinement

° Data structures in AMR

° Usual parallelism is to assign grids on each level to 
processors

° Load balancing is a problem
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Support for AMR

° Domains in Titanium designed for this problem

° Kelp, Boxlib, and AMR++ are libraries for this

° Primitives to help with boundary value updates, etc.
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Multigrid on an Unstructured Mesh

° Another approach to 
variable activity is to 
use an unstructured 
mesh that is more 
refined in areas of 
interest

° Adaptive rectangular 
or unstructured?

• Numerics easier on 
rectangular

• Supposedly easier to 
implement (arrays without 
indirection) but boundary 
cases tend to dominate 
code

Up to 39M unknowns on 960 processors,

With 50% efficiency (Source: M. Adams)


