
Parallel Database Primer

Joe Hellerstein

Today

• Background:
– The Relational Model and you
– Meet a relational DBMS

• Parallel Query Processing: sort and hash-join
– We will assume a “shared-nothing” architecture
– Supposedly hardest to program, but actually

quite clean
• Data Layout
• Parallel Query Optimization
• Case Study: Teradata

A Little History
• In the Dark Ages of databases, programmers reigned

– data models had explicit pointers (C on disk)
– brittle Cobol code to chase pointers

• Relational revolution: raising the abstraction
– Christos: “as clear a paradigm shift as we can hope to

find in computer science”
– declarative languages and data independence
– key to the most successful parallel systems

• Rough Timeline
– Codd’s papers: early 70’s
– System R & Ingres: mid-late 70’s
– Oracle, IBM DB2, Ingres Corp: early 80’s
– rise of parallel DBs: late 80’s to today

Relational Data Model
• A data model is a collection of concepts for

describing data.
• A schema is a description of a particular

collection of data, using the a given data
model.

• The relational model of data :
– Main construct: relation, basically a table with

rows and columns.
– Every relation has a schema, which describes

the columns, or fields.
– Note: no pointers, no nested structures, no

ordering, no irregular collections

Two Levels of Indirection
• Many views, single

conceptual (logical) schema
and physical schema.
– Views describe how users

see the data.
– Conceptual schema defines

logical structure
– Physical schema describes

the files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: University Database
• Conceptual schema:

– Students(sid: string, name: string, login: string,
 age: integer, gpa:real)

– Courses(cid: string, cname:string,
credits:integer)

– Enrolled(sid:string, cid:string, grade:string)
• Physical schema:

– Relations stored as unordered files.
– Index on first column of Students.

• External Schema (View):
– Course_info(cid:string,enrollment:integer)

Data Independence

• Applications insulated from how data is
structured and stored.

• Logical data independence:
– Protection from changes in logical structure of

data.
– Lets you slide || systems under traditional apps

• Physical data independence:
– Protection from changes in physical structure

of data.
– Minimizes constraints on processing, enabling

clean parallelism

Structure of a DBMS

• A typical DBMS has a
layered architecture.

• The figure does not show
the concurrency control
and recovery components.

• This is one of several
possible architectures;
each system has its own
variations.

Query Optimization
and Execution

Relational Operators

Files and Access Methods

Buffer Management

Disk Space Management

DB

Parallel
considerations

mostly here

By relieving the brain of all unnecessary
work, a good notation sets it free to

concentrate on more advanced problems,
and, in effect, increases the mental power

of the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

π

Relational Query Languages
• Query languages: Allow manipulation and retrieval of

data from a database.
• Relational model supports simple, powerful QLs:

– Strong formal foundation based on logic.
– Allows for much optimization/parallelization

• Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

Formal Relational Query Languages
Two mathematical Query Languages form the

basis for “real” languages (e.g. SQL), and for
implementation:

¶ Relational Algebra: More operational, very
useful for representing internal execution plans.
“Database byte-code”. Parallelizing these is most

of the game.
· Relational Calculus: Lets users describe what

they want, rather than how to compute it.
(Non-operational, declarative -- SQL comes
from here.)

Preliminaries
• A query is applied to relation instances, and the

result of a query is also a relation instance.
– Schemas of input relations for a query are fixed

(but query will run regardless of instance!)
– The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

– Languages are closed (can compose queries)

Relational Algebra
• Basic operations:

– Selection (σ) Selects a subset of rows from relation.
– Projection (π) Hides columns from relation.
– Cross-product (x) Concatenate tuples from 2 relations.
– Set-difference (—) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 and in reln. 2.

• Additional operations:
– Intersection, join, division, renaming: Not essential,

but (very!) useful.

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π
sname rating

S
,

()2

age
35.0
55.5

πage S()2

• Deletes attributes that are
not in projection list.

• Schema of result:
– exactly the fields in the projection

list, with the same names that
they had in the (only) input
relation.

• Projection operator has to
eliminate duplicates! (Why??)
– Note: real systems typically don’t

do duplicate elimination unless the
user explicitly asks for it. (Why
not?)

Selection

σ
rating

S
>8

2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σ
sname rating rating

S
,

(())
>8

2

• Selects rows that satisfy
selection condition.

• No duplicates in result!
• Schema of result:

– identical to schema of
(only) input relation.

• Result relation can be the
input for another relational
algebra operation!
(Operator composition.)

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

* Renaming operator:

Cross-Product
• S1 x R1: All pairs of rows from S1,R1.
• Result schema: one field per field of S1 and

R1, with field names `inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.

Joins
• Condition Join:

• Result schema same as that of cross-product.
• Fewer tuples than cross-product, usually able

to compute more efficiently
• Sometimes called a theta-join.

R c S c R S>< = ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

11
.1.1

RS
sidRsidS <

<>

Joins
• Equi-Join: Special case: condition c contains only

conjunction of equalities.

• Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

• Natural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1><

• relation-list : A list of relation names
– possibly with a range-variable after each name

• target-list : A list of attributes of tables in
relation-list

• qualification : Comparisons combined using AND,
OR and NOT.
– Comparisons are Attr op const or Attr1 op

Attr2, where op is one of < > = ≤ ≥
• DISTINCT: optional keyword indicating that

the answer should not contain duplicates.
– Default is that duplicates are not eliminated!

SELECT [DISTINCT] target-list
FROM relation-list
WHERE qualificationBasic SQL

Conceptual Evaluation Strategy
• Semantics of an SQL query defined in terms of the

following conceptual evaluation strategy:
– Compute the cross-product of relation-list.
– Discard resulting tuples if they fail qualifications.
– Delete attributes that are not in target-list.
– If DISTINCT is specified, eliminate duplicate rows.

• Probably the least efficient way to compute a query!
– An optimizer will find more efficient strategies same

answers.

Query Optimization & Processing

• Optimizer maps SQL to algebra tree with
specific algorithms
– access methods, join algorithms, scheduling

• relational operators implemented as iterators
– open()
– next(possible with condition)
– close

• parallel processing engine built on partitioning
dataflow to iterators
– inter- and intra-query parallelism

Workloads

• Online Transaction Processing
– many little jobs (e.g. debit/credit)
– SQL systems c. 1995 support 21,000 tpm-C

• 112 cpu,670 disks
• Batch (decision support and utility)

– few big jobs, parallelism inside
– Scan data at 100 MB/s
– Linear Scaleup to 500 processors

Today

• Background:
– The Relational Model and you
– Meet a relational DBMS

• Parallel Query Processing: sort and hash-join
• Data Layout
• Parallel Query Optimization
• Case Study: Teradata

Parallelizing Sort
• Why?

– DISTINCT, GROUP BY, ORDER BY, sort-merge join,
index build

• Phases:
– I: || read and partition (coarse radix sort), pipelined with

|| sorting of memory-sized runs, spilling runs to disk
– || reading and merging of runs

• Notes:
– phase 1 requires repartitioning 1-1/n of the data! High

bandwidth network required.
– phase 2 totally local processing
– both pipelined and partitioned parallelism
– linear speedup, scaleup!

Hash Join
• Partition both

relations using hash fn
h: R tuples in partition
i will only match S
tuples in partition i.

v Read in a partition of R,
hash it using h2 (<>
h!). Scan matching
partition of S, search for
matches.

Partitions
of R & S

Input buffer
for Si

Hash table for partition
Ri (k < B-1 pages)

B main memory buffersDisk

Output
 buffer

Disk

Join Result

hash
fn
h2

h2

B main memory buffers DiskDisk

Original
Relation OUTPUT

2INPUT

1

hash
function

h B-1

Partitions

1

2

B-1

.

Parallelizing Hash Join

• Easy!
– Partition on join key in phase 1
– Phase 2 runs locally

Themes in Parallel QP
• essentially no synchronization except setup & teardown

– no barriers, cache coherence, etc.
– DB transactions work fine in parallel

• data updated in place, with 2-phase locking transactions
• replicas managed only at EOT via 2-phase commit
• coarser grain, higher overhead than cache coherency stuff

• bandwidth much more important than latency
– often pump 1-1/n % of a table through the network
– aggregate net BW should match aggregate disk BW
– Latency, schmatency

• ordering of data flow insignificant (hooray for relations!)
– Simplifies synchronization, allows for work-sharing

• shared mem helps with skew
– but distributed work queues can solve this (?) (River)

Disk Layout

• Where was the data to begin with?
– Major effects on performance
– algorithms as described run at the speed of the

slowest disk!
• Disk placement

– logical partitioning, hash, round-robin
– “declustering” for availability and load balance
– indexes live with their data

• This task is typically left to the “DBA”
– yuck!

Handling Skew

• For range partitioning, sample load on disks.
– Cool hot disks by making range smaller

• For hash partitioning,
– Cool hot disks by mapping some buckets to

others

• During query processing
– Use hashing and assume uniform
– If range partitioning, sample data and use

histogram to level the bulk
– SMP/River scheme: work queue used to balance

load

Query Optimization

• Map SQL to a relational algebra tree,
annotated with choice of algorithms. Issues:
– choice of access methods (indexes, scans)
– join ordering
– join algorithms
– post-processing (e.g. hash vs. sort for groups,

order)
• Typical scheme, courtesy System R

– bottom-up dynamic-programming construction
of entire plan space

– prune based on cost and selectivity estimation

Parallel Query Optimization

• More dimensions to plan space:
– degree of parallelism for each operator
– scheduling: assignment of work to processors

• One standard heuristic (Hong & Stonebraker)
– run the System R algorithm as if single-node

(JOQR)
• refinement: try to avoid repartitioning (query

coloring)
– parallelize (schedule) the resulting plan

Parallel Query Scheduling
• Usage of a site by an isolated operator is given by (Tseq,

W, V) where
– Tseq is the sequential execution time of the operator
– W is a d-dimensional work vector (time-shared)
– V is a s-dimensional demand vector (space-shared)

• A set of “clones” S = <(W1,V1),…,(Wk,Vk)> is called
compatible if they can be executed together on a site
(space-shared constraint)

• Challenges:
– capture dependencies among operators (simple)
– pick a degree of parallelism for each op (# of clones)
– schedule clones to sites, under constraint of

compatibility
• solution is a mixture of query plan understanding,

approximation algs for bin-packing, & modifications of
dynamic programming optimization algs

Today

• Background:
– The Relational Model and you
– Meet a relational DBMS

• Parallel Query Processing: sort and hash-join
• Data Layout
• Parallel Query Optimization
• Case Study: Teradata

Case Study: Teradata
• Founded 1979: hardware and software

– beta 1982, shipped 1984
– classic shared-nothing system

• Hardware
– COP (Communications Processor)

• accept, “plan”, “manage” queries
– AMP (Access Module Processor)

• SQL DB machine (own data, log, locks, executor)
• Communicates with other AMPs directly

– Ynet (now BYNET)
• duplexed network (fault tolerance) among all nodes
• sorts/merges messages by key
• messages sent to all (Ynet routes hash buckets)
• reliable multicast to groups of nodes
• flow control via AMP pushback

History and Status

• Bought by NCR/AT&T 1992
• AT&T spun off NCR again 1997
• TeraData software lives

– Word on the street: still running 8-bit PASCAL
code

• NCR WorldMark is the hardware platform
– Intel-based UNIX workstations + high-speed

interconnect (a la IBM SP-2)
• World’s biggest online DB (?) is in TeraData

– Wal-Mart’s sales data: 7.5 Tb on 365 AMPs

TeraData Data Layout
• Hash everything

– All tables hash to 64000 buckets (64K in new version).
– bucket map that distributes it over AMPS

• AMPS manage local disks as one logical disk
• Data partitioned by primary index (may not be unique)

– Secondary indices too -- if unique, partitioned by key
– if not unique, partitioned by hash of primary key

• Fancy disk layout
– Key thing is that need for reorg is RARE (system is self

organizing)
• Occasionally run disk compaction (which is purely local)
• Very easy to design and manage.

TeraData Query Execution
• Complex queries executed "operator at a time",

– no pipelining between AMPs, some inside AMPS
• Protocol

– 1. COP requests work
– 2. AMPs all ACK starting (if not then backoff)
– 3. get completion from all AMPs
– 4. request answer (answers merged by Ynet)
– 5. if it is a transaction, Ynet is used for 2-phase commit

• Unique secondary index lookup:
– key->secondaryAMP->PrimaryAMP->ans

• Non-Unique lookup:
– broadcast to all AMPs and then merge results

More on TeraData QP
• MultiStatement operations can proceed in parallel (up to

10x parallel)
– e.g. batch of inserts or selects or even TP

• Some intra-statement operators done in parallel
• E.g. (select * from x where ... order by ...) is three phases:

scan->sort->spool->merge-> application.
• AMP sets up a scanner, "catcher", and sorter
• scanner reads records and throws qualifying records to

Ynet (with hash sort key)
• catcher gets records from Ynet and drives sorter
• sorter generates locally sorted spool files.
• when done, COP and Ynet do merge.

• If join tables not equi-partitioned then rehash.
• Often replicate small outer table to many partitions (Ynet is

good for this)

Lessons to Learn
• Raising the abstraction to programmers is good!

– Allows advances in parallelization to proceed
independently

• Ordering, pointers and other structure are bad
– sets are great! partitionable without synch.
– files have been a dangerous abstraction

(encourage array-think)
– pointers stink…think joins (same thing in batch!)

• Avoiding low-latency messaging is a technology
win
– shared-nothing clusters instead of MPP
– Teradata lives, CM-5 doesn’t…
– UltraSparc lives too…CLUMPS

More Lessons

• “Embarassing”?
– Perhaps, algorithmically
– but ironed out a ton of HW/SW architectural

issues
• got interfaces right
• iterators, dataflow, load balancing
• building balanced HW systems

– huge application space, big success
– matches (drives?) the technology curve

• linear speedup with better I/O interconnects, higher
density and BW from disk

• faster machines won’t make data problems go away

Moving Onward

• Parallelism and Object-Relational
– can you give back the structure and keep the

||-ism?
– E.g. multi-d objects, lists and array data,

multimedia (usually arrays)
– typical tricks include chunking and clustering,

followed by sorting
• I.e. try to apply set-like algorithms and “make right”

later
– lessons here?

History & Resources
• Seminal research projects

– Gamma (DeWitt & co., Wisconsin)
– Bubba (Boral, Copeland & Kim, MCC)
– XPRS (Stonebraker & co, Berkeley)
– Paradise? (DeWitt & co., Wisconsin)

• Readings in Database Systems (CS286 text)
– http://redbook.cs.berkeley.edu

• Jim Gray’s Berkeley book report
– http://www.research.microsoft.com/~gray/PDB95.{doc,ppt}

• Undergrad texts
– Ramakrishnan’s “Database Management Systems”
– Korth/Silberschatz/Sudarshan’s “Database

Systems Concepts”

