Parallel Database Primer

Joe Hellerstein

Today

Background:

- The Relational Model and you

- Meet a relational DBMS

Parallel Query Processing: sort and hash-join

- We will assume a “shared-nothing” architecture

— Supposedly hardest to program, but actually
quite clean

Data Layout
Parallel Query Optimization
Case Study: Teradata

A Little History

In the Dark Ages of databases, programmers reigned
- data models had explicit pointers (C on disk)

— brittle Cobol code to chase pointers

Relational revolution: raising the abstraction

— Christos: “as clear a paradigm shift as we can hope to
find in computer science”

- declarative languages and data independence
- key to the most successful parallel systems
Rough Timeline

— Codd'’s papers: early 70's

- System R & Ingres: mid-late 70’s

- Oracle, 1BM DB2, Ingres Corp: early 80's

— rise of parallel DBs: late 80’s to today

Relational Data Model

« A data model is a collection of concepts for
describing data.

e A schema is a description of a particular
collection of data, using the a given data
model.

e The relational model of data :

— Main construct: relation, basically a table with
rows and columns.

- Every relation has a schema, which describes
the columns, or fields.

— Note: no pointers, no nested structures, no
ordering, no irregular collections

Two Levels of Indirection

e Many views, single

View 1| [View 2| [View 3

conceptual (logical) schema
and physicai schema. \ ¢ /
- Views describe how users Conceptual Schema
see the data.)
— Conceptual schema defines Physical Schema

logical structure ?

— Physical schema describes
the files and indexes used.

>

Example: University Database

e Conceptual schema:

- Students(sid: string, name: string, login: string,

age: integer, gpa:real)
— Courses(cid: string, cname:string,
credits:integer)

- Enrolled(sid:string, cid:string, grade:string)
e Physical schema:

- Relations stored as unordered files.

— Index on first column of Students.
« External Schema (View):

— Course_info(cid:string,enrollment:integer)

Data Independence

« Applications insulated from how data is
structured and stored.

e Logical data independence:

- Protection from changes in logical structure of
data.

- Lets you slide || systems under traditional apps
e Physical data independence:

— Protection from changes in physical structure
of data.

— Minimizes constraints on processing, enabling
clean parallelism

. Parallel
considerations

Structure of a DBMS mostly here

« A typical DBMS has a
layered architecture.

e The figure does not show
the concurrency control Relational Operators
and recovery components.

e This is one of several
possible architectures;
each system has its own

variations. Disk Space Management

Query Optimization
and Execution

Files and Access Methods

Buffer Management

Relational Query Languages

o\ L

By relieving the brain of all unnecessary
work, 3 good notation sets it free to
concentrate on more advanced problems,
and, in effect, increases the mental power
of the race.

-- Alfred North Whitehead (1861 - 1947)

Relational Query Languages

« Query languages: Allow manipulation and retrieval of
data from a database.

e Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
— Allows for much optimization/parallelization
« Query Languages != programming languages!
— QLs not expected to be “Turing complete”.
- QLs not intended to be used for complex calculations.
- QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
Implementation:

@ Relational Algebra: More operational, very
useful for representing internal execution plans.

“Database byte-code”. Parallelizing these is most
of the game.

® Relational Calculus: Lets users describe what
they want, rather than how to compute it.
(Non-operational, declarative —— SQL comes
from here.)

Preliminaries

« A query is applied to relation instances, and the
result of a query iIs also a relation instance.

- Schemas of input relations for a query are fixed
(but query will run regardless of instance!)

- The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

— Languages are closed (can compose queries)

Relational Algebra

e Basic operations:
- Selection (S) Selects a subset of rows from relation.

— Projection (P) Hides columns from relation.
— Cross-product (x) Concatenate tuples from 2 relations.
- Set-difference (—) Tuples in reln. 1, but not in reln. 2.

- Union (E) Tuples in reln. 1 and in reln. 2.
e Additional operations:

— Intersection, join, division, renaming: Not essential,
but (very!) useful.

Projection

e Deletes attributes that are
not Iin projection list.

e Schema of result:

— exactly the fields in the projection p
list, with the same names that
they had in the (only) input
relation.

e Projection operator has to
eliminate duplicates! (Why??)
— Note: real systems typically don't
do duplicate elimination unless the

user explicitly asks for it. (Why
not?)

sname rating
yuppy |9
lubber |8
guppy |9
rusty 10
Snamerati ng(

age

35.0

53.5

P age)

)

Selection

Selects rows that satisfy
selection condition.

No duplicates in result!
Schema of result:

— 1dentical to schema of
(only) input relation.

Result relation can be the
iInput for another relational
algebra operation!
(Operator composition.)

sid [sname |rating |age
28 |yuppy |9 35.0
58 |rusty |10 35.0
rating>8(52)
sname |rating
yuppy |9
rusty |10
P snamerati ng(S rating> 8(52))

Cross-Product

e S1 x R1: All pairs of rows from S1,R1.

e Result schema: one field per field of S1 and
R1, with field names " inherited’ if possible.

— Conflict: Both S1 and R1 have a field called sid.

(sid) [sname |rating [age |(sid) |bid |day
22 |dustin 7 450 | 22 |101 [10/10/96
22 |dustin 7 45.0 | 58 [103 [11/12/96
31 |lubber | 8 555 | 22 (101 |10/10/96
31 |lubber | 8 55,5 | 58 103 |11/12/96
58 |rusty 10 [35.0 | 22 |101 |10/10/96
58 |rusty 10 [35.0 | 58 |103 |11/12/96

m Renaming operatorl (C(1® sidl,5® sid2), SI” Rl

Joins

e Condition Join:

R .S=s (R 9

(sid) [sname |rating |age |[(sid) |bid |day

22 dustin |7 45.0 |58 103 [11/12/96

31 lubber |8 55.5 |58 103 [11/12/96
Slsid<Rl.sid Rl

e Result schema same as that of cross-product.
 Fewer tuples than cross-product, usually able

to compute more efficiently

e Sometimes called a theta-join.

Joins

Equi-Join: Special case: condition ¢ contains only
conjunction of equalities.

sid |[sname |rating |age |bid |day

22 dustin |7 45.0 101 |10/10/96
58 rusty 10 35.0 [103 |11/12/96
S« . Rl
sid

Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

Natural Join: Equijoin on all common fields.

o SELECT [DISTINCT] target-list
FROM relation-list

Basic SQL WHERE qualification

relation-list : A list of relation names
- possibly with a range-variable after each name

e target-list : A list of attributes of tables In
relation-list

e qualification : Comparisons combined using AND,
OR and NOT.

— Comparisons are Attr op const or Attrl op
Attr2, whereopisoneof< > = £ 3

e DISTINCT: optional keyword indicating that
the answer should not contain duplicates.

- Default is that duplicates are not eliminated!

Conceptual Evaluation Strategy

« Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:

— Compute the cross-product of relation-list.

— Discard resulting tuples if they fail qualifications.

- Delete attributes that are not in target-list.

— I DISTINCT is specified, eliminate duplicate rows.
 Probably the least efficient way to compute a query!

— An optimizer will find more efficient strategies same
answers.

Query Optimization & Processing

e« Optimizer maps SQL to algebra tree with
specific algorithms

— access methods, join algorithms, scheduling
e relational operators implemented as iterators

— open()

- next(possible with condition)

- close

e parallel processing engine built on partitioning
dataflow to iterators

— Inter- and intra-query parallelism

Workloads

 Online Transaction Processing
- many little jobs (e.g. debit/credit)

— SQL systems c. 1995 support 21,000 tpm-C
e 112 cpu,670 disks

e Batch (decision support and utility)
- few big jobs, parallelism inside
- Scan data at 100 MB/s
— Linear Scaleup to 500 processors

Today

Background:

- The Relational Model and you

- Meet a relational DBMS

Parallel Query Processing: sort and hash-join
 Data Layout

Parallel Query Optimization

Case Study: Teradata

Parallelizing Sort

e Why?
- DISTINCT, GROUP BY, ORDER BY, sort-merge join,
index build
e Phases:

— I: || read and partition (coarse radix sort), pipelined with
|| sorting of memory-sized runs, spilling runs to disk

— || reading and merging of runs
 Notes:

— phase 1 requires repartitioning 1-1/n of the data! High
bandwidth network required.

— phase 2 totally local processing
— both pipelined and partitioned parallelism
— linear speedup, scaleup!

. Original

Relation OUTPUT Partitions
- — 1 —
Hash Join J :
2
e Partition both NPUT hash > 2
relations using hash fn > f“”ﬁ"’” 0o g .
h: R tuples in partition B-1
i will only match S - (U
tuples in partition . Disk B main memory buffers Disk
Partitions Join Result
of R& S - o el
« Read in a partition of R, ~—], Ha;hi t(f(‘bleé_o{ Sjé;t)'on ——
hash it using h2 (<> fn]
h!). Scan matching h2]
partition of S, search for 4/‘h2
matches. 000 > [] >
Input buffer Output .
=Y for S buffer 17 805

Disk B main memory buffers Disk

Parallelizing Hash Join

 Easy!
— Partition on join key in phase 1
— Phase 2 runs locally

Themes In Parallel QP

e essentially no synchronization except setup & teardown
— no barriers, cache coherence, etc.

— DB transactions work fine in parallel
e data updated in place, with 2-phase locking transactions
e replicas managed only at EOT via 2-phase commit
e coarser grain, higher overhead than cache coherency stuff

e Dbandwidth much more important than latency
- often pump 1-1/n % of a table through the network
- aggregate net BW should match aggregate disk BW
- Latency, schmatency
e ordering of data flow insignificant (hooray for relations!)
— Simplifies synchronization, allows for work-sharing
e shared mem helps with skew
— but distributed work queues can solve this (?) (River)

Disk Layout

e Where was the data to begin with?
- Major effects on performance

— algorithms as described run at the speed of the
slowest disk!

e Disk placement
- logical partitioning, hash, round-robin
- “declustering” for availability and load balance
- Indexes live with their data
« This task is typically left to the “DBA”
— yuck!

Handling Skew

 For range partitioning, sample load on disks.
— Cool hot disks by making range smaller

 For hash partitioning,

— Cool hot disks by mapping some buckets to
others

e During query processing
- Use hashing and assume uniform

- If range partitioning, sample data and use
histogram to level the bulk

- SMP/River scheme: work queue used to balance
load

Query Optimization

e Map SQL to a relational algebra tree,
annotated with choice of algorithms. Issues:

— choice of access methods (indexes, scans)
— join ordering
— join algorithms
— post-processing (e.g. hash vs. sort for groups,
order)
e Typical scheme, courtesy System R

- bottom-up dynamic-programming construction
of entire plan space

— prune based on cost and selectivity estimation

Parallel Query Optimization

e More dimensions to plan space:

— degree of parallelism for each operator

— scheduling: assignment of work to processors
e« One standard heuristic (Hong & Stonebraker)

- run the System R algorithm as if single-node
(JOQR)
e refinement: try to avoid repartitioning (query
coloring)

— parallelize (schedule) the resulting plan

Parallel Query Scheduling

« Usage of a site by an isolated operator is given by (T3¢,
W, V) where

— Tsed is the sequential execution time of the operator
- W is a d-dimensional work vector (time-shared)
- V is a s-dimensional demand vector (space-shared)

« A set of “clones” S = <(W,,V,),...,(W,,V,)> Is called
compatible if they can be executed together on a site
(space-shared constraint)

e Challenges:
— capture dependencies among operators (simple)
— pick a degree of parallelism for each op (# of clones)
— schedule clones to sites, under constraint of
compatibility
e solution is a mixture of query plan understanding,

approximation algs for bin-packing, & modifications of
dynamic programming optimization algs

Background:

— The Relational Model and you

- Meet a relational DBMS

Parallel Query Processing: sort and hash-join

Data Layout
Parallel Query Optimization
Case Study: Teradata

Case Study: Teradata

e Founded 1979: hardware and software
- beta 1982, shipped 1984
— classic shared-nothing system
e Hardware
— COP (Communications Processor)
e accept, “plan”, “manage” queries
— AMP (Access Module Processor)
e« SQL DB machine (own data, log, locks, executor)
e Communicates with other AMPs directly
- Ynet (now BYNET)
e duplexed network (fault tolerance) among all nodes
e sorts/merges messages by key
 messages sent to all (Ynet routes hash buckets)
* reliable multicast to groups of nodes
e flow control via AMP pushback

History and Status

e Bought by NCR/AT&T 1992
e AT&T spun off NCR again 1997
e TeraData software lives

- Word on the street: still running 8-bit PASCAL
code

e NCR WorldMark is the hardware platform

- Intel-based UNIX workstations + high-speed
Interconnect (a la 1BM SP-2)

 World’s biggest online DB (?) is in TeraData
- . 7.5 Tb on 365 AMPs

TeraData Data Layout

Hash everything

- All tables hash to 64000 buckets (64K in new version).
- bucket map that distributes it over AMPS

AMPS manage local disks as one logical disk

Data partitioned by primary index (may not be unique)
— Secondary indices too -- if unique, partitioned by key
— 1f not unique, partitioned by hash of primary key
Fancy disk layout

- Key thing is that need for reorg is RARE (system is self
organizing)
e Ocecasionally run disk compaction (which is purely local)
* Very easy to design and manage.

TeraData Query Execution

Complex queries executed "operator at a time",
— no pipelining between AMPs, some inside AMPS
Protocol

— 1. COP requests work

- 2. AMPs all ACK starting (if not then backoff)
— 3. get completion from all AMPs

- 4. request answer (answers merged by Ynet)

- 5. i1f it is a transaction, Ynet is used for 2-phase commit
Unique secondary index lookup:

- key->secondaryAMP->PrimaryAMP->ans
Non-Unique lookup:

- broadcast to all AMPs and then merge results

More on TeraData QP

« MultiStatement operations can proceed in parallel (up to
10x parallel)

— e.g. batch of inserts or selects or even TP

e Some Iintra-statement operators done in parallel

E.g. (select * from x where ... order by ...) is three phases:
scan->sort->spool->merge-> application.

« AMP sets up a scanner, "catcher", and sorter

e scanner reads records and throws qualifying records to
Ynet (with hash sort key)

e catcher gets records from Ynet and drives sorter
e sorter generates locally sorted spool files.
e when done, COP and Ynet do merge.

« If join tables not equi-partitioned then rehash.

e Often replicate small outer table to many partitions (Ynet is
good for this)

Lessons to Learn
e Raising the abstraction to programmers is good!

— Allows advances in parallelization to proceed
Independently

e Ordering, pointers and other structure are bad
- sets are great! partitionable without synch.

— files have been a dangerous abstraction
(encourage array-think)

— pointers stink...think joins (same thing in batch!)

e Avoiding low-latency messaging is a technology
win

- shared-nothing clusters instead of MPP
— Teradata lives, CM-5 doesn't...
— UltraSparc lives too..CLUMPS

More Lessons

e “Embarassing”?
- Perhaps, algorithmically

- but ironed out a ton of HW/SW architectural
ISsues
e got interfaces right
e iterators, dataflow, load balancing
e building balanced HW systems

- huge application space, big success

- matches (drives?) the technology curve

 linear speedup with better 1/0 interconnects, higher
density and BW from disk

e faster machines won't make data problems go away

Moving Onward

e Parallelism and Object-Relational
— can you give back the structure and keep the
||-1sm?
- E.g. multi-d objects, lists and array data,
multimedia (usually arrays)

— typical tricks include chunking and clustering,

followed by sorting

e l.e. try to apply set-like algorithms and “make right”
later

— lessons here?

History & Resources

« Seminal research projects
- Gamma (DeWitt & co., Wisconsin)
- Bubba (Boral, Copeland & Kim, MCC)
- XPRS (Stonebraker & co, Berkeley)
— Paradise? (DeWitt & co., Wisconsin)

« Readings in Database Systems (CS286 text)
- http://redbook.cs.berkeley.edu

e« Jim Gray’s Berkeley book report
- http://www.research.microsoft.com/~gray/PDB95.{doc,ppt}

« Undergrad texts
- Ramakrishnan’s “Database Management Systems”

— Korth/Silberschatz/Sudarshan’'s “Database
Systems Concepts”

