CS 267 Applications of Parallel Computers
Hierarchical Methods for the N -Body problem

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16

04/19/2016
CS267 Lecture 25
1

Big Idea

Suppose the answer at each point depends on data at all

 the other points- Electrostatic, gravitational force
- Solution of elliptic PDEs
- Graph partitioning

Seems to require at least $O\left(n^{2}\right)$ work, communication

- If the dependence on "distant" data can be compressed - Because it gets smaller, smoother, simpler...
${ }^{\circ}$ Then by compressing data of groups of nearby points, can cut cost (work, communication) at distant points
- Apply idea recursively: cost drops to $O(n \log n$) or even $O(n)$

Examples:

- Barnes-Hut or Fast Multipole Method (FMM) for electrostatics/gravity/...
- Multigrid for elliptic PDE
- Multilevel graph partitioning (METIS, Chaco,...)

04/19/2016 CS267 Lecture 25

Particle Simulation
$t=0$
while $t_{t} t_{-}$final
for $\mathrm{i}=1$ to n
compute $f(i)=$ force on particle
for $i=1$ to n
move particle i under force $f(i)$ for time dt ... using F=ma compute interesting properties of particles (energy, etc.) end while

- $\mathbf{f}(\mathrm{i})=$ external_force + nearest_neighbor_force + N-Body_force - External_force is usually embarrassingly parallel and costs $\mathrm{O}(\mathrm{N})$ for all particles external current in Sharks and Fish
- Nearest_neighbor_force requires interacting with a few neighbors, so still O(N) van der Waals, bouncing balls
N-Body force (gravity or electrostatics) requires all-to-all interaction
$f(i)=\begin{array}{llll}\boldsymbol{\Sigma} \quad f(i, k) \quad \ldots & f(i, k)=\text { force on } i \text { from } k\end{array}$
(10) $k \neq i$
$f(i, k)=c^{*} v /\|v\|^{3}$ in 3 dimensions or $f(i, k)=c^{*} v\| \| v \|^{2}$ in 2 dimensions
- $\mathrm{v}=$ vector from particle i to particle $\mathrm{k}, \mathrm{c}=$ product of masses or charges - $\|v\|=$ length of v

Obvious algorithm costs $\mathrm{O}\left(\mathrm{n}^{2}\right)$, but we can do better.
03/014/2013 CS267 Lecture 25

Applications (2/2)

${ }^{\circ}$ Molecular Dynamics

${ }^{\circ}$ Plasma Simulation
${ }^{\circ}$ Electron-Beam Lithography Device Simulation
${ }^{\circ}$ Hair ...

- www.fxguide.com/featured/brave-new-hairl
- graphics.pixar.com/library/CurlyHairA/paper.pdf

Applications (1/2)

- Astrophysics and Celestial Mechanics - 1992
- Intel Delta = 1992 supercomputer, 512 Intel i860s
- 17 million particles, 600 time steps, 24 hours elapsed time
- M. Warren and J. Salmon
- Gordon Bell Prize at Supercomputing 1992
- Sustained 5.2 Gigaflops $=44 \mathrm{~K}$ Flops/particle/time step
- 1\% accuracy
- Direct method ($17 \mathrm{Flops} /$ particle/time step) at 5.2 Gflops would have taken 18 years, 6570 times longer
- Vortex particle simulation of turbulence - 2009
- Cluster of 256 NVIDIA GeForce 8800 GPUs
- 16.8 million particles
- T. Hamada, R. Yokota, K. Nitadori. T. Narumi, K. Yasoki et al

Gordon Bell Prize for Price/Performance at Supercomputing 2009

- Sustained 20 Teraflops, or $\$ 8 /$ Gigaflop

04/19/2016
CS267 Lecture 25

Reducing the number of particles in the force sum

- All later divide and conquer algorithms use same intuition
${ }^{\circ}$ Consider computing force on earth due to all celestial bodies
- Look at night sky, \# terms in force sum \geq number of visible stars
- Oops! One "star" is really the Andromeda galaxy, which contains billions of real stars
- Seems like a lot more work than we thought ...
${ }^{\circ}$ Don't worry, ok to approximate all stars in Andromeda by a single point at its center of mass (CM) with same total mass (TM)
- $\mathrm{D}=$ size of box containing Andromeda , $\mathrm{r}=$ distance of CM to Earth
- Require that D / r be "small enough"

- Idea not new: Newton approximated earth and falling apple by CMs 04/19/2016 CS267 Lecture 25

What is new: Using points at CM recursively
${ }^{\circ}$ From Andromeda's point of view, Milky Way is also a point mass
${ }^{\circ}$ Within Andromeda, picture repeats itself

- As long as D1/r1 is small enough, stars inside smaller box can be As long as $D 1 / r 1$ is small enough, stars inside smalle
replaced by their CM to compute the force on Vulcan
- Boxes nest in boxes recursively

Replaenc Clusears by their Ceneers of Mass Reenstively

04/19/2016

Outline

- Motivation

Obvious algorithm for computing gravitational or electrostatic force on N bodies takes O(N^{2}) work

- How to reduce the number of particles in the force sum

We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)

- Basic Data Structures: Quad Trees and Oct Trees
\circ The Barnes-Hut Algorithm (BH)
An $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ approximate algorithm for the N -Body problem
The Fast Multipole Method (FMM)
An $\mathrm{O}(\mathrm{N})$ approximate algorithm for the N -Body problem
${ }^{\circ}$ Parallelizing BH, FMM and related algorithms

Quad Trees

${ }^{\circ}$ Data structure to subdivide the plane

- Nodes can contain coordinates of center of box, side length
- Eventually also coordinates of CM, total mass, etc.
${ }^{\circ}$ In a complete quad tree, each nonleaf node has 4 children

A Curnplete Quatrree wilh 4 Levels

Oct Trees

${ }^{\circ}$ Similar Data Structure to subdivide space
2 Levels of an Oetree

Using Quad Trees and Oct Trees

${ }^{\circ}$ All our algorithms begin by constructing a tree to hold all the particles
${ }^{\circ}$ Interesting cases have nonuniformly distributed particles

- In a complete tree most nodes would be empty, a waste of space
and time
${ }^{\circ}$ Adaptive Quad (Oct) Tree only subdivides space where particles are located

Adaptive Quad Tree Algorithm (Oct Tree analogous) Procedure Quad_Tree_Build
Quad_Tree $=\{$ emtpy $\}$
for $\mathrm{j}=1$ to N
Quad_Tree_Insert(j, root)
loop over all N particles
insert particle j in QuadTree
endfor
... At this point, each leaf of Quad_Tree will have 0 or 1 particles
Traverse thil be 0 particles when some sibling has 1
Traverse the Quad_Tree eliminating empty leaves ... via, say Breadth First Search
Procedure Quad_Tree_Insert(j, n) ... Try to insert particle j at node n in Quad_Tree
if n an internal
if n an internal node $\ldots n$ has 4 children
determine which child c of node n contains particle
Ise if n contains 1 particl
add n 's 4 children to then n is a leaf Easy change for $q>1$ particles/leaf
move the particle already in n into the child containing it
let c be the child of n containing j
Quad_Tree_Insert(j, c)
else
store particle j in node n
end

04/19/2016
CS267 Lecture 25

Example of an Adaptive Quad Tree

In practice, have $q>1$ particles/square; tuning parameter

[^0]CS267 Lecture 25
14

Cost of Adaptive Quad Tree Constrution

${ }^{\circ}$ Cost $\leq N$ * maximum cost of Quad_Tree_Insert
$=\mathbf{O}\left(\mathbf{N}^{*}\right.$ maximum depth of Quad_Tree)
${ }^{\circ}$ Uniform Distribution of particles

- Depth of Quad_Tree $=0(\log N)$
- Cost $\leq \mathrm{O}$ ($\mathrm{N}^{*} \log \mathrm{~N}$)

${ }^{\circ}$ Arbitrary distribution of particles

- Depth of Quad_Tree = O(\# bits in particle coords) = O(b)
- Cost $\leq \mathrm{O}$ (b N)

```
Outline
    \circ}\mathrm{ Motivation
        Obvious algorithm for computing gravitational or electrostatic force on N bodies
        takes O(N2) work
    \circ How to reduce the number of particles in the force sum
        We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)
    Basic Data Structures: Quad Trees and Oct Trees
    \circ The Barnes-Hut Algorithm (BH)
        - An O(N log N) approximate algorithm for the N-Body problem
    0 The Fast Multipole Method (FMM)
        An O(N) approximate algorithm for the N-Body problem
    * Parallelizing BH, FMM and related algorithms

\section*{Barnes-Hut Algorithm}
- "A Hierarchical O(n \(\log n\) ) force calculation algorithm", J. Barnes and P. Hut, Nature, v. 324 (1986), many later papers
- Good for low accuracy calculations:

RMS error \(=\left(\Sigma_{k} \| \text { approx } f(k) \text { - true } f(k)\left\|^{2} /\right\| \text { true } f(k) \|^{2 / N}\right)^{1 / 2}\) ~ 1\%
(other measures better if some true \(f(\mathbf{k}) \sim 0\) )
\({ }^{\circ}\) High Level Algorithm (in 2D, for simplicity)
```

1) Build the QuadTree using QuadTreeBuild
```
... already described, cost \(=\mathrm{O}(\mathrm{N} \log \mathrm{N}\) ) or \(\mathrm{O}(\mathrm{b} N\) )
2) For each node \(=\) subsquare in the QuadTree, compute the
    CM and total mass (TM) of all the particles it contains
    "post order traversal" of QuadTree, cost \(=\mathrm{O}(\mathrm{N} \log \mathrm{N})\) or \(\mathrm{O}(\mathrm{b} \mathrm{N})\)
3) For each particle, traverse the QuadTree to compute the force on it,
    3) For each particle, traverse the QuadTree to co
using the CM and TM of "distant" subsquares
    ... core of algorithm
    cost depends on accuracy desired but still \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) or \(\mathrm{O}(\mathrm{bN})\)

04/19/2016

Step 2 of BH: compute CM and total mass of each node
... Compute the CM = Center of Mass and TM = Total Mass of all the particles ... in each node of the QuadTree
TM, CM ) = Compute_Mass( root )
function (TM, CM ) = Compute_Mass( \(n\)
. compute the CM and TM of node \(n\) if n contains 1 particle
\(\ldots\) the TM and CM are identical to the particle's mass and location store (TM, CM) at
return (TM, CM)
else ... "post order traversal": process parent after all children
for all children \(c(j)\) of \(n \ldots j=1,2,3,4\)
(TM(j), CM(j)) \(=\) Compute_Mass( \(\mathbf{c ( j ) )}\)
endfor
\(T M=T M(1)+T M(2)+T M(3)+T M(4)\)
... the total mass is the sum of the children's masses \(C M=\left(T M(1)^{*} C M(1)+T M(2)^{*} C M(2)+T M(3) * C M(3)+T M(4){ }^{*} C M(4)\right) / T M\) ... the CM is the mass-weighted sum of the children's centers of mass store ( TM, CM ) at \(n\)
\begin{tabular}{c}
\(\begin{array}{c}\text { retur } \\
\text { end if }\end{array}\) \\
\hline
\end{tabular}
Cost \(=\mathbf{O}(\#\) nodes in QuadTree) \(=\mathbf{O}(\mathbf{N} \log \mathbf{N})\) or \(\mathbf{O}(b \mathbf{N})\)
04/19/2016
CS267 Lecture 25
19

Step 3 of BH: compute force on each particle
\({ }^{\circ}\) For each node \(=\) square, can approximate force on particles outside the node due to particles inside node by using the node's CM and TM
- This will be accurate enough if the node if "far away enough"
from the particle from the particle
\({ }^{\circ}\) For each particle, use as few nodes as possible to compute force, subject to accuracy constraint
\({ }^{\circ}\) Need criterion to decide if a node is far enough from a particle - \(D=\) side length of node
- \(r=\) distance from particle to CM of node
- \(\theta=\) user supplied error tolerance <1
- Use CM and TM to approximate force of node on box if \(\mathrm{D} / \mathrm{r}<\theta\)


\footnotetext{
04/19/2016
CS267 Lecture 25
20
}

\section*{Computing force on a particle due to a node}
\({ }^{\circ}\) Suppose node \(n\), with CM and TM, and particle \(k\), satisfy \(D / r<\theta\)
\({ }^{\circ}\) Let ( \(x_{k}, y_{k}, z_{k}\) ) be coordinates of \(k, m\) its mass
\({ }^{\circ}\) Let ( \(\mathrm{x}_{\mathrm{CM}}, \mathrm{y}_{\mathrm{CM}}, \mathrm{z}_{\mathrm{CM}}\) ) be coordinates of CM
\({ }^{\circ} r=\left(\left(x_{k}-x_{C M}\right)^{2}+\left(y_{k}-y_{C M}\right)^{2}+\left(z_{k}-z_{C M}\right)^{2}\right)^{1 / 2}\)
\({ }^{\circ} \mathbf{G}=\) gravitational constant

\section*{Force on k ~}

G*m*TM * ( \(\left.\mathrm{x}_{\mathrm{CM}}-\mathrm{x}_{\mathrm{k}}, \mathrm{y}_{\mathrm{CM}}-\mathrm{y}_{\mathrm{k}}, \mathrm{z}_{\mathrm{CM}}-\mathrm{z}_{\mathrm{k}}\right) / \mathrm{r}^{\wedge} 3\)

\section*{Details of Step 3 of BH}
... for each particle, traverse the QuadTree to compute the force on
for \(\mathrm{k}=1\) to N
\(f(k)=\) TreeForce ( \(k\), root )
endfor
function \(\mathrm{f}=\) TreeForce \((\mathrm{k}, \mathrm{n})\) \(\ldots=0\)
if n contains one particle (not k )... evaluate directly
\(f=\) force computed using formula on last slide
else
\(\mathrm{n}=\) distance from particle k to CM of particles in n
\(\mathrm{D}=\) size of n
D/r < \(\quad\)... ok to approximate by CM and TM
compute \(f\) using formula from last slide
for all children \(c\) to look inside node
for all children \(\mathbf{c}\) of n
\(\mathrm{f}=\mathrm{f}+\) TreeForce \((\mathrm{k}, \mathrm{c})\)
end for
end if
end if
04/19/2016
CS267 Lecture 25

\section*{Analysis of Step 3 of BH}
- Correctness follows from recursive accumulation of
force from each subtree force from each subtree

Each particle is accounted for exactly once, whether it is in a leaf or other node

\section*{- Complexity analysis}

Cost of TreeForce( \(\mathbf{k}\), root ) \(=\mathbf{O}\) (depth in QuadTree of lea
containing k)
Proof by Example (for \(\theta>1\) )
- For each undivided node \(=\) square, (except one containing k ), \(\mathrm{D} / \mathrm{r}<1<\theta\)
- There are 3 nodes at each level of the QuadTree
- There is O(1) work per node
- Cost \(=\mathbf{O}(\) level of \(k)\)
- Total cost \(=O\left(\Sigma_{k}\right.\) level of \(\left.k\right)=O(N \log N)\) - Strongly depends on \(\theta\)

04/19/2016
CS267 Lecture 25

Sample Barnes-Hut Force calculation
For rartices
- Assunnung therta \(>1\)


\section*{Outline}

\section*{tivation \\ bvious algorithm for computing gravitational or electrostatic force on N bodies}
es \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) work

Basic Data Structures: Quad Trees and Oct Trees
The Barnes-Hut Algorithm (BH)
An \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) approximate algorithm for the N -Body problem
- The Fast Multipole Method (FMM)
- An \(\mathrm{O}(\mathrm{N})\) approximate algorithm for the N -Body problem
\({ }^{\circ}\) Parallelizing BH, FMM and related algorithms

\section*{Fast Multiple Method (FMM)}
"A fast algorithm for particle simulation", L. Greengard and V Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers - Many awards

Differences from Barnes-Hu
FMM computes the potential at every point, not just the force
FMM uses more information in each box than the CM and TM, so it is both more accurate and more expensive
In compensation, FMM accesses a fixed set of boxes at every level, independent of \(D / r\)
BH uses fixed information (CM and TM) in every box, but \# boxes increases
with accuracy with accuracy. FMM uses a fixed \# boxes, but the amount of information per
box increase with accuracy.

FMM uses two kinds of expansions
Outer expansions represent potential outside node due to particles inside,
analogous to (CM,TM) analogous to (CM,TM)
Inner expansions represent potential inside node due to particles outside
Computing this for every leaf node is the computational goal of FMM
\({ }^{\circ}\) First review potential, then return to FMM
04/19/2016
CS267 Lecture 25

\section*{Gravitational/Electrostatic Potentia}
\({ }^{\circ}\) FMM will compute a compact expression for potential \(\phi(x, y, z)\) which can be evaluated and/or differentiated at any point
\({ }^{\circ}\) In 3D with \(\mathbf{x , y}, \mathbf{z}\) coordinates
- Potential \(=\phi(x, y, z)=-1 / r=-1 /\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}\)
- Force \(=-\operatorname{grad} \phi(x, y, z)=-(d \phi / d x, d \phi / d y, d \phi / d z)=-(x, y, z) / r^{3}\)

In 2D with \(x, y\) coordinates
- Potential \(=\phi(x, y)=\log r=\log \left(x^{2}+y^{2}\right)^{1 / 2}\)
- Force \(=-\operatorname{grad} \phi(x, y)=-(d \phi / d x, d \phi / d y)=-(x, y) / r^{2}\)
\({ }^{\circ}\) In 2D with \(z=x+i y\) coordinates, \(i=s q r t(-1)\)
- Potential \(=\phi(z)=\log |z|=\) Real \((\log z)\)
because \(\log z=\log |z| e^{i \theta}=\log |z|+i \theta\)
- Drop Real( ) from calculations, for simplicity
- Force =-(x,y)/r2 = -z / |z| \({ }^{2}\)

。 Later: Kernel Independent FMM
04/19/2016
CS267 Lecture 25
```

2D Multipole Expansion (Taylor expansion in 1/z) (1/2)
$\phi(z)=$ potential due to $\mathbf{z}_{\mathbf{k}}, \mathbf{k}=1, \ldots, \mathrm{n}$
$=\Sigma_{k} m_{k}{ }^{*} \log \left|z-z_{k}\right|$
$=\operatorname{Real}\left(\Sigma_{k} m_{k}{ }^{*} \log \left(z-z_{k}\right)\right.$
\ldots since $\log z=\log |z| e^{i \theta}=\log |z|+i \theta$
.. drop Real() from now on
$=\Sigma_{k} m_{k}{ }^{*}\left[\log (z)+\log \left(1-z_{k} / z\right)\right]$
... how logarithms work
$=M * \log (z)+\Sigma_{k} m_{k}{ }^{*} \log \left(1-z_{k} / z\right)$
. where $M=\Sigma_{k} m_{k}$
$=M^{*} \log (z)-\Sigma_{k} m_{k}{ }^{*} \Sigma_{e \geq 1}\left(z_{k} / z\right)^{e} / e$
Taylor expansion converges if $\left|z_{k} / z\right|<1$
$=M^{*} \log (\mathbf{z})-\Sigma_{\mathrm{e} \geq 1} \mathbf{z}^{-\mathrm{e}} \Sigma_{\mathrm{k}} \mathrm{m}_{\mathrm{k}} \mathbf{z}_{\mathbf{k}}{ }^{\mathrm{e}}$
swap order of summation
$=M^{*} \log (z)-\Sigma_{e \geq 1} z^{-e} \alpha_{e}$
\ldots where $\alpha_{e}=\Sigma_{k} m_{k} z_{k}{ }^{e} / e \quad .$. called Multipole Expansion
04/9/2016
CS267 Lecture 25

2D Multipole Expansion (Taylor expansion in $1 / \mathrm{z}$) (2/2)

$\phi(z)=$ potential due to $\mathbf{z}_{\mathbf{k}}, \mathbf{k}=1, \ldots, n$

$=\Sigma_{k} m_{k}{ }^{*} \log \left|z-z_{k}\right|$
$=\operatorname{Real}\left(\Sigma_{k} m_{k}{ }^{*} \log \left(z-z_{k}\right)\right)$
. drop Real() from now on
$=M^{*} \log (z)-\Sigma{ }_{e \geq 1} z^{-e} \alpha_{e} \quad \ldots$ Taylor Expansion in $1 / z$. where $M=\Sigma_{k} m_{k}=$ Total Mass and

$$
\alpha_{\mathrm{e}}=\Sigma_{\mathrm{k}} m_{\mathrm{k}} z_{\mathrm{k}}{ }^{\mathrm{e}} / \mathrm{e}
$$

.. This is called a Multipole Expansion in z
$=M^{*} \log (z)-\Sigma_{r \geq e \geq 1} z^{-e} \alpha_{e}+\operatorname{error}(r)$... $r=$ number of terms in Truncated Multipole Expansion \ldots and error $(r)=-\Sigma_{r<e^{-e}} \alpha_{e}$

- Note that $\alpha_{1}=\Sigma_{k} m_{k} \mathbf{z}_{k}=C M^{*} \mathbf{M}$
so that M and α_{1} terms have same info as Barnes-Hut
- $\operatorname{error}(r)=\mathbf{O}\left(\left\{\max _{k}\left|z_{k}\right| /|z|\right\}^{r+1}\right) \quad$... bounded by geometric sum

[^1]CS267 Lecture 25

Error in Truncated 2D Multipole Expansion

```
\({ }^{\circ} \operatorname{error}(r)=0\left(\left\{\max _{k}\left|z_{k}\right| /|z|\right\}^{r+1}\right)\)
\({ }^{\circ}\) Suppose \(\max _{k}\left|z_{k}\right|| | z \mid \leq c<1\), so
        error \((r)=O\left(c^{r+1}\right)\)
\({ }^{\circ}\) Suppose all particles \(z_{k}\) lie inside a D-by-D
        square centered at origin
Suppose \(z\) is outside a 3D-by-3D
        square centered at the origin
\({ }^{\circ} \mathrm{c}=(\mathrm{D} / \mathrm{sqrt}(2)) /\left(1.5^{*} \mathrm{D}\right) \sim .47<.5\)
    - each term in expansion adds
        1 bit of accuracy
    - 24 terms enough for single precision
        53 terms for double precision
\({ }^{\circ}\) In 3D, can use spherical harmonics
    or other expansions
    04/19/2016
                            CS267 Lecture 25
```

Error outside larger box is O($c^{\wedge}(-r)$)

Inner(n) and Inner Expansion

- Outer(n) used to evaluate potential outside node n due to particles inside n
- Inner(n) will be used to evaluate potential inside node n due to particles outside n
$\left.{ }^{\circ} \boldsymbol{\Sigma}_{0 \leq e \leq r} \beta_{\mathrm{e}}{ }^{*}(\mathbf{z - z})\right)^{e}$
${ }^{\circ} \mathbf{z}_{\mathbf{n}}=$ center of node n , a D-by-D box
${ }^{\circ} \operatorname{Inner}(\mathrm{n})=\left(\beta_{0}, \boldsymbol{\beta}_{1}, \ldots, \beta_{r}, \mathbf{z}_{\mathrm{n}}\right)$
${ }^{\circ}$ Particles outside n must lie outside 3D-by-3D box centered at z_{n}

04/19/2016

+ + origin

Outer(n) and Outer Expansion

```
\phi(z)~M* 酋(z-\mp@subsup{z}{n}{})-\mp@subsup{\Sigma}{r\geqe\geq1}{}(z-\mp@subsup{z}{n}{}\mp@subsup{)}{}{-e}\mp@subsup{\alpha}{e}{}
```

${ }^{\circ} \operatorname{Outer}(\mathrm{n})=\left(\mathrm{M}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{r}}, \mathrm{z}_{\mathrm{n}}\right)$

- Stores data for evaluating potential $\phi(z)$ outside node n due to particles inside n
- $z_{n}=$ center of node n
- Error small for \mathbf{z} outside dotted line in previous plo
- Cost of evaluating $\phi(z)$ is $\mathbf{O}(r)$, independent of the number of particles inside n
- Cost grows linearly with desired number of bits of precision ~r
${ }^{\circ}$ Will be computed for each node in QuadTree
${ }^{\circ}$ Analogous to (TM,CM) in Barnes-Hut
${ }^{\circ} M$ and α_{1} same information as Barnes-Hut

04/19/2016
CS267 Lecture 25

Top Level Description of FMM

(1) Build the QuadTree

\rightarrow (2) Call Build_Outer(root), to compute outer expansions of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
. to get out outer expansion of parent
(3) Call Build_Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
and combining them
(4) For each leaf node n, add contributions of nearest particles directly into Inner(n)
... final Inner(n) is desired output: expansion for potential at each point due to all particles

Step 2 of FMM: Outer_shift: converting $\operatorname{Outer}\left(\mathrm{n}_{1}\right)$ to $\operatorname{Outer}\left(\mathrm{n}_{2}\right) \quad(1 / 3)$

- For step 2 of FMM (as in step 2 of BH) we want to compute Outer(n) cheaply from Outer(\mathbf{c}) for all children \mathbf{c} of \mathbf{n}
${ }^{\circ}$ How to combine outer expansions around different points? $\cdot \phi_{k}(z) \sim M_{k}{ }^{*} \log \left(z-z_{k}\right)-\Sigma_{r z e z 1}\left(z-z_{k}\right)^{-e} \alpha_{e k}$ expands around $z_{k}, k=1,2$ - First step: make them expansions around same poin
${ }^{\circ} n_{1}$ is a child (subsquare) of n_{2}
${ }^{\circ} z_{k}=\operatorname{center}\left(n_{k}\right)$ for $k=1,2$
${ }^{\circ}$ Outer $\left(n_{1}\right)$ expansion accurate outside blue dashed square, so also accurate outside black dashed square
${ }^{\circ}$ So there is an Outer $\left(\mathrm{n}_{2}\right)$ expansion with different α_{k} and center z_{2} which represents the same potential as
Outer $\left(\mathrm{n}_{1}\right)$ outside the black dashed box
04/19/2016
CS267 Lecture 25

Outer_shift: Details (2/3)

- Given expansion centered at z_{1} (= child)

$$
\phi_{1}(z)=M_{1} * \log \left(z-z_{1}\right)+\Sigma_{r \geq e \geq 1}\left(z-z_{1}\right)^{-e} \alpha_{e 1}
$$

${ }^{\circ}$ Solve for $\mathbf{M}_{\mathbf{2}}$ and $\alpha_{\mathrm{e} 2}$ in expansion centered at $\mathbf{z}_{\mathbf{2}}$ (= parent)

$$
\phi_{1}(z) \sim \phi_{2}(z)=M_{2} * \log \left(z-z_{2}\right)+\Sigma_{r \geq e \geq 1}\left(z-z_{2}\right)^{-e} \alpha_{e 2}
$$

${ }^{\circ}$ Get $M_{2}=M_{1}$ and each $\alpha_{e 2}$ is a linear combination of the $\alpha_{e 1}$ - multiply r-vector of $\alpha_{e 1}$ values by a fixed r-by-r matrix to get $\alpha_{e 2}$
${ }^{\circ}\left(M_{2}, \alpha_{12}, \ldots, \alpha_{r 2}, z_{2}\right)=$ Outer_shift($\left.\operatorname{Outer}\left(\mathrm{n}_{1}\right), \mathbf{z}_{2}\right)$
$=$ desired Outer(n_{2})

Top Level Description of FMM
(1) Build the QuadTree
(2) Call Build_Outer(root), to compute outer expansions of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
.. to get out outer expansion of parent
\Rightarrow (3) Call Build_Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
.. converting outer to inner expansions
and combining them
(4) For each leaf node n, add contributions of nearest particles directly into Inner(n)
... final $\operatorname{lnner}(\mathrm{n})$ is desired output: expansion for potential at each point due to all particles

Step 3 of FMM: Computing Inner(n) from other expansions
${ }^{\circ}$ Which other expansions?

- As few as necessary to compute the potential accurately
- Inner expansion of $p=\operatorname{parent}(n)$ will account for potential from particles far enough away from parent (red nodes below)
Outer expansions will account for potential from particles in boxes at same level in Interaction Set (nodes labeled i below)

04/19/2016
CS267 Lecture 25

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

04/19/2016
CS267 Lecture 25

Step 3 of FMM: Computing Inner(n) from other expansions
${ }^{\circ}$ We will use Inner shift and Convert to build each Inner(n) by combining expansions from other nodes

${ }^{\circ}$ Which other nodes?

- As few as necessary to compute the potential accurately
- Inner_shift(Inner(parent(n)), center(n)) will account for potential from particles far enough away from parent (red nodes below)
Convert(Outer(i), center(n)) will account for potential from particles in boxes at same level in Interaction Set (nodes labeled i below)

04/19/2016

- Interaction Set $=\{$ nodes i that are children of a neighbor of parent(n), such that i is not itself a neighbor of n \}
- For each i in Interaction Set, Outer(i) is available, so that Convert(Outer(i), center(n)) gives contribution to Inner(n) due to particles in i
- Number of i in Interaction Set is at most $\mathbf{6 2}^{2}-\mathbf{3}^{2}=\mathbf{2 7}$ in 2D
- Number of i in Interaction Set is at most $6^{3}-3^{3}=189$ in 3D

Step 3 of FMM: Compute Inner(n) for each n in QuadTree

Top Level Description of FMM

(1) Build the QuadTree
(2) Call Build Outer(root), to compute outer expansions of each node n in the QuadTree
... Traverse QuadTree from bottom to top,
... combining outer expansions of children
.. to get out outer expansion of parent
(3) Call Build_Inner(root), to compute inner expansions of each node n in the QuadTree
... Traverse QuadTree from top to bottom,
... converting outer to inner expansions
.. and combining them

(4) For each leaf node n, add contributions of

 nearest particles directly into Inner(n)... if 1 node/leaf, then each particles accessed once,
... so cost $=0$ (N)
... final $\operatorname{lnner}(\mathrm{n})$ is desired output: expansion for potential at each point due to all particles

```
Outline
    \circ}\mathrm{ Motivation
        Obvious algorithm for computing gravitational or electrostatic force on N bodies
    利
    0 How to reduce the number of particles in the force sum
        We must settle for an approximate answer (say 2 decimal digits, or perhaps 16 ...)
    Basic Data Structures: Quad Trees and Oct Trees
    The Barnes-Hut Algorithm (BH)
        An O(N }\operatorname{log}\textrm{N})\mathrm{ approximate algorithm for the N-Body problem
    0 The Fast Multipole Method (FMM)
    An O(N) approximate algorithm for the N-Body problem
* Parallelizing BH, FMM and related algorithms

\section*{Programming Model - BSP}

。 BSP Model = Bulk Synchronous Programming Model
All processors compute; barrier; all processors communicate; barrier; repeat
- Advantages
easy to program (parallel code looks like serial code)
easy to port (MPI, shared memory, TCP network)

\section*{\({ }^{\circ}\) Possible disadvantage}
- Rigidly synchronous style might mean inefficiency?
\({ }^{\circ}\) OK with few processors; communication costs low
- FMM 80\% efficient on 32 processor Cray T3E
- FMM \(90 \%\) efficient on 4 PCs on slow network
- FMM 85\% efficient on 16 processor SGI SMP (Power Challenge)

Better efficiencies for Barnes-Hut, other algorithms

\section*{Parallelizing Hierachical N-Body codes}
\({ }^{\circ}\) Barnes-Hut, FMM and related algorithm have similar computationa structure:
1) Build the QuadTree
2) Traverse QuadTree from leaves to root and build outer expansions (just (TM,CM) for Barnes-Hut)
Traverse QuadTree from root to leaves and build any inner expansions
4) Traverse QuadTree to accumulate forces for each particle
- One parallelization scheme will work for them all

Based on D. Blackston and T. Suel, Supercomputing 97
UCB PhD Thesis, David Blackston, "Pbody"
Autotuner for N -body codes
- Assign regions of space to each processor

Regions may have different shapes, to get load balance
Each region will have about \(\mathrm{N} / \mathrm{p}\) particles
Each processor will store part of Quadtree containing all particles (=leaves) in it Top of tree stored by all processors, lower nodes may also be shared Each processor will also store adjoining parts of Quadtree needed to compute forces particles it owns
Subset of Quadtree needed by a processor called the Locally Essential Tree (LET) Given the LET, all force accumulations (step 4)) are done in parallel, without
communication
4/19/2016
CS267 Lecture 25

\section*{Load Balancing Scheme 1: Orthogonal Recursive Bisection (ORB)}
\({ }^{\circ}\) Warren and Salmon, Supercomputing 92
\({ }^{\circ}\) Recursively split region along axes into regions containing equal numbers of particles
\({ }^{\circ}\) Works well for 2D, not 3D (available in Pbody)
Orthoganal Recursive Biseetion


\section*{Load Balancing Scheme 2: Costzones}
- Called Costzones for Shared Memory - PhD thesis, J.P. Singh, Stanford, 1993
\({ }^{\circ}\) Called "Hashed Oct Tree" for Distributed Memory
- Warren and Salmon, Supercomputing 93
- We will use the name Costzones for both; also in Pbody

Idea: partition QuadTree instead of space
- Estimate work for each node, call total work W

Arrange nodes of QuadTree in some linear order (lots of choices)
- Assign contiguous blocks of nodes with work W/p to processors: locality



CS267 Lecture 25

Linearly Ordering Quadtree nodes for Costzones (1/2)

\section*{Hashed QuadTrees (Warren and Salmon)}

Assign unique key to each node in QuadTree, then compute hash(key) to get integers that can be linearly ordered
\({ }^{\circ}\) If ( \(\mathbf{x}, \mathrm{y}\) ) are coordinates of center of node, interleave bits to get key
- Put 1 at left as "sentinel"
- Nodes near root of tree have shorter keys


04/19/2016
CS267 Lecture 25


50

\section*{Linearly Ordering Quadtree nodes for Costzones (2/2)}

Assign unique key to each node in QuadTree, then compute hash(key) to get a linear
order
key \(=\) interleaved bits of \(x, y\) coordinates of node, prefixed by 1


Hash(key) = bottom h bits of key (eg h=4)
Assign contiguous blocks of hash(key) to same processors


CS267 Lecture 25

\section*{Determining Costzones in Parallel}
- Not practical to compute QuadTree, in order to compute Costzones, to then determine how to best build QuadTree

\section*{\({ }^{\circ}\) Random Sampling:}

All processors send small random sample of their particles to Proc 1
Proc 1 builds small Quadtree serially, determines its Costzones, and broadcasts them to all processors
- Other processors build part of Quadtree they are assigned by these Costzones
\({ }^{\circ}\) All processors know all Costzones; we need this later to compute LETs

As particles move, may need to occasionally repeat construction, so should not be too slow

04/19/2016
CS267 Lecture 25

\section*{Computing Locally Essential Trees (LETs)}
\({ }^{\circ}\) Warren and Salmon, 1992; Liu and Bhatt, 1994
\({ }^{\circ}\) Every processor needs a subset of the whole QuadTree, called the LET, to compute the force on all particles it owns

\section*{\({ }^{\circ}\) Shared Memory}
- Receiver driven protoco

Each processor reads part of QuadTree it needs from shared memory on demand, keeps it in cache
- Drawback: cache memory appears to need to grow proportionally
to P to remain scalable

\section*{\({ }^{\circ}\) Distributed Memory}
- Sender driven protocol
- Each processor decides which other processors need parts of its
local subset of the Quadtree, and sends these subsets

04/19/2016
CS267 Lecture 25

Locally Essential Trees in Distributed Memory
\({ }^{\circ}\) How does each processor decide which other processors need parts of its local subset of the Quadtree?

\section*{\({ }^{\circ}\) Barnes-Hut:}
- Let j and k be processors, n a node on processor j ; Does k need n ?
- Let \(D(n)\) be the side length of \(n\)
- Let \(\mathbf{r}(\mathrm{n})\) be the shortest distance from n to any point owned by k
- If either
(1) \(D(n) / r(n)<\theta\) and \(D(\) parent \((n)) / r(\) parent \((n)) \geq \theta\), or
(2) \(D(n) / r(n) \geq \theta\)
then node \(n\) is part of \(k\) ' \(s\) LET, and so proc \(j\) should send \(n\) to \(k\)
- Condition (1) means (TM,CM) of \(n\) can be used on proc \(k\), but this is not true of any ancestor
- Condition (2) means that we need the ancestors of type (1) nodes too

\section*{\({ }^{\circ}\) FMM}
\(\underset{04 / 19 / 2016}{\text { Simpler rules based just on relative positions in QuadTree }}\)

\section*{Performance Results - 1}
```

${ }^{\circ} 512$ Proc Intel Delta
- Warren and Salmon, Supercomputing 92, Gordon Bell Prize
- 8.8 M particles, uniformly distributed
- . 1% to 1% RMS error, Barnes-Hut
- 114 seconds $=5.8$ Gflops

- Decomposing domain	7 secs
- Building the OctTree	7 secs

```
```secs
```

```Communication during traversal 6 secsForce evaluation 6 secs- Load imbalance
7 secs
```

$$
\text { - Rises to } 160 \text { secs as distribution becomes nonuniform }
$$

## Performance Results - 2

${ }^{\circ}$ Cray T3E, running FMM

- Blackston, 1999
- 10-4 RMS error
- Generally $80 \%$ efficient on up to 32 processors
- Example: 50 K particles, both uniform and nonuniform

${ }^{\circ}$ Ultimate goal - portable, tunable conde including all useful variants

Performance Results - 3


Optimizing and Tuning the Fast Multipole Method for Multicore and Accelerator Systems

## Georgia Tech

- Aparna Chandramowlishwaran, Aashay Shringarpure, Ilya Lashuk; Aparna Chandramowlishwaran
George Biros, Richard Vuduc
awrence Berkeley National Laboratory
- Sam Williams, Lenny Oliker
${ }^{\circ}$ Presented at IPDPS 2010
${ }^{\circ}$ Source: Richard Vuduc
04/19/2016 CS267 Lecture 25


## Optimizations tried (manual and autotuning)

- Uses KIFMM = Kernel Independent FMM
- Applies to "any" kernel, not just gravity/electrostatics
- Requires subroutine to evaluate kernel, builds own expansions
- Ex: (modified) Laplace, Stokes
- Approximate particles inside square/box by evenly spaced particles on circle/sphere
- FFT used to build expansions; tunable
- Single-core, manually coded \& tuned

Low-level: SIMD vectorization (x86)
Numerical: r sqr tps + Newton-Raphson (x86)
Data: Structure reorg. (transpose or "SOA")
Traffic: Matrix-free via interprocedural loop fusion
FFTW plan optimization
$\stackrel{-}{ }$ OpenMP parallelization
-Algorithmic tuning of max particles per box, $q$ 04/19/2016 CS267 Lecture $25 \quad$ Source: Richard Quduc

Single-core Optimizations Double-Precision, Non-uniform (ellipsoidal)


Reference: kifmm3d [Ying, Langston, Zorin, Biros]

## Algorithmic Tuning of $q=$ Max pts / box - Nehalem



Shape of curve changes as we introduce optimizations.
04/19/2016
CS267 Lecture 25
Source: Richară ${ }^{62}$ Vuduc

## Minimizing Communication in N-Body Problem

## ${ }^{\circ}$ Hierarchical Methods

- Reducing arithmetic good for reducing communication too!
- Deriving communication lower bounds is an open problem

Answer is approximate, so lower bound may depend on desired accuracy
Lower bound may also depend on particle distribution

- Open problem (probably hard)


## - Direct methods

- Thm: Suppose p processors compute interactions among n particles, using local memories of size M . If each processor does an equal amount of work ( $\mathrm{n}^{2} / \mathrm{p}$ interactions) then the number of words that processor must communicate is $\Omega\left(\left(\mathrm{n}^{2} / \mathrm{p}\right) / \mathrm{M}\right)$, and the number of messages is $\Omega\left(\left(\mathrm{n}^{2} / \mathrm{p}\right) / \mathrm{M}^{2}\right)$
- If not computing all $\mathbf{n}^{2}$ interactions (eg cutoff distance),
replace $\mathbf{n}^{2}$ by \#interactions in Thm
- For which values of $M$ is this attainable?


## Traditional (Naïve $\mathrm{n}^{2}$ ) Nbody Algorithm (using a 1D decomposition)


${ }^{\circ}$ Given n particles, p processors
${ }^{\circ}$ Each processor has n/p part'

.nemory
${ }^{\circ}$ Algorithm: shift copy $\boldsymbol{o}^{\text {f }}$
 .0 the left $p$ times, calculating all pairw
${ }^{\circ}$ Computation cr

- Communica - Lowert
.dth: O(n) words ( p$) / \mathrm{M})=\Omega(\mathrm{n})$, attained
${ }^{\circ}$ Communica atency: $O(p)$ messages
- Lower bouna $=\Omega\left(\left(n^{2} / p\right) / M^{2}\right)=\Omega(p)$, attained

Communication Avoiding Version (using a "1.5D" decomposition: assume memory for c copies)							
$\mathrm{p} / \mathrm{c} \longrightarrow$							
............							
.					........		

${ }^{\circ}$ Divide pinto c groups. Replicate particles in each group.

- Memory: M = O(n*c/p) particles per processor
${ }^{\circ}$ Make, pass copies: Latency: $\mathbf{O}(\log c)$ Bandwidth: $O\left(n^{*} c / p\right)$
${ }^{\circ}$ Main Algorithm: for $\mathbf{p} / \mathbf{c}^{2}$ steps
- Per step, Latency: $O(1)$ Bandwidth: $O\left(n^{*} c / p\right)$
- Overall, Latency: $O\left(p / c^{2}\right)=O\left(\left(n^{2} / p\right) / M^{2}\right)$

Bandwidth: $\mathrm{O}(\mathrm{n} / \mathrm{c})=\mathbf{O}\left(\left(\mathrm{n}^{2} / \mathrm{p}\right) / \mathrm{M}\right)$
${ }^{\circ}$ Attains Bandwidth, latency lower bound for $1 \leq c \leq p^{1 / 2}$

Communication Avoiding Version
(using a "1.5D" decomposition: assume memory for c copies) Driscoll, Georganas, Koanantakool, Solomonik, Yelick
p/c

...........	...	..			.....		
...	............	............	............	...........	............	............	

Divide pinto c groups. Start with all n particles on p/c processors
${ }^{\circ}$ Make a copy of each group of $n^{*} c / p$ particles
${ }^{\circ}$ Pass copy to the $0^{\text {th }} \ldots \mathrm{c}-1^{\text {st }}$ neighbor depending on row
${ }^{\circ}$ Main Algorithm: for $\mathbf{p} / \mathbf{c}^{2}$ steps

- Compute pairwise interactions for owned vs. shifted particles
- Shift copy of $\mathbf{n}^{*} \mathbf{c} / \mathrm{p}$ particles to $\mathbf{c}^{\text {th }}$ neighbor
${ }^{\circ}$ Reduce across $\mathbf{c}$ to produce final value for each particle


## Communication Avoiding Version

(2D decomposition is Limit)
Driscoll, Georganas, Koanantakool, Solomonik, Yelick

${ }^{\circ}$ Limit is when $\mathbf{c}=\mathbf{p}^{1 / 2}$

- Memory: $M=O\left(n / p^{1 / 2}\right)$
- Startup/Finish: Latency: $\mathbf{O}(\log c)=\mathbf{O}(\log p)$; Bandwidth O(n/p ${ }^{1 / 2}$ )
${ }^{\circ}$ Main part of Algorithm has 1 step
- Latency: $O(1)$ Bandwidth: $O\left(n / p^{1 / 2}\right)$

Same as "parallelizing in the force direction" in NAMD [Hendrickson, Plimpton95]


Recall optimal sequential Matmul

- Naïve code
for $\mathrm{i}=1: \mathrm{n}$, for $\mathrm{j}=1: \mathrm{n}$, for $\mathrm{k}=1: \mathrm{n}, \mathrm{C}(\mathrm{i}, \mathrm{j})+=\mathrm{A}(\mathrm{i}, \mathrm{k})^{*} \mathrm{~B}(\mathrm{k}, \mathrm{j})$
- "Blocked" code
for $\mathrm{i} 1=1: b: n$, for $\mathrm{j} 1=1: \mathrm{b}: \mathrm{n}$, for $\mathrm{k} 1=1: b: n$ for $\mathrm{i} 2=0: b-1$, for $\mathrm{j} 2=0: b-1$, for $\mathrm{k} 2=0: b-1$ $i=i 1+i 2, j=j 1+j 2, k=k 1+k 2$ $C(i, j)+=A(i, k) * B(k, j)$
${ }^{\circ}$ Thm: Picking $b=M^{1 / 2}$ attains lower bound: \#words_moved $=\Omega\left(\mathbf{n}^{3} / \mathrm{M}^{1 / 2}\right)$
${ }^{\circ}$ Where does $1 / 2$ come from?

How general are these communication lower bounds and optimal algorithms?

## New Thm applied to Matmul

${ }^{\circ}$ for $\mathrm{i}=1: \mathrm{n}$, for $\mathrm{j}=1: \mathrm{n}$, for $\mathrm{k}=1: \mathrm{n}, \mathrm{C}(\mathrm{i}, \mathrm{j})+=\mathrm{A}(\mathrm{i}, \mathrm{k})^{*} \mathrm{~B}(\mathrm{k}, \mathrm{j})$
${ }^{\circ}$ Record array indices in matrix $\Delta$

$$
\Delta=\left(\begin{array}{lll}
i & j & k \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right) \begin{aligned}
& A \\
& B \\
& C
\end{aligned}
$$

${ }^{\circ}$ Solve LP for $\mathrm{x}=[\mathrm{xi}, \mathrm{xj}, \mathrm{xk}]^{\mathrm{T}}: \max 1^{\top} \mathrm{x}$ s.t. $\Delta \mathrm{x} \leq 1$ - Result: $x=[1 / 2,1 / 2,1 / 2]^{\top}, 1^{\top} x=3 / 2=S$
${ }^{\circ}$ Thm: \#words_moved $=\Omega\left(n^{3} / M^{S-1}\right)=\Omega\left(n^{3} / M^{1 / 2}\right)$
Attained by block sizes $\mathbf{M}^{\mathrm{xi}}, \mathbf{M}^{\mathrm{xj}}, \mathbf{M}^{\times k}=\mathbf{M}^{1 / 2}, \mathbf{M}^{1 / 2}, \mathbf{M}^{1 / 2}$

New Thm applied to Direct N-Body
${ }^{\circ}$ for $\mathrm{i}=1: \mathrm{n}$, for $\mathrm{j}=1: \mathrm{n}, \mathrm{F}(\mathrm{i})+=$ force $(\mathrm{P}(\mathrm{i}), \mathrm{P}(\mathrm{j})$ )
${ }^{\circ}$ Record array indices in matrix $\Delta$

$$
\Delta=\left(\begin{array}{ll}
\mathrm{i} & \mathrm{j} \\
1 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) \begin{gathered}
\\
\mathrm{F} \\
\mathrm{P}(\mathrm{i}) \\
\mathrm{P}(\mathrm{j})
\end{gathered}
$$

Solve LP for $x=[x i, x j]^{\top}: \max 1^{\top} x$ s.t. $\Delta x \leq 1$

- Result: $x=[1,1], 1^{\top} x=2=S$
${ }^{\circ}$ Thm: \#words_moved $=\Omega\left(n^{2} / M^{S-1}\right)=\Omega\left(n^{2} / M^{1}\right)$
Attained by block sizes $\mathbf{M}^{\times i}, M^{\times j}=M^{1}, M^{1}$

New Thm applied to Random Code
${ }^{\circ}$ for $\mathrm{i} 1=1: \mathrm{n}$, for $\mathrm{i} 2=1: \mathrm{n}, \ldots$, for $\mathrm{i}=1: n$ A1(i1,i3,i6) += func1(A2(i1,i2,i4),A3(i2,i3,i5),A4(i3,i4,i6)) A5(i2,i6) += func2(A6(i1,i4,i5),A3(i3,i4,i6))
${ }^{\circ}$ Record array indices in matrix $\Delta$
$\Delta=\left(\begin{array}{llll}\mathrm{i} 1 & \mathrm{i} 2 & \mathrm{i} 3 & \mathrm{i} \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1\end{array}\right.$

Solve LP for $\mathrm{x}=[\mathrm{x} 1, \ldots, \mathrm{x} 6]^{\top}: \max 1^{\top} \mathrm{x}$ s.t. $\Delta \mathrm{x} \leq 1$ - Result: $x=[2 / 7,3 / 7,1 / 7,217,3 / 7,4 / 7], 1^{1} x=15 / 7=s$
${ }^{\circ}$ Thm: \#words_moved $=\Omega\left(n^{6} / M^{S-1}\right)=\Omega\left(n^{6} / M^{8 / 7}\right)$ Attained by block sizes $\mathbf{M}^{217}, \mathbf{M}^{317}, \mathbf{M}^{1 / 7}, \mathbf{M}^{2 / 7}, \mathbf{M}^{3 / 7}, \mathbf{M}^{4 / 7}$

## N-Body Speedups on IBM-BG/P (Intrepid)

8 K cores, 32 K particles
K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik


Approach to generalizing lower bounds
${ }^{\circ}$ Matmul
for $i=1: n$, for $j=1: n$, for $k=1: n$, $\mathbf{C}(\mathrm{i}, \mathrm{j})+=\mathrm{A}(\mathrm{i}, \mathrm{k})^{*} \mathrm{~B}(\mathrm{k}, \mathrm{j})$
$\Rightarrow$ for ( $\mathbf{i}, \mathrm{j}, \mathrm{k}$ ) in $\mathrm{S}=$ subset of $\mathrm{Z}^{3}$
Access locations indexed by (i,j), (i,k), (k,j)
${ }^{\circ}$ General case
for $\mathrm{i} 1=1: \mathrm{n}$, for $\mathrm{i} 2=\mathrm{i} 1: \mathrm{m}, \ldots$ for $\mathrm{ik}=\mathrm{i} 3: \mathrm{i} 4$
$C\left(i 1+2^{*} i 3-i 7\right)=$ func(A(i2+3*i4,i1,i2,i1+i2,...),B(pnt(3*i4)), ...) $D($ something else $)=$ func(something else), ...
$=>$ for ( $\mathrm{i} 1, \mathrm{i} 2, \ldots, \mathrm{ik}$ ) in $\mathrm{S}=$ subset of $Z^{\mathrm{k}}$
Access locations indexed by "projections", eg
$\varphi_{\mathrm{C}}(\mathrm{i} 1, \mathrm{i} 2, \ldots, \mathrm{ik})=\left(\mathrm{i} 1+\mathbf{2}^{*} \mathrm{i} 3-\mathrm{i} 7\right)$
$\varphi_{A}(i 1, i 2, \ldots, i k)=\left(i 2+3^{\star} \mathrm{i} 4, i 1, i 2, i 1+i 2, \ldots\right), \ldots$
${ }^{\circ}$ Def: Hölder-Brascamp-Lieb Linear Program (HBL-LP)
for $\mathbf{s}_{1}, \ldots, \mathbf{s}_{\mathrm{m}}$ :
for all subgroups $H<Z^{k}, \quad \operatorname{rank}(H) \leq \Sigma_{j} s_{j}^{*} \operatorname{rank}\left(\varphi_{j}(H)\right)$
${ }^{\circ}$ Thm: Given a program with array refs given by $\varphi_{\text {; }}$,
choose $s_{j}$ to minimize $\mathbf{s}_{\mathrm{HBL}}=\Sigma_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}$ subject to HBL-L'P. Then
\#words_moved $=\boldsymbol{\Omega}$ (\#iterations/ $\mathbf{M}^{\text {sнве- }}$ )

- Proof depends on recent result in pure mathematics by Christ/Tao/Carbery/Bennett


## Is this bound attainable? (2/2)

${ }^{\circ}$ Depends on loop dependencies
${ }^{\circ}$ Best case: none, or reductions (matmul)
${ }^{\circ}$ Thm: When all $\varphi_{j}=$ \{subset of indices $\}$, dual of HBL-LP gives optimal tile sizes:

HBL-LP: minimize $1^{\top *}$ s s.t. $\mathbf{s}^{\top *} \Delta \geq 1^{\top}$
Dual-HBL-LP: maximize $1^{\text {T*} x}$ s.t. $\Delta^{*} x \leq 1$
Then for sequential algorithm, tile $\mathrm{i}_{\mathrm{j}}$ by $\mathrm{M}^{\mathrm{j}}$
${ }^{\circ}$ Ex: Matmul: $s=[1 / 2,1 / 2,1 / 2]^{\top}=x$
${ }^{\circ}$ Extends to unimodular transforms of indices

## But first: Can we write it down?

- One inequality per subgroup $H<Z^{k}$, but still finitely many
- Thm: (bad news) Writing down all inequalities equivalent to Hilbert's $10^{\text {th }}$ problem over $Q$
- conjectured to be undecidable
- Thm: (good news) Can decidably write down a subset of the constraints with the same solution $\mathrm{s}_{\text {HBL }}$
- Thm: (better news) Can write it down "explicitly" in many cases of interest
- Ex: when all $\varphi_{j}=\{$ subset of indices $\}$
- Ex: when at most 3 arrays
- Ex: when at most 4 indices

> Intuition behind LP for matmul $\begin{aligned} & \text { © for } i=1: n, \text { for } j=1: n, \text { for } k=1: n, C(i, j)+=A(i, k)^{*} B(k, j) \\ & \text { for } i 1=1: M^{\times x}: n, \text { for } j 1=1: M^{\times x}: n, \text { for } k 1=1: M M^{\times k}: n \\ & \text { for } i 2=0: M^{\times i}-1, \text { for } j 2=0: M^{\times j}-1, \text { for } k 2=0: M^{\times k}-1 \\ & C(i 1+i 2, j 1+j 2)+=A(i 1+i 2, k 1+k 2)^{*} B(k 1+k 2, j 1+j 2)\end{aligned}$

How do we choose $\mathrm{x}=[\mathrm{xi}, \mathrm{xj}, \mathrm{xk}]$ ?

- $C(i, j)$ has blocks of size $M^{\times i}$ by $M^{\mathrm{xj}}$, or $\mathrm{M}^{\mathrm{xi}+\times \mathrm{j}}$ words, so $\mathrm{xi}+\mathrm{xj} \leq 1$ to fit in fast memory of size $\mathbf{M}$
- Similarly $A(i, k)$ requires $x i+x k \leq 1, B(k, j)$ requires $x k+x j \leq 1$
- Same as $\Delta \mathrm{x} \leq 1$
- Number of inner 3 loop iterations $=M^{\times i} \mathbf{x} M^{\times j} \mathbf{x} M^{\times k}=M^{\times i}+\times j+\times k$
- Goal: maximize number of inner 3 loop iterations given blocks of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in fast memory
- Same as maximizing $s=x i+x j+x k=1^{\top} x$ s.t. $\Delta x \leq 1$
- Solution: $x=[1 / 2,1 / 2,1 / 2], s=3 / 2$
- Overall communication cost
$=$ number of times inner 3 loops executed * $M=n^{3} / M^{s}{ }^{*} M=n^{3} / M^{1 / 2}$

Proof of Communication Lower Bound on $C=A \cdot B(1 / 5)$

- Proof from Irony/Toledo/Tiskin (2004)
- Think of instruction stream being executed
- Looks like " ... add, load, multiply, store, load, add, ..."
- Each load/store moves a word between fast and slow memory
- We want to count the number of loads and stores, given that we are multiplying $n-b y-n$ matrices $C=A \cdot B$ using the usual $2 n^{3}$ flops, possibly reordered assuming addition is commutative/associative
- Assuming that at most $\mathbf{M}$ words can be stored in fast memory


## ${ }^{\circ}$ Outline:

- Break instruction stream into segments, each with M loads and stores
- Somehow bound the maximum number of flops that can be done in each segment, call it $F$
- So $F$. \# segments $\geq T=$ total flops $=2 \cdot n^{3}$, so \# segments $\geq T / F$
- So \# loads \& stores = M • \#segments $\geq$ M $\cdot \mathbf{T} /$ F

04/19/2016
CS267 Lecture 25
81

Proof of Communication Lower Bound on $C=A \cdot B(2 / 5)$

"A face"

- If we have at most 2M "A squares", "B squares", and "C squares" on faces, how many cubes can we have?

Proof of Communication Lower Bound on $C=A \cdot B(4 / 5)$

\# cubes in black box with side lengths $x, y$ and $z$ $=$ Volume of black box
$=x \cdot y \cdot z$
$=(x z \cdot z y \cdot y x)^{1 / 2}$
$=\left(\# A_{\square} \cdot{ }^{\prime} \#_{\square} \cdot \boldsymbol{s} \cdot \# C_{\square}\right)^{1 / 2}$

$(\mathbf{i}, \mathrm{k})$ is in A shadow if $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ in 3D se ( $\mathrm{j}, \mathrm{k}$ ) is in B shadow if $(\mathrm{i}, \mathrm{j}, \mathrm{k})$ in 3D se ( $\mathrm{i}, \mathrm{j}$ ) is in C shadow if $(\mathrm{i}, \mathrm{j}, \mathrm{k}$ ) in 3D set

Thm (Loomis \& Whitney, 1949)
\# cubes in 3D set = Volume of 3D set \# cubes in 3D set $=$ Volume of 3 D se
$\leq$ (area(A shadow) $\cdot$ area(B shadow) $\left(\begin{array}{l}\text { area(C shadow)) }\end{array}{ }^{1 / 2}\right.$

## Proof of Communication Lower Bound on $C=A \cdot B(5 / 5)$

${ }^{\circ}$ Consider one "segment" of instructions with $M$ loads, stores
${ }^{\circ}$ Can be at most 2 M entries of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ available in one segment

- Volume of set of cubes representing possible multiply/adds in one segment is $\leq(2 M \cdot 2 M \cdot 2 M)^{1 / 2}=(2 M)^{3 / 2} \equiv F$
- \# Segments $\geq\left\lfloor 2 n^{3} / F\right\rfloor$
${ }^{\circ}$ \# Loads \& Stores $=M \cdot \#$ Segments $\geq M \cdot\left\lfloor 2 n^{3} / F\right\rfloor$

$$
\geq n^{3} /(2 M)^{1 / 2}-M=\Omega\left(n^{3} / M^{1 / 2}\right)
$$

- Parallel Case: apply reasoning to one processor out of $P$ - \# Adds and Muls $\geq 2 n^{3} / P$ (at least one proc does this) - $M=n^{2} / P$ (each processor gets equal fraction of matrix)
- \# "Load \& Stores" = \# words moved from or to other procs $\geq M \cdot\left(2 n^{3} / P\right) / F=M \cdot\left(2 n^{3} / P\right) /(2 M)^{3 / 2}=n^{2} /(2 P)^{1 / 2}$

Develop algorithm to compute lower bound in general

Extend "perfect scaling" results for time and energy by

- Have yet to find a case where we cannot attain lower
${ }^{\circ}$ Automate generation of approximate LPs using extra memory bound - can we prove this?
${ }^{\circ}$ Handle dependencies
${ }^{\circ}$ Incorporate into compilers


## Ongoing Work

Future Lectures

## ${ }^{\circ}$ April 26: Big Bang, Big Data, Big Iron: HPC and the Cosmic Microwave Background <br> - Julian Borrill, LBNL <br> ${ }^{\circ}$ April 28: The Future of High Performance Computing - Kathy Yelick, UCB and LBNL <br> - HKN Class Survey too!


[^0]:    03/014/2013

[^1]:    04/19/2016

