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Motifs 

The Motifs (formerly “Dwarfs”) from  
“The Berkeley View” (Asanovic et al.) 

Motifs form key computational patterns 

Topic of this  
lecture  
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Outline 

° Review of Poisson Equation 
° Jacobi’s method 
° Red-Black SOR method 
° Conjugate Gradient (topic of Lecture 15) 
° Multigrid 
°  (Later lecture: FFTs) 
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Solving PDEs 
° Hyperbolic problems (waves): 

•  Sound wave(position, time) 
•  Use explicit time-stepping  
•  Solution at each point depends on neighbors at previous time 

°  Elliptic (steady state) problems: 
•  Electrostatic Potential (position) 
•  Everything depends on everything else 
•  This means locality is harder to find than in hyperbolic problems 

°  Parabolic (time-dependent) problems: 
•  Temperature(position,time) 
•  Involves an elliptic solve at each time-step 

°  Focus on elliptic problems 
•  Canonical example is the Poisson equation 

∂2u/∂x2  +  ∂2u/∂y2  +  ∂2u/∂z2  =  f(x,y,z) 

4 
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Explicit Solution of  PDEs 
° Often used for hyperbolic PDEs 
° Stability limits size of time-step 
° Computation corresponds to  

•  Matrix vector multiply  
•  Combine nearest neighbors on grid 

° Use finite differences with u[j,i] as the solution at 
•  time t= i*δ (i = 0,1,2,…) and  
•  position x = j*h (j=0,1,…,N=1/h) 
•  initial conditions on u[j,0]
•  boundary conditions on u[0,i] and u[N,i]

° At each timestep i = 0,1,2,... 

i=5

i=4

i=3

i=2

i=1

i=0
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

j

i

For j=1 to N-1 
    u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]  
                                 + z*u[j+1,i]
where z =C*δ/h2 
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Matrix View of Explicit Method for Heat Equation 

• u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i] 
• u[ :, i+1] = T * u[ :, i] where T is tridiagonal: 

• L called Laplacian (in 1D) 
• For a 2D mesh (5 point stencil) the Laplacian has 5 

diagonals 
• For a 3D mesh there are 7 diagonals 

1-2z z z 

Graph and “3 point stencil” 

T = = I – z*L,    L = 

2     -1  

-1     2    -1 

       -1     2    -1 

               -1    2    -1 

                     -1    2 

1-2z    z  

z    1-2z    z 

      z    1-2z    z 

             z    1-2z    z 

                   z    1-2z 
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Poisson’s equation in 1D:    ∂2u/∂x2  =  f(x) 

2    -1  

-1    2    -1 

      -1     2    -1 

             -1    2     -1 

                   -1     2 

 

T = 2 -1 -1 

Graph and “stencil” 

Solve  Tu = f  for  u where 
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2D Poisson’s equation 

° Similar to the 1D case, but the matrix T is now 

° 3D is analogous 

4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

T =
4 

-1 

-1 

-1 

-1 

Graph and “stencil” 
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 
Algorithm  Serial   PRAM   Memory  #Procs 
°  Dense LU  N3   N   N2   N2 
°  Band LU  N2  (N7/3)  N   N3/2  (N5/3)  N (N4/3) 
°  Jacobi  N2 (N5/3)   N (N2/3)   N   N 
°  Explicit Inv.  N2   log N   N2   N2 

°  Conj.Gradients N3/2 (N4/3)  N1/2(1/3) *log N  N   N 
°  Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N   N 
°  Sparse LU  N3/2 (N2)   N1/2   N*log N (N4/3)  N 
°  FFT   N*log N  log N   N   N 
°  Multigrid  N   log2 N   N   N 
°  Lower bound  N   log N   N 

PRAM is an idealized parallel model with zero cost communication 
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
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Jacobi’s Method 

° To derive Jacobi’s method, write Poisson as: 
    u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4 
° Let u(i,j,m) be approximation for u(i,j) after m steps 
   u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) +  
                        u(i,j+1,m) + b(i,j)) / 4 
°  I.e., u(i,j,m+1) is a weighted average of neighbors 
° Motivation: u(i,j,m+1) chosen to exactly satisfy 

equation at (i,j) 
° Steps to converge proportional to problem size, N=n2  
° Therefore, serial complexity is O(N2) 
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Convergence of Nearest Neighbor Methods 

° Jacobi’s method involves nearest neighbor 
computation on nxn grid (N = n2) 

•  So it takes O(n) = O(sqrt(N)) iterations for information to propagate 

° E.g., consider a rhs (b) that is 0, except the center is 1 
° The exact solution looks like: 

Even in the best case, any 
nearest neighbor computation 
will take n/2 steps to propagate 
on an nxn grid!

12 
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Convergence of Nearest Neighbor Methods 

Takes O(n) steps to propagate information across  an nxn grid! 13 03/15/2016 
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Parallelizing Jacobi’s Method 

° Reduces to sparse-matrix-vector multiply by (nearly) T 
       U(m+1) = (T/4 - I) * U(m) + B/4  
° Each  value of U(m+1) may be updated independently  

•  keep 2 copies for iterations  m and m+1 

° Requires that boundary values be communicated 
•  each processor owns n2/p elements to update 
•  amount of data communicated, n/p1/2 per neighbor, relatively small if n>>p 

14 

Want to take s>>1 iterations 
 
All the communication-avoiding 
techniques for Matrix-powers kernel 
(i.e. repeated SpMVs) 
from Lecture 15  may be used 
 
Reduce communication cost of  
s iterations to 1 iteration 

1   2   3   4  …  … 32 
x 

A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx  

03/15/2016 
CS267 Lecture 17 
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1   2   3   4  …  … 32 
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A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  

•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 
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•  Only need to save Akx 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Sequential Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx 

Step 1 

03/15/2016 CS267 Lecture 17 
17 

1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]  
•  Sequential Algorithm 

•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx – move O(n) words instead of O(kn) 

Step 1 Step  2 Step  3 Step  4 

03/15/2016 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx 

Proc 1 

03/13/12 CS267 Lecture 17 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx 

Proc  2 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx 

Proc  3 

03/13/12 CS267 Lecture 17 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Like Matrix-Powers Kernel, but simpler: 

•  Don’t need to store A explicitly (it’s Jacobi) 
•  Only need to save Akx 

Proc  4 

03/13/12 CS267 Lecture 17 
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1   2   3   4 …  … 32 

x 
A·x 
A2·x 
A3·x 

Communication Avoiding Jacobi: 
 

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx] 
•  Parallel Algorithm  

 
•  Example: A tridiagonal, n=32, k=3 
•  Entries in overlapping regions (triangles) computed 

redundantly 
•  Send O(1) messages instead of O(k) 

Proc 1 Proc  2 Proc  3 Proc  4 

03/13/12 CS267 Lecture 17 
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Remotely Dependent Entries for [x,Ax,A2x,A3x], 2D Laplacian 
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References for Optimizing Stencils (1/2) 
° Bebop.cs.berkeley.edu 

•  “Autotuning Stencil Codes for Cache-Based Multicore Platforms”,               
K. Datta, UCB PhD thesis, 2009,  

•  “Avoiding Communication in Computing Krylov Subspaces,”                       
J. Demmel, M. Hoemmen, M. Mohiyuddin,  K. Yelick, 2007 

•  “Optimization and Performance Modeling of Stencil Computations on 
Modern Microprocessors”, K. Datta, S. Kamil, S. Williams, L. Oliker,     
J.Shalf, K. Yelick, SIAM Review, 2008 

° SEJITS – sejits.org (Armando Fox et al @ UCB) 
     “Bringing parallel performance to python with domain-  
      specific selective embedded just-in-time specialization” 
° Pochoir – stencil compiler (Charles Leiserson @ MIT) 
     people.csail.mit.edu/yuantang/ 
° Autotuning stencils and multigrid (Mary Hall @ Utah) 
      super-scidac.org/ 
° Polyhedral tiling (Michelle Strout @ Colorado) 
     www.cs.colostate.edu/~mstrout/Papers/pubs-poly.php 
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References for Optimizing Stencils (2/2) 

°  Ian Foster et al, on grids (SC2001) 
°   “Efficient out-of-core algorithms for linear relaxation 

using blocking covers,” C. Leiserson, S. Rao, S. Toledo, 
FOCS, 1993 

° “Data flow and storage allocation for the PDQ-5 program 
on the Philco-2000,” C. Pfeifer, CACM, 1963 
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Improvements to Jacobi 

° Similar to Jacobi: u(i,j,m+1) will be computed as a 
linear combination of neighbors 

•  Numeric coefficients and update order are different 

° 2 improvements 
•  Use “most recent values” of u that are available, since these are 

probably more accurate 
•  Update value of u(m+1) “more aggressively” at each step 

° First, note that while evaluating sequentially 
•  u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) … 

   some of the values for m+1 are already available 
•  u(i,j,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) … 

   where latest is either m or m+1 

27 

03/13/12 CS267 Lecture 17 

Gauss-Seidel 
° Updating left-to-right row-wise order, we get the 

Gauss-Seidel algorithm 
for i = 1 to n 
  for j = 1 to n  
      u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m) 
                          + b(i,j)) / 4 

° Cannot be parallelized, because of dependencies 

Updated 
m+1 

Not updated 
m 

i 

j 

28 
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Gauss-Seidel 
° Updating left-to-right row-wise order, we get the 

Gauss-Seidel algorithm 
for i = 1 to n 
  for j = 1 to n  
      u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m) 
                          + b(i,j)) / 4 

° Cannot be parallelized, because of dependencies, so 
instead we use a “red-black” order 

forall black points u(i,j) 
   u(i,j,m+1) = (u(i-1,j,m) + …  red neighbors 
forall red points u(i,j) 
   u(i,j,m+1) = (u(i-1,j,m+1) + … black neighbors 

°  For general graph, use “graph coloring”  
° Can use repeated Maximal Independent Sets to color 
°  Graph(T) is bipartite =>  2 colorable (red and black) 
°  Nodes for each color can be updated simultaneously 
°  Same optimizations, using submatrices 29 03/15/2016 CS267 Lecture 17 

Successive Overrelaxation (SOR) 

°  Red-black Gauss-Seidel converges twice as fast as Jacobi, but 
there are twice as many parallel steps, so the same in practice 

°  To motivate next improvement, write basic step in algorithm as: 
        u(i,j,m+1) = u(i,j,m) + correction(i,j,m) 
°  If “correction” is a good direction to move, then one should move 

even further in that direction by some factor w>1 
        u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m) 

°  Called successive overrelaxation (SOR) 
°  Parallelizes like Jacobi 
°  Can prove w = 2/(1+sin(π/(n+1)) )  for best convergence for Poisson 

•  Number of steps to converge  = parallel complexity = O(n), instead of O(n2) for 
Jacobi 

•  Serial complexity O(n3) = O(N3/2), instead of O(n4) = O(N2) for Jacobi 

30 
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Conjugate Gradient Algorithm for Solving Ax=b 

°  Initial guess x  
°  r = b – A*x, j=1 
° Repeat 

•  rho = rT*r    … dot product 
•  If j=1, p = r, else beta = rho/old_rho, p = r + beta*p, endif  … saxpy 
•  q = A*p … sparse matrix vector multiply, or stencil 
•  alpha = rho / pT * q … dot product 
•  x = x + alpha * p  … saxpy 
•  r = r – alpha * q   … saxpy 
•  old_rho = rho;  j=j+1 

° Until rho small enough 

•  Converges in O(n) = O(N1/2) steps, like SOR, but more general   
•  Can be reorganized to use matrix powers kernel [Ax,A2x,…,Akx]  

•   “Communication Avoiding Krylov Subspace Methods,”  
   M. Hoemmen, UCB PhD Thesis, bebop.cs.berkeley.edu, 2010 31 03/15/2016 CS267 Lecture 17 

2D Poisson’s equation 

° Similar to the 1D case, but the matrix T is now 

° 3D is analogous 

4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

T =
4 

-1 

-1 

-1 

-1 

Graph and “stencil” 
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 
Algorithm  Serial   PRAM   Memory  #Procs 
°  Dense LU  N3   N   N2   N2 
°  Band LU  N2  (N7/3)  N   N3/2  (N5/3)  N (N4/3) 
°  Jacobi  N2 (N5/3)   N (N2/3)   N   N 
°  Explicit Inv.  N2   log N   N2   N2 

°  Conj.Gradients N3/2 (N4/3)  N1/2(1/3) *log N  N   N 
°  Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N   N 
°  Sparse LU  N3/2 (N2)   N1/2   N*log N (N4/3)  N 
°  FFT   N*log N  log N   N   N 
°  Multigrid  N   log2 N   N   N 
°  Lower bound  N   log N   N 

PRAM is an idealized parallel model with zero cost communication 
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
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Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
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Multigrid Motivation 

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only 
move information one grid cell at a time 

•  Take at least n steps to move information across n x n grid 

° Therefore, converging in O(1) steps requires moving 
information across grid faster than to one 
neighboring grid cell per step 

•  One step can’t just do sparse-matrix-vector-multiply 

35 
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Multigrid Motivation 

Takes O(n) steps to propagate information across  an nxn grid! 36 
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Big Idea used in multigrid and elsewhere 

°  If you are far away, problem looks simpler 
•  For gravity: approximate earth, distant galaxies, … by point masses 

° Can solve such a coarse approximation to get an 
approximate solution, iterating if necessary 

•  Solve coarse approximation problem by using an even coarser 
approximation of it, and so on recursively 

° Ex: Graph Partitioning (used to parallelize SpMV)  
•  Replace graph to be partitioned by a coarser graph 

° Ex: Multigrid for solving PDE in O(n) time 
•  Use coarser mesh to get approximate solution of Poisson’s Eq. 

° Ex: Fast Multipole Method, Barnes-Hut for computing 
gravitational forces on n particles in O(n log n) time: 

•  Approximate particles in box by total mass, center of gravity 

37 03/15/2016 CS267 Lecture 17 

Fine and Coarse Approximations 

Fine Coarse 
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Multigrid Overview 

° Basic Algorithm: 
•  Replace problem on fine grid by an approximation on a coarser grid 
•  Solve the coarse grid problem approximately, and use the solution 

as a starting guess for the fine-grid problem, which is then 
iteratively updated 

•  Solve the coarse grid problem recursively, i.e. by using a still 
coarser grid approximation, etc. 

° Success depends on coarse grid solution being a 
good approximation to the fine grid 

Fine Coarse 
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Multigrid Sketch in 1D 

•  Consider a 2m+1 grid in 1D for simplicity 
•  Let P(i) be the problem of solving the discrete Poisson equation 

on a 2i+1 grid in 1D    (2i-1 unknowns plus 2 boundaries) 
•  Write linear system as T(i) * x(i) = b(i) 

•  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 
coarsest 

40 
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Multigrid Sketch in 2D 

•  Consider a 2m+1 by 2m+1 grid in 2D 
•  Let P(i) be the problem of solving the discrete Poisson equation 

on a 2i+1 by 2i+1 grid in 2D 
•  Write linear system as T(i) * x(i) = b(i) 

•  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to 
coarsest 
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Multigrid Operators 
•  For problem P(i) at varying coarsening levels (i, grid size grows with i): 

•  b(i) is the Right Hand Side (RHS) and  
•  x(i) is the current estimated solution  

•  All the following operators just average values on neighboring grid 
points (so information moves fast on coarse grids) 

•  The restriction operator R(i) maps P(i) to P(i-1) 
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)  
•  Uses sampling or averaging 
•  b(i-1)= R(i) (b(i)) 

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) 
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i) 
•  x(i) = In(i-1)(x(i-1)) 

•  The solution operator S(i) takes P(i) and improves solution x(i)  
•  Uses “weighted” Jacobi or SOR on single level of grid 
•  x improved (i) = S(i) (b(i), x(i)) 

•  Overall algorithm, then details of operators 

both live on grids of size 2i-1  

42 
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Multigrid Operators 
•  For problem P(i) at varying coarsening levels (i, grid size grows with i): 

•  b(i) is the Right Hand Side (RHS) and  
•  x(i) is the current estimated solution  

•  All the following operators just average values on neighboring grid 
points (so information moves fast on coarse grids) 

•  The restriction operator R(i) maps P(i) to P(i-1) 
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)  
•  Uses sampling or averaging 
•  b(i-1)= R(i) (b(i)) 

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) 
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i) 
•  x(i) = In(i-1)(x(i-1)) 

•  The solution operator S(i) takes P(i) and improves solution x(i)  
•  Uses “weighted” Jacobi or SOR on single level of grid 
•  x improved (i) = S(i) (b(i), x(i)) 

•  Overall algorithm, then details of operators 

both live on grids of size 2i-1  
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Multigrid Operators 
•  For problem P(i) at varying coarsening levels (i, grid size grows with i): 

•  b(i) is the Right Hand Side (RHS) and  
•  x(i) is the current estimated solution  

•  All the following operators just average values on neighboring grid 
points (so information moves fast on coarse grids) 

•  The restriction operator R(i) maps P(i) to P(i-1) 
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)  
•  Uses sampling or averaging 
•  b(i-1)= R(i) (b(i)) 

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i) 
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i) 
•  x(i) = In(i-1)(x(i-1)) 

•  The solution operator S(i) takes P(i) and improves solution x(i)  
•  Uses “weighted” Jacobi or SOR on single level of grid 
•  x improved (i) = S(i) (b(i), x(i)) 

•  Overall algorithm, then details of operators 

both live on grids of size 2i-1  
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Multigrid V-Cycle Algorithm 

Function MGV ( b(i), x(i) ) 
   … Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i) 
   … return an improved x(i) 
   if (i = 1)  
        compute exact solution x(1) of P(1)        only 1 unknown 
        return x(1) 
   else  
        x(i) = S(i) (b(i), x(i))                                   improve solution by damping 
                                                                                 high frequency error 
        r(i)  = T(i)*x(i) - b(i)                                    compute residual 
        d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) )         solve T(i)*d(i) = r(i) recursively    
        x(i) = x(i) - d(i)                                           correct fine grid solution 
        x(i) = S(i) ( b(i), x(i) )                                 improve solution again 
        return x(i) 

Function MGV ( b(i), x(i) ) 
   … Solve T(i)*x(i) = b(i) given b(i) and an initial  guess for x(i) 
   … return an improved x(i) 
   if (i = 1)  
        compute exact solution x(1) of P(1)        only 1 unknown 
        return x(1) 
   else                                                                 solve recursively 
        x(i) = S(i) (b(i), x(i))                                   improve solution by damping 
                                                                                 high frequency error 
        r(i)  = T(i)*x(i) - b(i)                                    compute residual 
        d(i) = In(i-1) ( MGV( R(i) ( r(i) ), 0 ) )         solve T(i)*d(i) = r(i) recursively    
        x(i) = x(i) - d(i)                                           correct fine grid solution 
        x(i) = S(i) ( b(i), x(i) )                                 improve solution again 
        return x(i) 
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This is called a V-Cycle 

° Just a picture of the call graph 
°  In time a V-cycle looks like the following 
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Complexity of a V-Cycle 

° On a serial machine 
•  Work at each point in a V-cycle is O(the number of unknowns) 
•  Cost of Level i is (2i-1)2 = O(4 i) for a 2D grid 
•  If finest grid level is m, total time is: 
                Σ   O(4 i) = O( 4 m)   for a 2D grid 
                              = O(# unknowns) in general 

° On an ideal parallel machine (PRAM) 
•  with one processor per grid point and free communication, each 

step in the V-cycle takes constant time 
•  Total V-cycle time is O(m) = O(log #unknowns) 

m 

i=1 
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Full Multigrid (FMG) 

°  Intuition:  
•  improve solution by doing multiple V-cycles 
•  avoid expensive fine-grid (high frequency) cycles 
•  analysis of why this works is beyond the scope of this class 

          Function FMG (b(m), x(m)) 
              … return improved x(m) given initial guess 
              compute the exact solution x(1) of P(1) 
              for i=2 to m   … from coarse to fine mesh 
                   x(i) = MGV ( b(i), In (i-1) (x(i-1) ) ) 
°  In other words: 

•  Solve the problem with 1 unknown 
•  Given a solution to the coarser problem, P(i-1) , map it to starting guess for 

P(i) 
•  Solve the finer problem using the Multigrid V-cycle  
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Full Multigrid  Cost Analysis 

° One V for each call to FMG  
•  people also use Ws and other compositions 

° Serial time:  Σ      O(4 i) = O( 4 m) = O(# unknowns) 

° PRAM time:  Σ      O(i) = O( m 2) = O( log2 # unknowns) 

m 

i=1 

m 

i=1 
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Complexity of Solving Poisson’s Equation 

• Theorem: error after one call to multigrid  
•  error_after   ≤  .5 * error_before   
•  independent of # unknowns 
•  !At least 1 bit each time 

• Corollary: We can make the error < any fixed 
tolerance in a fixed number of steps, independent of 
size of finest grid 

• This is the most important convergence property of  
MG, distinguishing it from all other methods, which 
converge more slowly for large grids 
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Complexity of Solving Poisson’s Equation 

• Theorem: error after one FMG  call  
•  error_after   ≤  .5 * error_before 
•  independent of # unknowns 
•  !At least 1 bit each time 

• Corollary: We can make the error < any fixed 
tolerance in a fixed number of steps, independent of 
size of finest grid 

• This is the most important convergence property of  
MG, distinguishing it from all other methods, which 
converge more slowly for large grids 
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The Solution Operator S(i) - Details 

° The solution operator, S(i), is a weighted Jacobi 
° Consider the 1D problem 

° At level i, pure Jacobi replaces: 
        x(j) :=  1/2 (x(j-1) + x(j+1) + b(j) ) 
°   Weighted Jacobi uses: 
        x(j) :=  1/3 (x(j-1) + x(j) + x(j+1) + b(j) ) 
 
°  In 2D, similar average of nearest neighbors 

53 
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Weighted Jacobi chosen to damp high frequency error 

Initial error 
    “Rough” 
    Lots of high frequency components 
     Norm = 1.65 

Error after 1 weighted Jacobi step 
    “Smoother” 
     Less high frequency component 
     Norm = 1.06 

Error after 2 weighted Jacobi steps 
    “Smooth” 
     Little high frequency component 
     Norm = .92,  
            won’t decrease much more 
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Multigrid as Divide and Conquer Algorithm 

° Each level in a V-Cycle reduces the error in one part 
of the frequency domain 
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The Restriction Operator R(i) - Details 

°  The restriction operator, R(i), takes  
•  a problem P(i)  with RHS b(i) and 
•  maps it to a coarser problem P(i-1) with RHS b(i-1) 

°  In 1D, average values of neighbors 
•  xcoarse(i) = 1/4 * xfine(i-1)   +   1/2 * xfine(i)   +   1/4 * xfine(i+1) 

°  In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW) 
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Interpolation Operator In(i-1): details 
°  The interpolation operator In(i-1), takes a function on a coarse 

grid P(i-1) , and produces a function on a fine grid P(i)  
°  In 1D, linearly interpolate nearest coarse neighbors 

•  xfine(i) = xcoarse(i) if the fine grid point  i is also a coarse one, else 
•  xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i) 

°  In 2D, interpolation requires averaging with 4 nearest 
neighbors (NW,SW,NE,SE) 
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Convergence Picture of Multigrid in 1D 
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Convergence Picture of Multigrid in 2D 
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Parallel 2D Multigrid 

° Multigrid on 2D 
requires nearest 
neighbor (up to 8) 
computation at each 
level of the grid 

° Start with n=2m+1 by 
2m+1 grid (here m=5) 

° Use an s by s 
processor grid                   
(here s=4) 
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Performance Model of parallel 2D Multigrid (V-cycle) 

°  Assume 2m+1 by 2m+1 grid of points, n= 2m-1, N=n2 

°  Assume p = 4k processors, arranged in 2k by 2k grid 
•  Processors start with 2m-k by 2m-k subgrid of unknowns 

°  Consider V-cycle starting at level m 
•  At levels m through k of V-cycle, each processor does some work 
•  At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of 

unknowns cannot occupy each processor 

°  Cost of one level in V-cycle 
•  If level j >= k, then cost =  

   O(4j-k )       ….  Flops, proportional to the number of grid points/processor 
+ O( 1 ) α       …. Send a constant # messages to neighbors 
+ O( 2j-k) β     …. Number of words sent 

•  If level j < k, then cost =  
   O(1)            ….  Flops, proportional to the number of grid points/processor 
+ O(1) α         …. Send a constant # messages to neighbors 
+ O(1) β          .… Number of words sent 

°  Sum over all levels in all V-cycles to get complexity 
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Comparison of Methods (in O(.) sense) 

                # Flops           # Messages        # Words sent 
MG           N/p +               (log N)2                   (N/p)1/2 + 
                log p * log N                             log p * log N 
FFT          N log N / p       p1/2                  N/p 
SOR         N3/2 /p              N1/2                 N/p 
 
° SOR is slower than others on all counts 
° Flops for MG  depends on accuracy of MG 
° MG communicates less total data (bandwidth) 
° Total messages (latency) depends … 

•  This coarse analysis can’t say whether MG or FFT is better when 
α >> β 
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Practicalities 
°  In practice, we don’t go all the way to P(1) 
°  In sequential code, the coarsest grids are negligibly 

cheap, but on a parallel machine they are not. 
•  Consider 1000 points per processor, so flops = O(1000) 
•  In 2D, the surface to communicate is 4 x 10001/2 ~= 128, or 13% 
•  In 3D, the surface is 1000-83 ~= 500, or 50% 

°   See Tuminaro and Womble, SIAM J. Sci. Comp., 
v14, n5, 1993 for analysis of MG on 1024 nCUBE2 

•  on 64x64 grid of unknowns, only 4 per processor 
-  efficiency of 1 V-cycle was .02, and on FMG .008 

•  on 1024x1024 grid 
-  efficiencies were .7 (MG V-cycle) and .42 (FMG) 
-  although worse parallel efficiency, FMG is 2.6 times faster 

than V-cycles alone 
•  nCUBE had fast communication, slow processors 

° Today: Same problem in Chombo @ LBL 
•  Communication of coarsest meshes  
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Multigrid on an Adaptive Mesh 

° For problems with very 
large dynamic range, 
another level of 
refinement is needed 

° Build adaptive mesh 
and solve multigrid 
(typically) at each level 

° Can’t afford to use finest mesh everywhere 
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Multiblock Applications 

° Solve system of equations on a union of rectangles 
•  subproblem of AMR 

° E.g., 
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Adaptive Mesh Refinement 

° Data structures in AMR 
° Usual parallelism is to assign grids on each level to 

processors 
° Load balancing is a problem 
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Support for AMR 

° Domains in Titanium designed for this problem 
° Kelp, Boxlib, and AMR++ are libraries for this 
° Primitives to help with boundary value updates, etc. 
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Multigrid on an Unstructured Mesh 

° Another approach to 
variable activity is to 
use an unstructured 
mesh that is more 
refined in areas of 
interest 

° Adaptive rectangular 
or unstructured? 

•  Numerics easier on 
rectangular 

•  Supposedly easier to 
implement (arrays without 
indirection) but boundary 
cases tend to dominate 
code 

Up to 39M unknowns on 960 processors, 
With 50% efficiency (Source: M. Adams) 
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Multigrid on an Unstructured Mesh 

° Need to partition graph for parallelism 
° What does it mean to do Multigrid anyway? 
° Need to be able to coarsen grid (hard problem) 

•  Can’t just pick “every other grid point” anymore 
•  Use “maximal independent sets” again 
•  How to make coarse graph approximate fine one 

° Need to define R() and In() 
•  How do we convert from coarse to fine mesh and back? 

° Need to define S() 
•  How do we define coarse matrix (no longer formula, like Poisson) 

° Dealing with coarse meshes efficiently 
•  Should we switch to using fewer processors on coarse meshes? 
•  Should we switch to another solver on coarse meshes? 
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Irregular mesh: Tapered Tube (multigrid) 
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Source of Unstructured Finite Element Mesh: Vertebra 

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta 
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Multigrid for nonlinear elastic analysis of bone  
Gordon Bell Prize, 2004 

Mechanical testing 
for material properties 

Micro Computed  
Tomography @  
22 µm resolution 

3D image µFE mesh 
2.5 mm3 

44 µm elements 

Up to  
537M unknowns 
4088 Processors (ASCI White) 
70% parallel efficiency 
 

Source: M. Adams et al 
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