
1

CS 267: Applications of Parallel Computers

Lecture 17 - Structured Grids

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16  

03/13/12 CS267 Lecture 17 2!

Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

Topic of this
lecture

2

03/15/2016 CS267 Lecture 17

Outline

° Review of Poisson Equation
° Jacobi’s method
° Red-Black SOR method
° Conjugate Gradient (topic of Lecture 15)
° Multigrid
°  (Later lecture: FFTs)

3 03/15/2016 CS267 Lecture 17

Solving PDEs
° Hyperbolic problems (waves):

•  Sound wave(position, time)
•  Use explicit time-stepping
•  Solution at each point depends on neighbors at previous time

°  Elliptic (steady state) problems:
•  Electrostatic Potential (position)
•  Everything depends on everything else
•  This means locality is harder to find than in hyperbolic problems

°  Parabolic (time-dependent) problems:
•  Temperature(position,time)
•  Involves an elliptic solve at each time-step

°  Focus on elliptic problems
•  Canonical example is the Poisson equation

∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 = f(x,y,z)

4

2

03/13/12 CS267 Lecture 17

Explicit Solution of PDEs
° Often used for hyperbolic PDEs
° Stability limits size of time-step
° Computation corresponds to

•  Matrix vector multiply
•  Combine nearest neighbors on grid

° Use finite differences with u[j,i] as the solution at
•  time t= i*δ (i = 0,1,2,…) and
•  position x = j*h (j=0,1,…,N=1/h)
•  initial conditions on u[j,0]
•  boundary conditions on u[0,i] and u[N,i]

° At each timestep i = 0,1,2,...

i=5

i=4

i=3

i=2

i=1

i=0
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

j

i

For j=1 to N-1
 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]
 + z*u[j+1,i]
where z =C*δ/h2

5 03/15/2016 CS267 Lecture 17

Matrix View of Explicit Method for Heat Equation

• u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i]
• u[:, i+1] = T * u[:, i] where T is tridiagonal:

• L called Laplacian (in 1D)
• For a 2D mesh (5 point stencil) the Laplacian has 5

diagonals
• For a 3D mesh there are 7 diagonals

1-2z z z

Graph and “3 point stencil”

T = = I – z*L, L =

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

1-2z z

z 1-2z z

 z 1-2z z

 z 1-2z z

 z 1-2z

6

03/15/2016 CS267 Lecture 17

Poisson’s equation in 1D: ∂2u/∂x2 = f(x)

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

T = 2 -1 -1

Graph and “stencil”

Solve Tu = f for u where

7 03/15/2016 CS267 Lecture 17

2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =
4

-1

-1

-1

-1

Graph and “stencil”

8

3

03/15/2016 CS267 Lecture 17

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

9 03/15/2016 CS267 Lecture 17

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

10

03/15/2016 CS267 Lecture 17

Jacobi’s Method

° To derive Jacobi’s method, write Poisson as:
 u(i,j) = (u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) + b(i,j))/4
° Let u(i,j,m) be approximation for u(i,j) after m steps
 u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) + u(i,j-1,m) +
 u(i,j+1,m) + b(i,j)) / 4
°  I.e., u(i,j,m+1) is a weighted average of neighbors
° Motivation: u(i,j,m+1) chosen to exactly satisfy

equation at (i,j)
° Steps to converge proportional to problem size, N=n2
° Therefore, serial complexity is O(N2)

11 03/15/2016

CS267 Lecture 17

Convergence of Nearest Neighbor Methods

° Jacobi’s method involves nearest neighbor
computation on nxn grid (N = n2)

•  So it takes O(n) = O(sqrt(N)) iterations for information to propagate

° E.g., consider a rhs (b) that is 0, except the center is 1
° The exact solution looks like:

Even in the best case, any
nearest neighbor computation
will take n/2 steps to propagate
on an nxn grid!

12

4

03/13/12 CS267 Lecture 17

Convergence of Nearest Neighbor Methods

Takes O(n) steps to propagate information across an nxn grid! 13 03/15/2016

CS267 Lecture 17

Parallelizing Jacobi’s Method

° Reduces to sparse-matrix-vector multiply by (nearly) T
 U(m+1) = (T/4 - I) * U(m) + B/4
° Each value of U(m+1) may be updated independently

•  keep 2 copies for iterations m and m+1

° Requires that boundary values be communicated
•  each processor owns n2/p elements to update
•  amount of data communicated, n/p1/2 per neighbor, relatively small if n>>p

14

Want to take s>>1 iterations

All the communication-avoiding
techniques for Matrix-powers kernel
(i.e. repeated SpMVs)
from Lecture 15 may be used

Reduce communication cost of
s iterations to 1 iteration

1 2 3 4 … … 32
x

A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

03/15/2016
CS267 Lecture 17

15

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

03/15/2016

CS267 Lecture 17

16

5

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Sequential Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

Step 1

03/15/2016 CS267 Lecture 17
17

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Sequential Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx – move O(n) words instead of O(kn)

Step 1 Step 2 Step 3 Step 4

03/15/2016
CS267 Lecture 17 18

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

Proc 1

03/13/12 CS267 Lecture 17

19

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

Proc 2

03/13/12 CS267 Lecture 17

20

6

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

Proc 3

03/13/12 CS267 Lecture 17

21

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Like Matrix-Powers Kernel, but simpler:

•  Don’t need to store A explicitly (it’s Jacobi)
•  Only need to save Akx

Proc 4

03/13/12 CS267 Lecture 17

22

1 2 3 4 … … 32

x
A·x
A2·x
A3·x

Communication Avoiding Jacobi:

•  Replace k iterations of y = A⋅x with [Ax, A2x, …, Akx]
•  Parallel Algorithm

•  Example: A tridiagonal, n=32, k=3
•  Entries in overlapping regions (triangles) computed

redundantly
•  Send O(1) messages instead of O(k)

Proc 1 Proc 2 Proc 3 Proc 4

03/13/12 CS267 Lecture 17

23

Remotely Dependent Entries for [x,Ax,A2x,A3x], 2D Laplacian

03/15/2016 CS267 Lecture 17 24

7

03/15/2016 CS267 Lecture 17

References for Optimizing Stencils (1/2)
° Bebop.cs.berkeley.edu

•  “Autotuning Stencil Codes for Cache-Based Multicore Platforms”,
K. Datta, UCB PhD thesis, 2009,

•  “Avoiding Communication in Computing Krylov Subspaces,”
J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yelick, 2007

•  “Optimization and Performance Modeling of Stencil Computations on
Modern Microprocessors”, K. Datta, S. Kamil, S. Williams, L. Oliker,
J.Shalf, K. Yelick, SIAM Review, 2008

° SEJITS – sejits.org (Armando Fox et al @ UCB)
 “Bringing parallel performance to python with domain-
 specific selective embedded just-in-time specialization”
° Pochoir – stencil compiler (Charles Leiserson @ MIT)
 people.csail.mit.edu/yuantang/
° Autotuning stencils and multigrid (Mary Hall @ Utah)
 super-scidac.org/
° Polyhedral tiling (Michelle Strout @ Colorado)
 www.cs.colostate.edu/~mstrout/Papers/pubs-poly.php

25

03/15/2016 CS267 Lecture 17

References for Optimizing Stencils (2/2)

°  Ian Foster et al, on grids (SC2001)
°  “Efficient out-of-core algorithms for linear relaxation

using blocking covers,” C. Leiserson, S. Rao, S. Toledo,
FOCS, 1993

° “Data flow and storage allocation for the PDQ-5 program
on the Philco-2000,” C. Pfeifer, CACM, 1963

26

03/15/2016 CS267 Lecture 17

Improvements to Jacobi

° Similar to Jacobi: u(i,j,m+1) will be computed as a
linear combination of neighbors

•  Numeric coefficients and update order are different

° 2 improvements
•  Use “most recent values” of u that are available, since these are

probably more accurate
•  Update value of u(m+1) “more aggressively” at each step

° First, note that while evaluating sequentially
•  u(i,j,m+1) = (u(i-1,j,m) + u(i+1,j,m) …

 some of the values for m+1 are already available
•  u(i,j,m+1) = (u(i-1,j,latest) + u(i+1,j,latest) …

 where latest is either m or m+1

27

03/13/12 CS267 Lecture 17

Gauss-Seidel
° Updating left-to-right row-wise order, we get the

Gauss-Seidel algorithm
for i = 1 to n
 for j = 1 to n
 u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)
 + b(i,j)) / 4

° Cannot be parallelized, because of dependencies

Updated
m+1

Not updated
m

i

j

28

8

03/13/12 CS267 Lecture 17

Gauss-Seidel
° Updating left-to-right row-wise order, we get the

Gauss-Seidel algorithm
for i = 1 to n
 for j = 1 to n
 u(i,j,m+1) = (u(i-1,j,m+1) + u(i+1,j,m) + u(i,j-1,m+1) + u(i,j+1,m)
 + b(i,j)) / 4

° Cannot be parallelized, because of dependencies, so
instead we use a “red-black” order

forall black points u(i,j)
 u(i,j,m+1) = (u(i-1,j,m) + … red neighbors
forall red points u(i,j)
 u(i,j,m+1) = (u(i-1,j,m+1) + … black neighbors

°  For general graph, use “graph coloring”
° Can use repeated Maximal Independent Sets to color
°  Graph(T) is bipartite => 2 colorable (red and black)
°  Nodes for each color can be updated simultaneously
°  Same optimizations, using submatrices 29 03/15/2016 CS267 Lecture 17

Successive Overrelaxation (SOR)

°  Red-black Gauss-Seidel converges twice as fast as Jacobi, but
there are twice as many parallel steps, so the same in practice

°  To motivate next improvement, write basic step in algorithm as:
 u(i,j,m+1) = u(i,j,m) + correction(i,j,m)
°  If “correction” is a good direction to move, then one should move

even further in that direction by some factor w>1
 u(i,j,m+1) = u(i,j,m) + w * correction(i,j,m)

°  Called successive overrelaxation (SOR)
°  Parallelizes like Jacobi
°  Can prove w = 2/(1+sin(π/(n+1))) for best convergence for Poisson

•  Number of steps to converge = parallel complexity = O(n), instead of O(n2) for
Jacobi

•  Serial complexity O(n3) = O(N3/2), instead of O(n4) = O(N2) for Jacobi

30

03/13/12 CS267 Lecture 17

Conjugate Gradient Algorithm for Solving Ax=b

°  Initial guess x
°  r = b – A*x, j=1
° Repeat

•  rho = rT*r … dot product
•  If j=1, p = r, else beta = rho/old_rho, p = r + beta*p, endif … saxpy
•  q = A*p … sparse matrix vector multiply, or stencil
•  alpha = rho / pT * q … dot product
•  x = x + alpha * p … saxpy
•  r = r – alpha * q … saxpy
•  old_rho = rho; j=j+1

° Until rho small enough

•  Converges in O(n) = O(N1/2) steps, like SOR, but more general
•  Can be reorganized to use matrix powers kernel [Ax,A2x,…,Akx]

•  “Communication Avoiding Krylov Subspace Methods,”
 M. Hoemmen, UCB PhD Thesis, bebop.cs.berkeley.edu, 2010 31 03/15/2016 CS267 Lecture 17

2D Poisson’s equation

° Similar to the 1D case, but the matrix T is now

° 3D is analogous

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

T =
4

-1

-1

-1

-1

Graph and “stencil”

32

9

03/15/2016 CS267 Lecture 17

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

33 03/15/2016 CS267 Lecture 17

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

34

03/15/2016 CS267 Lecture 17

Multigrid Motivation

° Recall that Jacobi, SOR, CG, or any other sparse-
matrix-vector-multiply-based algorithm can only
move information one grid cell at a time

•  Take at least n steps to move information across n x n grid

° Therefore, converging in O(1) steps requires moving
information across grid faster than to one
neighboring grid cell per step

•  One step can’t just do sparse-matrix-vector-multiply

35

03/13/12 CS267 Lecture 17

Multigrid Motivation

Takes O(n) steps to propagate information across an nxn grid! 36

10

03/15/2016 CS267 Lecture 17

Big Idea used in multigrid and elsewhere

°  If you are far away, problem looks simpler
•  For gravity: approximate earth, distant galaxies, … by point masses

° Can solve such a coarse approximation to get an
approximate solution, iterating if necessary

•  Solve coarse approximation problem by using an even coarser
approximation of it, and so on recursively

° Ex: Graph Partitioning (used to parallelize SpMV)
•  Replace graph to be partitioned by a coarser graph

° Ex: Multigrid for solving PDE in O(n) time
•  Use coarser mesh to get approximate solution of Poisson’s Eq.

° Ex: Fast Multipole Method, Barnes-Hut for computing
gravitational forces on n particles in O(n log n) time:

•  Approximate particles in box by total mass, center of gravity

37 03/15/2016 CS267 Lecture 17

Fine and Coarse Approximations

Fine Coarse

38

03/15/2016 CS267 Lecture 17

Multigrid Overview

° Basic Algorithm:
•  Replace problem on fine grid by an approximation on a coarser grid
•  Solve the coarse grid problem approximately, and use the solution

as a starting guess for the fine-grid problem, which is then
iteratively updated

•  Solve the coarse grid problem recursively, i.e. by using a still
coarser grid approximation, etc.

° Success depends on coarse grid solution being a
good approximation to the fine grid

Fine Coarse

39 03/15/2016 CS267 Lecture 17

Multigrid Sketch in 1D

•  Consider a 2m+1 grid in 1D for simplicity
•  Let P(i) be the problem of solving the discrete Poisson equation

on a 2i+1 grid in 1D (2i-1 unknowns plus 2 boundaries)
•  Write linear system as T(i) * x(i) = b(i)

•  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to
coarsest

40

11

03/15/2016 CS267 Lecture 17

Multigrid Sketch in 2D

•  Consider a 2m+1 by 2m+1 grid in 2D
•  Let P(i) be the problem of solving the discrete Poisson equation

on a 2i+1 by 2i+1 grid in 2D
•  Write linear system as T(i) * x(i) = b(i)

•  P(m) , P(m-1) , … , P(1) is sequence of problems from finest to
coarsest

41 03/15/2016 CS267 Lecture 17

Multigrid Operators
•  For problem P(i) at varying coarsening levels (i, grid size grows with i):

•  b(i) is the Right Hand Side (RHS) and
•  x(i) is the current estimated solution

•  All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

•  The restriction operator R(i) maps P(i) to P(i-1)
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)
•  Uses sampling or averaging
•  b(i-1)= R(i) (b(i))

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i)
•  x(i) = In(i-1)(x(i-1))

•  The solution operator S(i) takes P(i) and improves solution x(i)
•  Uses “weighted” Jacobi or SOR on single level of grid
•  x improved (i) = S(i) (b(i), x(i))

•  Overall algorithm, then details of operators

both live on grids of size 2i-1

42

03/15/2016 CS267 Lecture 17

Multigrid Operators
•  For problem P(i) at varying coarsening levels (i, grid size grows with i):

•  b(i) is the Right Hand Side (RHS) and
•  x(i) is the current estimated solution

•  All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

•  The restriction operator R(i) maps P(i) to P(i-1)
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)
•  Uses sampling or averaging
•  b(i-1)= R(i) (b(i))

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i)
•  x(i) = In(i-1)(x(i-1))

•  The solution operator S(i) takes P(i) and improves solution x(i)
•  Uses “weighted” Jacobi or SOR on single level of grid
•  x improved (i) = S(i) (b(i), x(i))

•  Overall algorithm, then details of operators

both live on grids of size 2i-1

43 03/15/2016 CS267 Lecture 17

Multigrid Operators
•  For problem P(i) at varying coarsening levels (i, grid size grows with i):

•  b(i) is the Right Hand Side (RHS) and
•  x(i) is the current estimated solution

•  All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

•  The restriction operator R(i) maps P(i) to P(i-1)
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)
•  Uses sampling or averaging
•  b(i-1)= R(i) (b(i))

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i)
•  x(i) = In(i-1)(x(i-1))

•  The solution operator S(i) takes P(i) and improves solution x(i)
•  Uses “weighted” Jacobi or SOR on single level of grid
•  x improved (i) = S(i) (b(i), x(i))

•  Overall algorithm, then details of operators

both live on grids of size 2i-1

44

12

03/15/2016 CS267 Lecture 17

Multigrid Operators
•  For problem P(i) at varying coarsening levels (i, grid size grows with i):

•  b(i) is the Right Hand Side (RHS) and
•  x(i) is the current estimated solution

•  All the following operators just average values on neighboring grid
points (so information moves fast on coarse grids)

•  The restriction operator R(i) maps P(i) to P(i-1)
•  Restricts problem on fine grid P(i) to coarse grid P(i-1)
•  Uses sampling or averaging
•  b(i-1)= R(i) (b(i))

•  The interpolation operator In(i-1) maps approx. solution x(i-1) to x(i)
•  Interpolates solution on coarse grid P(i-1) to fine grid P(i)
•  x(i) = In(i-1)(x(i-1))

•  The solution operator S(i) takes P(i) and improves solution x(i)
•  Uses “weighted” Jacobi or SOR on single level of grid
•  x improved (i) = S(i) (b(i), x(i))

•  Overall algorithm, then details of operators

both live on grids of size 2i-1

45 03/15/2016 CS267 Lecture 17

Multigrid V-Cycle Algorithm

Function MGV (b(i), x(i))
 … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)
 … return an improved x(i)
 if (i = 1)
 compute exact solution x(1) of P(1) only 1 unknown
 return x(1)
 else
 x(i) = S(i) (b(i), x(i)) improve solution by damping
 high frequency error
 r(i) = T(i)*x(i) - b(i) compute residual
 d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) solve T(i)*d(i) = r(i) recursively
 x(i) = x(i) - d(i) correct fine grid solution
 x(i) = S(i) (b(i), x(i)) improve solution again
 return x(i)

Function MGV (b(i), x(i))
 … Solve T(i)*x(i) = b(i) given b(i) and an initial guess for x(i)
 … return an improved x(i)
 if (i = 1)
 compute exact solution x(1) of P(1) only 1 unknown
 return x(1)
 else solve recursively
 x(i) = S(i) (b(i), x(i)) improve solution by damping
 high frequency error
 r(i) = T(i)*x(i) - b(i) compute residual
 d(i) = In(i-1) (MGV(R(i) (r(i)), 0)) solve T(i)*d(i) = r(i) recursively
 x(i) = x(i) - d(i) correct fine grid solution
 x(i) = S(i) (b(i), x(i)) improve solution again
 return x(i)

46

03/15/2016 CS267 Lecture 17

This is called a V-Cycle

° Just a picture of the call graph
°  In time a V-cycle looks like the following

47 03/15/2016 CS267 Lecture 17

Complexity of a V-Cycle

° On a serial machine
•  Work at each point in a V-cycle is O(the number of unknowns)
•  Cost of Level i is (2i-1)2 = O(4 i) for a 2D grid
•  If finest grid level is m, total time is:
 Σ O(4 i) = O(4 m) for a 2D grid
 = O(# unknowns) in general

° On an ideal parallel machine (PRAM)
•  with one processor per grid point and free communication, each

step in the V-cycle takes constant time
•  Total V-cycle time is O(m) = O(log #unknowns)

m

i=1

48

13

03/15/2016 CS267 Lecture 17

Full Multigrid (FMG)

°  Intuition:
•  improve solution by doing multiple V-cycles
•  avoid expensive fine-grid (high frequency) cycles
•  analysis of why this works is beyond the scope of this class

 Function FMG (b(m), x(m))
 … return improved x(m) given initial guess
 compute the exact solution x(1) of P(1)
 for i=2 to m … from coarse to fine mesh
 x(i) = MGV (b(i), In (i-1) (x(i-1)))
°  In other words:

•  Solve the problem with 1 unknown
•  Given a solution to the coarser problem, P(i-1) , map it to starting guess for

P(i)
•  Solve the finer problem using the Multigrid V-cycle

49 03/15/2016 CS267 Lecture 17

Full Multigrid Cost Analysis

° One V for each call to FMG
•  people also use Ws and other compositions

° Serial time: Σ O(4 i) = O(4 m) = O(# unknowns)

° PRAM time: Σ O(i) = O(m 2) = O(log2 # unknowns)

m

i=1

m

i=1

50

03/15/2016 CS267 Lecture 17

Complexity of Solving Poisson’s Equation

• Theorem: error after one call to multigrid
•  error_after ≤ .5 * error_before
•  independent of # unknowns
•  !At least 1 bit each time

• Corollary: We can make the error < any fixed
tolerance in a fixed number of steps, independent of
size of finest grid

• This is the most important convergence property of
MG, distinguishing it from all other methods, which
converge more slowly for large grids

51 03/15/2016 CS267 Lecture 17

Complexity of Solving Poisson’s Equation

• Theorem: error after one FMG call
•  error_after ≤ .5 * error_before
•  independent of # unknowns
•  !At least 1 bit each time

• Corollary: We can make the error < any fixed
tolerance in a fixed number of steps, independent of
size of finest grid

• This is the most important convergence property of
MG, distinguishing it from all other methods, which
converge more slowly for large grids

52

14

03/15/2016 CS267 Lecture 17

The Solution Operator S(i) - Details

° The solution operator, S(i), is a weighted Jacobi
° Consider the 1D problem

° At level i, pure Jacobi replaces:
 x(j) := 1/2 (x(j-1) + x(j+1) + b(j))
°  Weighted Jacobi uses:
 x(j) := 1/3 (x(j-1) + x(j) + x(j+1) + b(j))

°  In 2D, similar average of nearest neighbors

53
03/15/2016 CS267 Lecture 17

Weighted Jacobi chosen to damp high frequency error

Initial error
 “Rough”
 Lots of high frequency components
 Norm = 1.65

Error after 1 weighted Jacobi step
 “Smoother”
 Less high frequency component
 Norm = 1.06

Error after 2 weighted Jacobi steps
 “Smooth”
 Little high frequency component
 Norm = .92,
 won’t decrease much more

54

03/15/2016 CS267 Lecture 17

Multigrid as Divide and Conquer Algorithm

° Each level in a V-Cycle reduces the error in one part
of the frequency domain

55 03/15/2016 CS267 Lecture 17

The Restriction Operator R(i) - Details

°  The restriction operator, R(i), takes
•  a problem P(i) with RHS b(i) and
•  maps it to a coarser problem P(i-1) with RHS b(i-1)

°  In 1D, average values of neighbors
•  xcoarse(i) = 1/4 * xfine(i-1) + 1/2 * xfine(i) + 1/4 * xfine(i+1)

°  In 2D, average with all 8 neighbors (N,S,E,W,NE,NW,SE,SW)
56

15

03/15/2016 CS267 Lecture 17

Interpolation Operator In(i-1): details
°  The interpolation operator In(i-1), takes a function on a coarse

grid P(i-1) , and produces a function on a fine grid P(i)
°  In 1D, linearly interpolate nearest coarse neighbors

•  xfine(i) = xcoarse(i) if the fine grid point i is also a coarse one, else
•  xfine(i) = 1/2 * xcoarse(left of i) + 1/2 * xcoarse(right of i)

°  In 2D, interpolation requires averaging with 4 nearest
neighbors (NW,SW,NE,SE)

57 03/15/2016 CS267 Lecture 17

Convergence Picture of Multigrid in 1D

58

03/15/2016 CS267 Lecture 17

Convergence Picture of Multigrid in 2D

59 03/15/2016

CS267 Lecture 17

Parallel 2D Multigrid

° Multigrid on 2D
requires nearest
neighbor (up to 8)
computation at each
level of the grid

° Start with n=2m+1 by
2m+1 grid (here m=5)

° Use an s by s
processor grid
(here s=4)

60

16

03/15/2016 CS267 Lecture 17

Performance Model of parallel 2D Multigrid (V-cycle)

°  Assume 2m+1 by 2m+1 grid of points, n= 2m-1, N=n2

°  Assume p = 4k processors, arranged in 2k by 2k grid
•  Processors start with 2m-k by 2m-k subgrid of unknowns

°  Consider V-cycle starting at level m
•  At levels m through k of V-cycle, each processor does some work
•  At levels k-1 through 1, some processors are idle, because a 2k-1 by 2k-1 grid of

unknowns cannot occupy each processor

°  Cost of one level in V-cycle
•  If level j >= k, then cost =

 O(4j-k) …. Flops, proportional to the number of grid points/processor
+ O(1) α …. Send a constant # messages to neighbors
+ O(2j-k) β …. Number of words sent

•  If level j < k, then cost =
 O(1) …. Flops, proportional to the number of grid points/processor
+ O(1) α …. Send a constant # messages to neighbors
+ O(1) β .… Number of words sent

°  Sum over all levels in all V-cycles to get complexity
61 03/15/2016 CS267 Lecture 17

Comparison of Methods (in O(.) sense)

 # Flops # Messages # Words sent
MG N/p + (log N)2 (N/p)1/2 +
 log p * log N log p * log N
FFT N log N / p p1/2 N/p
SOR N3/2 /p N1/2 N/p

° SOR is slower than others on all counts
° Flops for MG depends on accuracy of MG
° MG communicates less total data (bandwidth)
° Total messages (latency) depends …

•  This coarse analysis can’t say whether MG or FFT is better when
α >> β

62

03/13/12 CS267 Lecture 17

Practicalities
°  In practice, we don’t go all the way to P(1)
°  In sequential code, the coarsest grids are negligibly

cheap, but on a parallel machine they are not.
•  Consider 1000 points per processor, so flops = O(1000)
•  In 2D, the surface to communicate is 4 x 10001/2 ~= 128, or 13%
•  In 3D, the surface is 1000-83 ~= 500, or 50%

°  See Tuminaro and Womble, SIAM J. Sci. Comp.,
v14, n5, 1993 for analysis of MG on 1024 nCUBE2

•  on 64x64 grid of unknowns, only 4 per processor
-  efficiency of 1 V-cycle was .02, and on FMG .008

•  on 1024x1024 grid
-  efficiencies were .7 (MG V-cycle) and .42 (FMG)
-  although worse parallel efficiency, FMG is 2.6 times faster

than V-cycles alone
•  nCUBE had fast communication, slow processors

° Today: Same problem in Chombo @ LBL
•  Communication of coarsest meshes

63 03/15/2016 CS267 Lecture 17

Multigrid on an Adaptive Mesh

° For problems with very
large dynamic range,
another level of
refinement is needed

° Build adaptive mesh
and solve multigrid
(typically) at each level

° Can’t afford to use finest mesh everywhere

64

17

03/15/2016 CS267 Lecture 17

Multiblock Applications

° Solve system of equations on a union of rectangles
•  subproblem of AMR

° E.g.,

65
03/15/2016 CS267 Lecture 17

Adaptive Mesh Refinement

° Data structures in AMR
° Usual parallelism is to assign grids on each level to

processors
° Load balancing is a problem

66

03/15/2016 CS267 Lecture 17

Support for AMR

° Domains in Titanium designed for this problem
° Kelp, Boxlib, and AMR++ are libraries for this
° Primitives to help with boundary value updates, etc.

67 03/15/2016 CS267 Lecture 17

Multigrid on an Unstructured Mesh

° Another approach to
variable activity is to
use an unstructured
mesh that is more
refined in areas of
interest

° Adaptive rectangular
or unstructured?

•  Numerics easier on
rectangular

•  Supposedly easier to
implement (arrays without
indirection) but boundary
cases tend to dominate
code

Up to 39M unknowns on 960 processors,
With 50% efficiency (Source: M. Adams)

68

18

03/15/2016 CS267 Lecture 17

Multigrid on an Unstructured Mesh

° Need to partition graph for parallelism
° What does it mean to do Multigrid anyway?
° Need to be able to coarsen grid (hard problem)

•  Can’t just pick “every other grid point” anymore
•  Use “maximal independent sets” again
•  How to make coarse graph approximate fine one

° Need to define R() and In()
•  How do we convert from coarse to fine mesh and back?

° Need to define S()
•  How do we define coarse matrix (no longer formula, like Poisson)

° Dealing with coarse meshes efficiently
•  Should we switch to using fewer processors on coarse meshes?
•  Should we switch to another solver on coarse meshes?

69 03/15/2016
! CS267 Lecture 9! 70!

Irregular mesh: Tapered Tube (multigrid)

03/15/2016 CS267 Lecture 17

Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta
71

Study failure modes of trabecular bone under stress

03/15/2016 CS267 Lecture 17

Multigrid for nonlinear elastic analysis of bone
Gordon Bell Prize, 2004

Mechanical testing
for material properties

Micro Computed
Tomography @
22 µm resolution

3D image µFE mesh
2.5 mm3

44 µm elements

Up to
537M unknowns
4088 Processors (ASCI White)
70% parallel efficiency

Source: M. Adams et al

72

