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Dense Linear Algebra: 

Parallel Gaussian Elimination 

James Demmel 
 

www.cs.berkeley.edu/~demmel/cs267_Spr16 

03/01/2016 CS267 Lecture 13 2 

Outline 
•  Review Gaussian Elimination (GE) for solving Ax=b 
•  Optimizing GE for caches on sequential machines 

-  using matrix-matrix multiplication (BLAS and LAPACK) 

•  Minimizing communication for sequential GE 
-  Not LAPACK, but Recursive LU minimizes bandwidth (latency possible) 

•  Data layouts on parallel machines 
•  Parallel Gaussian Elimination (ScaLAPACK) 
•  Minimizing communication for parallel GE 

-  Not ScaLAPACK (yet), but “Comm-Avoiding LU” (CALU) 
-  Same idea for minimizing bandwidth and latency in sequential case 

•  Summarize rest of dense linear algebra 
•  Dynamically scheduled LU for Multicore 
•  LU for Heterogeneous computers (CPU + GPU) 
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Gaussian Elimination (GE) for solving Ax=b 
•  Add multiples of each row to later rows to make A upper 

triangular 
•  Solve resulting triangular system Ux = c by substitution 

… for each column i 
… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    … for each row j below row i 
    for j = i+1 to n 
         … add a multiple of row i to row j 
         tmp = A(j,i); 
         for k = i to n 
               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 
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Refine GE Algorithm (1) 
•  Initial Version 

• Remove computation of constant tmp/A(i,i) from 
inner loop.  

… for each column i 
… zero it out below the diagonal by adding multiples of row i to later rows 
for i = 1 to n-1 
    … for each row j below row i 
    for j = i+1 to n 
         … add a multiple of row i to row j 
         tmp = A(j,i); 
         for k = i to n 
               A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 

m 

i 

j 
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Refine GE Algorithm (2) 
• Last version 

• Don’t compute what we already know:                    
zeros below diagonal in column i 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i to n 
               A(j,k) = A(j,k) - m * A(i,k) 

Do not compute zeros 
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Refine GE Algorithm (3) 
• Last version 

• Store multipliers m below diagonal in zeroed entries 
for later use 

for i = 1 to n-1 
     for j = i+1 to n 
          m = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - m * A(i,k) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store m here 

m 

i 
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Refine GE Algorithm (4) 
• Last version 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

• Split Loop 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 

Store all m’s here before updating 
rest of matrix 

i 

j 
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Refine GE Algorithm (5) 
• Last version 

• Express using matrix operations (BLAS) 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) * ( 1 / A(i,i) ) 
             … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  
              - A(i+1:n , i) * A(i , i+1:n) 
              … BLAS 2 (rank-1 update) 

for i = 1 to n-1 
     for j = i+1 to n 
          A(j,i) = A(j,i)/A(i,i) 
     for j = i+1 to n 
          for k = i+1 to n 
               A(j,k) = A(j,k) - A(j,i) * A(i,k) 
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What GE really computes 

• Call the strictly lower triangular matrix of multipliers 
M, and let L = I+M 

• Call the upper triangle of the final matrix U 
• Lemma (LU Factorization): If the above algorithm 

terminates (does not divide by zero) then A = L*U 
• Solving A*x=b using GE 

-  Factorize A = L*U using GE                   (cost = 2/3 n3 flops) 
-  Solve L*y = b for y, using substitution (cost = n2 flops) 
-  Solve U*x = y for x, using substitution (cost = n2 flops) 

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)     … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n)   …  BLAS 2 (rank-1 update) 

= * 
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Problems with basic GE algorithm 

•  What if some A(i,i) is zero? Or very small? 
-  Result may not exist, or be “unstable”, so need to pivot 

•  Current computation all BLAS 1 or BLAS 2, but we know that 
BLAS 3 (matrix multiply) is fastest (earlier lectures…) 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 
              - A(i+1:n , i) * A(i , i+1:n) 

Peak 
BLAS 3 

BLAS 2 
BLAS 1 
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Pivoting in Gaussian Elimination 
• A =  [ 0  1 ]   fails completely because can’t divide by A(1,1)=0 
          [ 1  0 ] 

• But solving Ax=b should be easy! 
                          
    
•   When diagonal A(i,i) is tiny (not just zero), algorithm may 

terminate but get completely wrong answer  
• Numerical instability 
• Roundoff error is cause 

•   Cure:   Pivot (swap rows of A) so A(i,i) large 
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Gaussian Elimination with Partial Pivoting (GEPP) 
•  Partial Pivoting: swap rows so that A(i,i) is largest in column 

for i = 1 to n-1 
     find and record k where |A(k,i)| = max{i ≤ j ≤ n} |A(j,i)| 
            … i.e. largest entry in rest of column i 
     if |A(k,i)| = 0 
          exit with a warning that A is singular, or nearly so 
     elseif  k ≠ i 
          swap rows i and k of A 
     end if        
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)        … each |quotient| ≤ 1 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n ) - A(i+1:n , i) * A(i , i+1:n) 

• Lemma: This algorithm computes A = P*L*U, where P is a 
permutation matrix. 

• This algorithm is numerically stable in practice 
•   For details see LAPACK code at     

http://www.netlib.org/lapack/single/sgetf2.f 
• Standard approach – but communication costs? 



4 

03/01/2016 CS267 Lecture 13 13 

Problems with basic GE algorithm 
•  What if some A(i,i) is zero? Or very small? 

-  Result may not exist, or be “unstable”, so need to pivot 

•  Current computation all BLAS 1 or BLAS 2, but we know that 
BLAS 3 (matrix multiply) is fastest (earlier lectures…) 

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 
              - A(i+1:n , i) * A(i , i+1:n) 

Peak 
BLAS 3 

BLAS 2 
BLAS 1 
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Converting BLAS2 to BLAS3 in GEPP 
• Blocking 

-  Used to optimize matrix-multiplication   
-  Harder here because of data dependencies in GEPP  

• BIG IDEA: Delayed Updates 
-  Save updates to “trailing matrix” from several consecutive 

BLAS2 (rank-1) updates 
-  Apply many updates simultaneously in one BLAS3 (matmul) 

operation 

• Same idea works for much of dense linear algebra 
-  Not eigenvalue problems or SVD – need more ideas 

• First Approach: Need to choose a block size b 
-  Algorithm will save and apply b updates 
-  b should be small enough so that active submatrix consisting 

of b columns of A fits in cache 
-  b should be large enough to make BLAS3 (matmul) fast 

03/01/2016 
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Blocked GEPP   (www.netlib.org/lapack/single/sgetrf.f) 

for   ib = 1 to n-1 step b     … Process matrix b columns at a time 
     end = ib + b-1                … Point to end of block of b columns  
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     
                                       … apply delayed updates with single matrix-multiply 
                                       … with inner dimension b 

(For a correctness proof,  
see on-line notes from 
CS267 / 1996.) 

= 
* 
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Efficiency of Blocked GEPP  
(all parallelism “hidden” inside the BLAS) 
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Communication Lower Bound for GE 
• Matrix Multiplication can be “reduced to” GE 
• Not a good way to do matmul but it shows that GE 

needs at least as much communication as matmul 
• Does blocked GEPP minimize communication? 
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I    0  -B      I                 I   0    -B 
A   I    0  =  A   I       ·         I    A·B 
0    0   I       0   0   I                   I   

Does LAPACK’s GEPP Minimize Communication?  

•  Case 1: n ≥ M   - huge matrix – attains lower bound 
-  b = M1/2 optimal, dominated by matmul 

•  Case 2: n ≤ M1/2   - small matrix – attains lower bound 
-  Whole matrix fits in fast memory, any algorithm attains lower bound 

•  Case 3: M1/2 < n < M  - medium size matrix – not optimal 
-  Can’t choose b to simultaneously optimize  matmul and BLAS2 GEPP 

of n x b submatrix 
-  Worst case: Exceed lower bound by factor M1/6 when n = M2/3  

•  Detailed counting on backup slides 

02/23/2012 CS267 Lecture 12 
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for   ib = 1 to n-1 step b     … Process matrix b columns at a time 
     end = ib + b-1                … Point to end of block of b columns  
     apply BLAS2 version of GEPP to  get A(ib:n , ib:end) = P’ * L’ * U’ 
     … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I 
     A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n)         … update next b rows of U 
     A(end+1:n , end+1:n ) = A(end+1:n , end+1:n ) 
                  - A(end+1:n , ib:end) * A(ib:end , end+1:n)     
                                       … apply delayed updates with single matrix-multiply 
                                       … with inner dimension b 

Alternative cache-oblivious GE formulation (1/2) 
•    Toledo (1997)  

-  Describe without pivoting for simplicity 
-  “Do left half of matrix, then right half” 
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 function [L,U] = RLU (A)   … assume A is m by n 
       if (n=1)   L = A/A(1,1),  U = A(1,1) 
       else 
             [L1,U1] = RLU( A(1:m , 1:n/2)) … do left half of A 
                 … let L11 denote top n/2 rows of L1 
             A( 1:n/2 , n/2+1 : n ) = L11-1 * A( 1:n/2 , n/2+1 : n )  
                 … update top n/2 rows of right half of A 
             A( n/2+1: m, n/2+1:n ) = A( n/2+1: m, n/2+1:n )  
                 - A( n/2+1: m, 1:n/2 ) * A( 1:n/2 , n/2+1 : n )  
                 … update rest of right half of A 
             [L2,U2] = RLU( A(n/2+1:m , n/2+1:n) ) … do right half of A 
             return [ L1,[0;L2] ] and [U1, [ A(.,.) ; U2 ] ] 

A   =    L  *  U 

L1 

U1 

L11 

L11-1* 
A(·,·) A(·,·) 

A(·,·) A(·,·) - = 
A(·,·) *  
A(·,·)  

L11 

L2  

U2  

Alternative cache-oblivious GE formulation (2/2) 

20 

 function [L,U] = RLU (A)   … assume A is m by n 
       if (n=1)   L = A/A(1,1),  U = A(1,1) 
       else 
             [L1,U1] = RLU( A(1:m , 1:n/2)) … do left half of A 
                 … let L11 denote top n/2 rows of L1 
             A( 1:n/2 , n/2+1 : n ) = L11-1 * A( 1:n/2 , n/2+1 : n )  
                 … update top n/2 rows of right half of A 
             A( n/2+1: m, n/2+1:n ) = A( n/2+1: m, n/2+1:n )  
                 - A( n/2+1: m, 1:n/2 ) * A( 1:n/2 , n/2+1 : n )  
                 … update rest of right half of A 
             [L2,U2] = RLU( A(n/2+1:m , n/2+1:n) ) … do right half of A 
             return [ L1,[0;L2] ] and [U1, [ A(.,.) ; U2 ] ] 

•  W(m,n) = W(m,n/2) + O(max(m·n,m·n2/M1/2)) + W(m-n/2,n/2) 
            ≤ 2 · W(m,n/2) + O(max(m·n,m·n2/M1/2))  
                      = O(m·n2/M1/2 + m·n·log M)  
                      = O(m·n2/M1/2 )   if M1/2·log M  = O(n) 

Still doesn’t 
minimize 
latency,  
but fixable 
CLASS PROJECT 
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Explicitly Parallelizing Gaussian Elimination 
•  Parallelization steps  

-  Decomposition: identify enough parallel work, but not too much 
-  Assignment:  load balance work among threads 
-  Orchestrate: communication and synchronization 
-  Mapping: which processors execute which threads (locality) 

•  Decomposition 
-  In BLAS 2 algorithm nearly each flop in inner loop can be done in 

parallel, so with n2 processors, need 3n parallel steps,                  
O(n log n) with pivoting 

-  This is too fine-grained, prefer calls to local matmuls instead 
-  Need to use parallel matrix multiplication 

•  Assignment and Mapping 
-  Which processors are responsible for which submatrices?  

for i = 1 to n-1 
     A(i+1:n,i) = A(i+1:n,i) / A(i,i)         … BLAS 1 (scale a vector) 
     A(i+1:n,i+1:n) = A(i+1:n , i+1:n )  … BLAS 2 (rank-1 update) 
              - A(i+1:n , i) * A(i , i+1:n) 

03/01/2016 CS267 Lecture 13 22 

Different Data Layouts for Parallel GE 

Bad load balance: 
P0 idle after first 
n/4 steps 

Load balanced, but 
can’t easily use BLAS3 

Can trade load balance 
and BLAS3  
performance by  
choosing b, but 
factorization of block 
column is a bottleneck 

Complicated addressing, 
May not want full parallelism 
In each column, row  

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

0 1 2 3 
3 0 1 2 
2 3 0 1 
1 2 3 0 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout 

 The winner! 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout 

0 1 2 3 

Bad load balance: 
P0 idle after first 
n/2 steps 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 

02/14/2006 CS267 Lecture 9 23 

Distributed GE with a 2D Block Cyclic Layout 

02/14/2006 CS267 Lecture 9 24 
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PDGEMM =  PBLAS matrix multiply 
 
Observations: 
•  For fixed N, as P increasesn 

Mflops increases, but less than 
100% efficiency 

•  For fixed P, as N increases, 
Mflops (efficiency) rises 

 DGEMM = BLAS routine 
      for matrix multiply 
Maximum speed for PDGEMM 
     = # Procs * speed of DGEMM 
 
Observations: 
•    Efficiency always at least 48% 
•    For fixed N, as P increases, 

efficiency drops  
•    For fixed P, as N increases, 

efficiency increases 

Review of Parallel MatMul 

• Want Large Problem Size Per 
Processor  

03/01/2016 
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Since it can run no faster than its 
    inner loop (PDGEMM), we measure: 
Efficiency =  
     Speed(PDGESV)/Speed(PDGEMM) 
 
Observations: 
•   Efficiency well above 50% for large 

enough problems 
•   For fixed N, as P increases, efficiency 

decreases (just as for PDGEMM) 
•   For fixed P, as N increases efficiency 

increases (just as for PDGEMM) 
•   From bottom table, cost of solving 

•  Ax=b about half of matrix multiply 
for large enough matrices. 

•  From the flop counts we would 
expect it to be (2*n3)/(2/3*n3) = 3 
times faster, but communication 
makes it a little slower. 

PDGESV = ScaLAPACK Parallel LU 

Does ScaLAPACK Minimize Communication? 
• Lower Bound: O(n2 / P1/2 ) words sent in O(P1/2 ) mess. 

-  Attained by Cannon and SUMMA (nearly) for matmul 

• ScaLAPACK:  
-  O(n2 log P / P1/2 ) words sent – close enough 
-  O(n log P ) messages – too large 
-  Why so many? One reduction costs O(log P) per column to 

find maximum pivot, times n = #columns 

• Need to abandon partial pivoting to reduce #messages 
-  Suppose we have n x n matrix on P1/2 x P1/2 processor grid 
-  Goal: For each panel of b columns spread over P1/2 procs, 

identify b “good” pivot rows in one reduction 
•  Call this factorization TSLU = “Tall Skinny LU” 

-  Several natural bad (numerically unstable) ways explored,   
but good way exists   

•  SC08, “Communication Avoiding GE”, D., Grigori, Xiang 
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Choosing Rows by “Tournament Pivoting” 
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Wnxb = 

W1 
W2 
W3 
W4 

P1·L1·U1 
P2·L2·U2 
P3·L3·U3 
P4·L4·U4 

= 

Choose b pivot rows of W1, call them W1’ 
Choose b pivot rows of W2, call them W2’ 
Choose b pivot rows of W3, call them W3’ 
Choose b pivot rows of W4, call them W4’ 

W1’ 
W2’ 
W3’ 
W4’ 

P12·L12·U12 
 
P34·L34·U34 

= 
Choose b pivot rows, call them W12’ 
 
Choose b pivot rows, call them W34’ 

W12’ 
W34’ 

=     P1234·L1234·U1234 
  

Choose b pivot rows 

Go back to W and use these b pivot rows  
(move them to top, do LU without pivoting) 

Not the same pivots rows chosen as for GEPP 
Need to show numerically stable   (D., Grigori, Xiang, ‘11) 
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Minimizing Communication in TSLU 

W	=		
W1	
W2	
W3	
W4	

LU	
LU	
LU	
LU	

LU	

LU	

LU	
Parallel:	

W	=		
W1	
W2	
W3	
W4	

LU	
LU	

LU	

LU	

Sequen-al:	

W	=		
W1	
W2	
W3	
W4	

LU	
LU	 LU	

LU	
LU	

LU	
LU	

Dual	Core:	

Can	Choose	reduc-on	tree	dynamically	
Mul-core	/	Mul-socket	/	Mul-rack	/	Mul-site	/	Out-of-core:		?	

CS267 Lecture 13 
03/01/2016 29 

Same idea for QR of Tall-skinny matrix (TSQR) 

W	=		
W1	
W2	
W3	
W4	

QR	
QR	
QR	
QR	

QR	

QR	

QR	
Parallel:	

W	=		
W1	
W2	
W3	
W4	

QR	
QR	

QR	

QR	

Sequen-al:	

W	=		
W1	
W2	
W3	
W4	

QR	
QR	 QR	

QR	
QR	

QR	
QR	

Dual	Core:	

First	step	of	SVD	of	Tall-Skinny	matrix	

CS267 Lecture 13 
03/01/2016 30 

Performance vs ScaLAPACK LU 

•  TSLU 
–  IBM Power 5   

•  Up to 4.37x faster (16 procs, 1M x 150) 
– Cray XT4 

•  Up to 5.52x faster (8 procs, 1M x 150) 
•  CALU 

–  IBM Power 5 

•  Up to 2.29x faster (64 procs, 1000 x 1000) 
– Cray XT4 

•  Up to 1.81x faster (64 procs, 1000 x 1000) 
•  See INRIA Tech Report 6523 (2008), paper at SC08 

CS267 Lecture 13 03/01/2016 31 

TSQR Performance Results 
•  Parallel 

– Intel Clovertown 
–  Up to 8x speedup (8 core, dual socket, 10M x 10) 

– Pentium III cluster, Dolphin Interconnect, MPICH 
•  Up to 6.7x speedup (16 procs, 100K x 200) 

– BlueGene/L 
•  Up to 4x speedup (32 procs, 1M x 50) 

-  Tesla C 2050 / Fermi 
•  Up to 13x (110,592 x 100) 

-  Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al) 
-  Cloud – (Gleich and Benson) ~2 map-reduces 

•  Sequential   
– “Infinite speedup” for out-of-core on PowerPC laptop 

•  As little as 2x slowdown vs (predicted) infinite DRAM 
•  LAPACK with virtual memory never finished 
 

•  SVD costs  about the same 
•  Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, 

others 
32 

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack 
Dongarra, Michael Anderson  
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	Petascale	machine	with	8192	procs,	each	at	500	GFlops/s,	a	bandwidth	of	4	GB/s.	

CALU speedup prediction for a Petascale machine - up to 81x faster 

./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ

P	=	8192	

33 

Summary of dense sequential O(n3) algorithms  
attaining communication lower bounds 

Computation 2-Level Mem Multiple Level 

Min #Words Min# Messages Min #Words Min #Messages 

BLAS-3 [1,2] [1,2] [1,2] [1,2] 

Cholesky [3,4,5,6] [3,5,6] [3,5,6] [3,5,6] 

LU [6,7,8,9] [7,8] [6,7,9] [7] 

Sym Indef [10] [10] [10] [10] 

QR [7,11,12,13] [7,11,13] [7,12,13] [7,13] 

Eig(A=AT) [14,15] [14,15] [14] [14] 

SVD [14,15,16] [14,15,16] [14,16] [14,16] 

Eig(A) [14] [14] [14] [14] 
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•  References are from Table 3.1 in “Communication lower bounds and  
  optimal algorithms for numerical linear algebra”, Ballard et al, 2014 

•   #words moved = Ω(n3/M1/2), #messages = Ω(n3/M3/2)    
•  Cache-oblivious,  Ours,  LAPACK, Randomized 

Summary of dense parallel O(n3/p) algorithms  
attaining communication lower bounds 
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•  References are from Table 3.2 in “Communication lower bounds and  
  optimal algorithms for numerical linear algebra”, Ballard et al, 2014 
•   Assume nxn matrices on p procs, minimum memory per proc:  M = O(n2/p) 

•  #words moved = Ω(n2/p1/2),  #messages = Ω(p1/2),  
•  Ours,  ScaLAPACK, Randomized 

•  ScaLAPACK sends > n/p1/2 times too many messages (except Cholesky) 

Computation Minimizes # Words Minimizes # Messages 

BLAS3 [1,2,3,4] [1,2,3,4] 
Cholesky [2] [2] 
LU [2,5,10,11] [5,10,11] 
Symmetric Indefinite [2,6,9] [6,9] 

QR [2,7] [7] 
Eig(A=AT) and SVD [2,8,9] [8,9] 

Eig(A) [8] [8] 

CLASS PROJECTS 

Can we do even better? 

36 

•   Assume nxn matrices on p processors  
•   Use c copies of data:  M = O(cn2 / p) per processor 
•   Increasing M reduces lower bounds: 

#words_moved    =   Ω( (n3/ P)  / M1/2 )  =  Ω( n2 /  (c1/2 P1/2 ) )                
#messages            =   Ω( (n3/ P)  / M3/2 )  =  Ω( P1/2 / c3/2 ) 

•  Attainable for Matmul 
•  Not attainable for LU, Cholesky, QR 
•  Thm: #words_moved * #messages = Ω( n2 ) 

•  Lowering #words by factor c1/2 must increase #messages by 
same factor 

•  Cor: Perfect strong scaling impossible for LU, Cholesky,QR 
•  Both lower bounds attainable for Cholesky, LU,                       

QR (via Cholesky QR): 
•  #words_moved  =  Ω( n2 /  (c1/2 P1/2 ) )  
•  #messages        =  Ω( c1/2 P1/2 )  

CLASS PROJECTS 
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LU Speedups from  
Tournament Pivoting and 2.5D   
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Dense Linear Algebra on Recent Architectures 
• Multicore 

-  How do we schedule all parallel tasks to minimize idle time? 

• GPUs 
-  Heterogeneous computer: consists of functional units   

(CPU and GPU) that are good at different tasks 
-  How do we divide the work between the GPU and CPU to 

take maximal advantage of both? 
-  Challenging now, will get more so as platforms become 

more heterogeneous 

03/01/2016 CS267 Lecture 13 39 

Multicore:  Expressing Parallelism with a DAG 
• DAG = Directed Acyclic Graph 

-  S1 → S2 means statement S2 “depends on” statement S1 
-  Can execute in parallel any Si without input dependencies 

• For simplicity, consider Cholesky A = LLT, not LU 
-  N by N matrix, numbered from A(0,0) to A(N-1,N-1) 
-  “Left looking” code: at step k, completely compute column k of L 

03/02/2009 CS267 Lecture 11 40 

for k = 0 to N-1 
    for n = 0 to k-1 
         A(k,k) = A(k,k) – A(k,n)*A(k,n) 
    A(k,k) = sqrt(A(k,k)) 
    for m = k+1 to N-1 
          for n = 0 to k-1 
                A(m,k) = A(m,k) – A(m,n)*A(k,n) 
          A(m,k) = A(m,k) / A(k,k) 
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Expressing Parallelism with a DAG - Cholesky 

03/02/2009 
CS267 Lecture 11 41 

for k = 0 to N-1 
    for n = 0 to k-1 
         A(k,k) = A(k,k) – A(k,n)*A(k,n) 
    A(k,k) = sqrt(A(k,k)) 
    for m = k+1 to N-1 
          for n = 0 to k-1 
                A(m,k) = A(m,k) – A(m,n)*A(k,n) 
          A(m,k) = A(m,k) · A(k,k)-1 

S1(k,n) 
S2(k) 
 
 
S3(k,m,n) 
S4(k,m) 

n 

k 

m 

S1(k,n) 

S2(k) 

S3(k,m,n) S4(k,m) 

DAG has ≈N3/6 vertices: 
    S1(k,n) → S2(k)     for n=0:k-1 
    S3(k,m,n) → S4(k,m)     for n=0:k-1 
    S2(k) → S4(k,m)     for m=k+1:N 
    S4(k,m) → S3 (k’,m,k)     for k’>k 
    S4(k,m) → S3(k,m’,k)     for m’>m 

Expressing Parallelism with a DAG – Block Cholesky 

03/02/2009 
CS267 Lecture 11 42 

for k = 0 to N/b-1 
    for n = 0 to k-1 
         A[k,k] = A[k,k] – A[k,n]*A[k,n]T 

    A[k,k] = unblocked_Cholesky(A[k,k]) 
    for m = k+1 to N/b-1 
          for n = 0 to k-1 
                A[m,k] = A[m,k] – A[m,n]*A[k,n]T 
          A[m,k] = A[m,k] · A[k,k]-1 

S1(k,n) 
S2(k) 
 
 
S3(k,m,n) 
S4(k,m) 

n 

k 

m 

S1(k,n) 

S2(k) 

S3(k,m,n) S4(k,m) 

Same DAG, but only 
≈(N/b)3/6 vertices 
     

•  Each A[i,j] is a b-by-b block 

SYRK: 
POTRF: 
 
 
GEMM: 
TRSM: 

• Note implied order of 
summation from left 
to right 

• Not necessary for 
correctness, but it 
does reflect what the 
sequential code does 

• Can process DAG in 
any order respecting 
dependences 

03/02/2009 

CS267 Lecture 11 

43 

Sample Cholesky DAG with  
#blocks in any row or column = N/b = 5 

Slide courtesy of Jakub Kurzak, UTK 

Scheduling options 
• Static (pre-assign tasks to processors) vs                     

Dynamic (idle processors grab ready jobs from work-queue) 
-  If dynamic, does scheduler take user hints/priorities? 

• Respect locality (eg processor must have some task data in 
its cache) vs not 

• Build and store entire DAG to schedule it (which may be   
very large, (N/b)3 ), vs                                                              
Build just the next few “levels” at a  time (smaller, but less 
information for scheduler) 

• Programmer builds DAG & schedule vs                           
Depend on compiler or run-time system 

-  Ease of programming, vs not exploiting user knowledge 
-  If compiler, how conservative is detection of parallelism? 
-  Generally useful, not just linear algebra 

03/01/2016 CS267 Lecture 13 44 
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Schedulers tested 
•  Cilk 

•  programmer-defined parallelism 
•  spawn – creates independent tasks 
•  sync – synchronizes a sub-branch of the tree 

•  SMPSs 
•  dependency-defined parallelism 
•  pragma-based annotation of tasks (directionality of 

the parameters) 

•  PLASMA (Static Pipeline) 
•  programmer-defined (hard-coded) 
•  apriori processing order 
•  stalling on dependencies Slide courtesy of Jakub Kurzak, UTK 

Measured Results for Tiled Cholesky 

PLASMA: 

Slide courtesy of Jakub Kurzak, UTK 

•  Measured on Intel Tigerton 2.4 GHz  
•  Cilk 1D: one task is whole panel, but with “look ahead” 
•  Cilk 2D: tasks are blocks, scheduler steals work, little locality 
•  PLASMA works best  

Cilk 

SMPSs 

PLASMA (Static Pipeline) 

More Measured Results for Tiled Cholesky 
•  Measured on Intel Tigerton 2.4 GHz  

Slide courtesy of Jakub Kurzak, UTK 

Still More Measured Results for Tiled Cholesky 

quad-socket, quad-core (16 cores total) Intel Tigerton 2.4 GHz 

•  PLASMA (static pipeline) – 
best 

•  SMPSs – somewhat worse 
•  Cilk 2D – inferior 
•  Cilk 1D – still worse 

Slide courtesy of Jakub Kurzak, UTK 
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49 

Intel’s Clovertown Quad Core 
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1.	LAPACK	(BLAS	Fork-Join	Parallelism)	

2.	ScaLAPACK	(Mess	Pass	using	mem	copy)	

3.	DAG	Based	(Dynamic	Scheduling)	

3 Implementations of LU factorization  
Quad core w/2 sockets per board, w/ 8 Threads 
 

8	Core	Experiments	

Source:	Jack	Dongarra	

Scheduling on Multicore – Next Steps 
• PLASMA 2.8.0 released 12/2015 

-  Includes BLAS, Cholesky, QR, LU, LDLT, eig, svd 
-  icl.cs.utk.edu/plasma/ 

• Future of PLASMA 
-  Continue adding functions 
-  Add dynamic scheduling 

•  QUARK dynamic scheduler released 12/2011 
•  DAGs for eigenproblems are too complicated to do by hand 
•  Plan to adopt OPenMP4.0 DAG scheduling features 

-  Still assume homogeneity of available cores 
•  What about GPUs, or mixtures of CPUs and GPUs? 

- MAGMA 
•  icl.cs.utk.edu/magma 

03/01/2016 CS267 Lecture 13 50 

CLASS PROJECTS 

Dense Linear Algebra on GPUs 
• Source: Vasily Volkov’s SC08 paper  

-  Best Student Paper Award (729 citations) 

• New challenges 
-  More complicated memory hierarchy 
-  Not like “L1 inside L2 inside …”,  

•  Need to choose which memory to use carefully 
•  Need to move data manually 

-  GPU does some operations much faster than CPU, but not all 
-  CPU and GPU fastest using different data layouts 

03/01/2016 CS267 Lecture 13 51 

Motivation 

•  Goal:	understand	bo[lenecks	in	the	dense	linear	algebra	kernels	
•  Requires	detailed	understanding	of	the	GPU	architecture	
•  Result	1:	New	coding	recommenda-ons	for	high	performance	on	GPUs	
•  Result	2:	New	,	fast	variants	of	LU,	QR,	Cholesky,	other		rou-nes	

•  NVIDIA	released	CUBLAS	1.0	in	2007,	which	is	BLAS	for	GPUs	
•  This	enables	a	straighcorward	port	of	LAPACK	to	GPU	

•  Consider	single	precision	only	

52 
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03/01/2016 CS267 Lecture 13 
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GPU Memory Hierarchy 

53 

• Register file is the fastest and the largest on-chip 
memory 

-  Constrained to vector operations only 

• Shared memory permits indexed and shared access 
-  However,  2-4x smaller and 4x lower bandwidth than 

registers 
•  Only 1 operand in shared memory is allowed versus 4 register 

operands 
-  Some instructions run slower if using shared memory 

64 KB vector register file16 KB
store

crossbar

16 lanes

64 lanes

CS267 Lecture 13 03/01/2016 

(Some new) NVIDIA coding recommendations 

•  Minimize communication with CPU memory 
•  Keep as much data in registers as possible 

-  Largest, fastest on-GPU memory 
-  Vector-only operations 

•  Use as little shared memory as possible 
-  Smaller, slower than registers; use for communication, sharing only 
-  Speed limit: 66% of peak with one shared mem argument 

•  Use vector length VL=64, not max VL = 512 
-  Strip mine longer vectors into shorter ones 

•  Final matmul code similar to Cray X1 or IBM 3090 vector codes 

54 CS267 Lecture 13 03/01/2016 

__global__ void sgemmNN( const float *A, int lda, const float *B, int ldb, float* C, int ldc, int k, float alpha, float beta ) 
{ 

 A += blockIdx.x * 64 + threadIdx.x + threadIdx.y*16; 
 B += threadIdx.x + ( blockIdx.y * 16 + threadIdx.y ) * ldb; 
 C += blockIdx.x * 64 + threadIdx.x + (threadIdx.y + blockIdx.y * ldc ) * 16; 
 __shared__ float bs[16][17]; 
 float c[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; 

     const float *Blast = B + k; 
 do 
 { 

#pragma unroll 
  for( int i = 0; i < 16; i += 4 )   
   bs[threadIdx.x][threadIdx.y+i]  = B[i*ldb]; 
  B += 16; 
  __syncthreads(); 

#pragma unroll 
  for( int i = 0; i < 16; i++, A += lda ) 

          { 
   c[0] += A[0]*bs[i][0];  c[1] += A[0]*bs[i][1];  c[2] += A[0]*bs[i][2];  c[3] += A[0]*bs[i][3]; 
   c[4] += A[0]*bs[i][4];  c[5] += A[0]*bs[i][5];  c[6] += A[0]*bs[i][6];  c[7] += A[0]*bs[i][7]; 
   c[8] += A[0]*bs[i][8];  c[9] += A[0]*bs[i][9];  c[10] += A[0]*bs[i][10]; c[11] += A[0]*bs[i][11]; 
   c[12] += A[0]*bs[i][12]; c[13] += A[0]*bs[i][13]; c[14] += A[0]*bs[i][14]; c[15] += A[0]*bs[i][15]; 

  } 
  __syncthreads(); 
 } while( B < Blast ); 
 for( int i = 0; i < 16; i++, C += ldc ) 
  C[0] = alpha*c[i] + beta*C[0];  

}   
 
 

Compute	pointers	to	the	data	

Declare	the	on-chip	storage	

Read	next	B’s	block	

Store	C’s	block	to	memory	

The	bo[leneck:	
Read	A’s	columns	
Do	Rank-1	updates	

55 CS267 Lecture 13 
03/01/2016 

New code vs. CUBLAS 1.1 

56 

Performance	in	mul-plying	two	NxN	matrices	on	GeForce	8800	GTX:	
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The Progress So Far 

•  Achieved predictable performance in SGEMM 
-  Which does O(N3) work in LU factorization 

•  But LU factorization (naïve SGETRF) still underperforms 
-  Must be due to the rest O(N2) work done in BLAS1 and BLAS2 
-  Why O(N2) work takes so much time? 

57 
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Row-Pivoting in LU Factorization 

58 

Exchange	two	rows	of	an	NxN	matrix	(SSWAP	in	CUBLAS	2.0):	

Row	pivo-ng	in	column-major	layout	on	GPU	is	very	slow	
This	alone	consumes	half	of	the	run-me	in	naïve	SGETRF		
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BLAS1 Performance 

•  Peak	bandwidth	of	these	GPUs	differs	by	a	factor	of	4.4	
•  But	run-mes	are	similar	
•  Small	tasks	on	GPU	are	overhead	bound	

59 

Scale	a	column	of	an	NxN	matrix	that	fits	in	the	GPU	memory	
(assumes	aligned,	unit-stride	access)	
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Panel Factorization 

•  Invoking	small	BLAS	opera-ons	on	GPU	from	CPU	is	slow	
•  Can	we	call	a	sequence	of	BLAS	opera-ons	from	GPU?	

•  Requires	barrier	synchroniza-on	aker	each	parallel	BLAS	opera-on	
•  Barrier	is	possible	but	requires	sequen-al	consistency	for	correctness	

60 

Factorizing	Nx64	matrix	in	GPU	memory	using	LAPACK’s	SGETF2:	
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Design of fast matrix factorizations on GPU 
• Use GPU for matmul only, not BLAS2 or BLAS1 
• Factor panels on CPU 
• Use “look-ahead” to overlap CPU and GPU work 

-  GPU updates matrix while CPU factoring next panel 

• Use row-major layout on GPU, column-major on CPU 
-  Convert on the fly 

• Substitute triangular solves LX= B with multiply by L-1 

-  For stability CPU needs to check || L-1 ||  

• Use variable-sized panels for load balance 
• For two GPUs with one CPU, use column-cyclic layout 

on GPUs 

03/01/2016 CS267 Lecture 13 61 

Raw Performance of Factorizations on GPU 

03/01/2016 CS267 Lecture 13 62 
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Where does the time go? 
• Time breakdown for LU on 8800 GTX 
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Importance of various optimizations on GPU 
•  Slowdown when omitting one of the optimizations on GTX 280 
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Results for matmul, LU on NVIDIA 

• What we’ve achieved: 
-  Identified realistic peak speed of GPU architecture 
-  Achieved a large fraction of this peak in matrix multiply 
-  Achieved a large fraction of the matrix multiply rate in dense 

factorizations 
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Class Projects 
•  Pick one (of many) functions/algorithms 
•  Pick a target parallel platform  
•  Pick a “parallel programming framework” 

-  LAPACK – all parallelism in BLAS 
-  ScaLAPACK – distributed memory using MPI 
-  PLASMA – DAG scheduling on multicore 

•  Parallel Linear Algebra for Scalable Multi-core Architectures  
•  http://icl.cs.utk.edu/plasma/ 

-  MAGMA – DAG scheduling for heterogeneous platforms 
•  Matrix Algebra on GPU and Multicore Architectures 
•  http://icl.cs.utk.edu/magma/ 

-  Spark, Elemental, … 
•  Design, implement, measure, model and/or compare performance 

-  Can be missing entirely on target platform 
-  May exist, but with a different programming framework 
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