
1

03/01/2016 CS267 Lecture 13 1

CS 267
Dense Linear Algebra:

Parallel Gaussian Elimination

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr16

03/01/2016 CS267 Lecture 13 2

Outline
•  Review Gaussian Elimination (GE) for solving Ax=b
•  Optimizing GE for caches on sequential machines

-  using matrix-matrix multiplication (BLAS and LAPACK)

•  Minimizing communication for sequential GE
-  Not LAPACK, but Recursive LU minimizes bandwidth (latency possible)

•  Data layouts on parallel machines
•  Parallel Gaussian Elimination (ScaLAPACK)
•  Minimizing communication for parallel GE

-  Not ScaLAPACK (yet), but “Comm-Avoiding LU” (CALU)
-  Same idea for minimizing bandwidth and latency in sequential case

•  Summarize rest of dense linear algebra
•  Dynamically scheduled LU for Multicore
•  LU for Heterogeneous computers (CPU + GPU)

03/01/2016 CS267 Lecture 13 3

Gaussian Elimination (GE) for solving Ax=b
•  Add multiples of each row to later rows to make A upper

triangular
•  Solve resulting triangular system Ux = c by substitution

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 … for each row j below row i
 for j = i+1 to n
 … add a multiple of row i to row j
 tmp = A(j,i);
 for k = i to n
 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

0
.
.
.
0

0 . . .
0

0 .
0 0

0
0

0
.
.
.
0

0 . . .
0

0 .
0

0
.
.
.
0

0 . . .
0

0
.
.
.
0

After i=1 After i=2 After i=3 After i=n-1

…

03/01/2016 CS267 Lecture 13 4

Refine GE Algorithm (1)
•  Initial Version

• Remove computation of constant tmp/A(i,i) from
inner loop.

… for each column i
… zero it out below the diagonal by adding multiples of row i to later rows
for i = 1 to n-1
 … for each row j below row i
 for j = i+1 to n
 … add a multiple of row i to row j
 tmp = A(j,i);
 for k = i to n
 A(j,k) = A(j,k) - (tmp/A(i,i)) * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

m

i

j

2

03/01/2016 CS267 Lecture 13 5

Refine GE Algorithm (2)
• Last version

• Don’t compute what we already know:
zeros below diagonal in column i

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i to n
 A(j,k) = A(j,k) - m * A(i,k)

Do not compute zeros

m

i

j

03/01/2016 CS267 Lecture 13 6

Refine GE Algorithm (3)
• Last version

• Store multipliers m below diagonal in zeroed entries
for later use

for i = 1 to n-1
 for j = i+1 to n
 m = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - m * A(i,k)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store m here

m

i

j

03/01/2016 CS267 Lecture 13 7

Refine GE Algorithm (4)
• Last version

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

• Split Loop

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Store all m’s here before updating
rest of matrix

i

j

03/01/2016 CS267 Lecture 13 8

Refine GE Algorithm (5)
• Last version

• Express using matrix operations (BLAS)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) * (1 / A(i,i))
 … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n)
 - A(i+1:n , i) * A(i , i+1:n)
 … BLAS 2 (rank-1 update)

for i = 1 to n-1
 for j = i+1 to n
 A(j,i) = A(j,i)/A(i,i)
 for j = i+1 to n
 for k = i+1 to n
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

3

03/01/2016 CS267 Lecture 13 9

What GE really computes

• Call the strictly lower triangular matrix of multipliers
M, and let L = I+M

• Call the upper triangle of the final matrix U
• Lemma (LU Factorization): If the above algorithm

terminates (does not divide by zero) then A = L*U
• Solving A*x=b using GE

-  Factorize A = L*U using GE (cost = 2/3 n3 flops)
-  Solve L*y = b for y, using substitution (cost = n2 flops)
-  Solve U*x = y for x, using substitution (cost = n2 flops)

• Thus A*x = (L*U)*x = L*(U*x) = L*y = b as desired

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n) … BLAS 2 (rank-1 update)

= *

03/01/2016 CS267 Lecture 13 10

Problems with basic GE algorithm

•  What if some A(i,i) is zero? Or very small?
-  Result may not exist, or be “unstable”, so need to pivot

•  Current computation all BLAS 1 or BLAS 2, but we know that
BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2
BLAS 1

03/01/2016 CS267 Lecture 13 11

Pivoting in Gaussian Elimination
• A = [0 1] fails completely because can’t divide by A(1,1)=0
 [1 0]

• But solving Ax=b should be easy!

•  When diagonal A(i,i) is tiny (not just zero), algorithm may

terminate but get completely wrong answer
• Numerical instability
• Roundoff error is cause

•  Cure: Pivot (swap rows of A) so A(i,i) large

03/01/2016 CS267 Lecture 13 12

Gaussian Elimination with Partial Pivoting (GEPP)
•  Partial Pivoting: swap rows so that A(i,i) is largest in column

for i = 1 to n-1
 find and record k where |A(k,i)| = max{i ≤ j ≤ n} |A(j,i)|
 … i.e. largest entry in rest of column i
 if |A(k,i)| = 0
 exit with a warning that A is singular, or nearly so
 elseif k ≠ i
 swap rows i and k of A
 end if
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … each |quotient| ≤ 1
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) - A(i+1:n , i) * A(i , i+1:n)

• Lemma: This algorithm computes A = P*L*U, where P is a
permutation matrix.

• This algorithm is numerically stable in practice
•  For details see LAPACK code at

http://www.netlib.org/lapack/single/sgetf2.f
• Standard approach – but communication costs?

4

03/01/2016 CS267 Lecture 13 13

Problems with basic GE algorithm
•  What if some A(i,i) is zero? Or very small?

-  Result may not exist, or be “unstable”, so need to pivot

•  Current computation all BLAS 1 or BLAS 2, but we know that
BLAS 3 (matrix multiply) is fastest (earlier lectures…)

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

Peak
BLAS 3

BLAS 2
BLAS 1

03/01/2016 CS267 Lecture 13 14

Converting BLAS2 to BLAS3 in GEPP
• Blocking

-  Used to optimize matrix-multiplication
-  Harder here because of data dependencies in GEPP

• BIG IDEA: Delayed Updates
-  Save updates to “trailing matrix” from several consecutive

BLAS2 (rank-1) updates
-  Apply many updates simultaneously in one BLAS3 (matmul)

operation

• Same idea works for much of dense linear algebra
-  Not eigenvalue problems or SVD – need more ideas

• First Approach: Need to choose a block size b
-  Algorithm will save and apply b updates
-  b should be small enough so that active submatrix consisting

of b columns of A fits in cache
-  b should be large enough to make BLAS3 (matmul) fast

03/01/2016

CS267 Lecture 13

15

Blocked GEPP (www.netlib.org/lapack/single/sgetrf.f)

for ib = 1 to n-1 step b … Process matrix b columns at a time
 end = ib + b-1 … Point to end of block of b columns
 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)
 - A(end+1:n , ib:end) * A(ib:end , end+1:n)
 … apply delayed updates with single matrix-multiply
 … with inner dimension b

(For a correctness proof,
see on-line notes from
CS267 / 1996.)

=
*

03/01/2016 CS267 Lecture 13 16

Efficiency of Blocked GEPP
(all parallelism “hidden” inside the BLAS)

0

0.2

0.4

0.6

0.8

1

1.2

Cnvx C4
(1 p)

Cnvx C4
(4 p)

Cray C90
(1 p)

Cray C90
(16 p)

Alpha RS6000 SGI PC

E
ffi
ci
en
cy

Speed (LAPACK/LU) / Speed(best effort)
Speed(Matmul) / HW Peak
Speed(LAPACK LU) / Speed(MatMul)

5

Communication Lower Bound for GE
• Matrix Multiplication can be “reduced to” GE
• Not a good way to do matmul but it shows that GE

needs at least as much communication as matmul
• Does blocked GEPP minimize communication?

03/01/2016 CS267 Lecture 13 17

I 0 -B I I 0 -B
A I 0 = A I · I A·B
0 0 I 0 0 I I

Does LAPACK’s GEPP Minimize Communication?

•  Case 1: n ≥ M - huge matrix – attains lower bound
-  b = M1/2 optimal, dominated by matmul

•  Case 2: n ≤ M1/2 - small matrix – attains lower bound
-  Whole matrix fits in fast memory, any algorithm attains lower bound

•  Case 3: M1/2 < n < M - medium size matrix – not optimal
-  Can’t choose b to simultaneously optimize matmul and BLAS2 GEPP

of n x b submatrix
-  Worst case: Exceed lower bound by factor M1/6 when n = M2/3

•  Detailed counting on backup slides

02/23/2012 CS267 Lecture 12

18

for ib = 1 to n-1 step b … Process matrix b columns at a time
 end = ib + b-1 … Point to end of block of b columns
 apply BLAS2 version of GEPP to get A(ib:n , ib:end) = P’ * L’ * U’
 … let LL denote the strict lower triangular part of A(ib:end , ib:end) + I
 A(ib:end , end+1:n) = LL-1 * A(ib:end , end+1:n) … update next b rows of U
 A(end+1:n , end+1:n) = A(end+1:n , end+1:n)
 - A(end+1:n , ib:end) * A(ib:end , end+1:n)
 … apply delayed updates with single matrix-multiply
 … with inner dimension b

Alternative cache-oblivious GE formulation (1/2)
•  Toledo (1997)

-  Describe without pivoting for simplicity
-  “Do left half of matrix, then right half”

03/01/2016 CS267 Lecture 13 19

 function [L,U] = RLU (A) … assume A is m by n
 if (n=1) L = A/A(1,1), U = A(1,1)
 else
 [L1,U1] = RLU(A(1:m , 1:n/2)) … do left half of A
 … let L11 denote top n/2 rows of L1
 A(1:n/2 , n/2+1 : n) = L11-1 * A(1:n/2 , n/2+1 : n)
 … update top n/2 rows of right half of A
 A(n/2+1: m, n/2+1:n) = A(n/2+1: m, n/2+1:n)
 - A(n/2+1: m, 1:n/2) * A(1:n/2 , n/2+1 : n)
 … update rest of right half of A
 [L2,U2] = RLU(A(n/2+1:m , n/2+1:n)) … do right half of A
 return [L1,[0;L2]] and [U1, [A(.,.) ; U2]]

A = L * U

L1

U1

L11

L11-1*
A(·,·) A(·,·)

A(·,·) A(·,·) - =
A(·,·) *
A(·,·)

L11

L2

U2

Alternative cache-oblivious GE formulation (2/2)

20

 function [L,U] = RLU (A) … assume A is m by n
 if (n=1) L = A/A(1,1), U = A(1,1)
 else
 [L1,U1] = RLU(A(1:m , 1:n/2)) … do left half of A
 … let L11 denote top n/2 rows of L1
 A(1:n/2 , n/2+1 : n) = L11-1 * A(1:n/2 , n/2+1 : n)
 … update top n/2 rows of right half of A
 A(n/2+1: m, n/2+1:n) = A(n/2+1: m, n/2+1:n)
 - A(n/2+1: m, 1:n/2) * A(1:n/2 , n/2+1 : n)
 … update rest of right half of A
 [L2,U2] = RLU(A(n/2+1:m , n/2+1:n)) … do right half of A
 return [L1,[0;L2]] and [U1, [A(.,.) ; U2]]

•  W(m,n) = W(m,n/2) + O(max(m·n,m·n2/M1/2)) + W(m-n/2,n/2)
 ≤ 2 · W(m,n/2) + O(max(m·n,m·n2/M1/2))
 = O(m·n2/M1/2 + m·n·log M)
 = O(m·n2/M1/2) if M1/2·log M = O(n)

Still doesn’t
minimize
latency,
but fixable
CLASS PROJECT

6

03/01/2016 CS267 Lecture 13 21

Explicitly Parallelizing Gaussian Elimination
•  Parallelization steps

-  Decomposition: identify enough parallel work, but not too much
-  Assignment: load balance work among threads
-  Orchestrate: communication and synchronization
-  Mapping: which processors execute which threads (locality)

•  Decomposition
-  In BLAS 2 algorithm nearly each flop in inner loop can be done in

parallel, so with n2 processors, need 3n parallel steps,
O(n log n) with pivoting

-  This is too fine-grained, prefer calls to local matmuls instead
-  Need to use parallel matrix multiplication

•  Assignment and Mapping
-  Which processors are responsible for which submatrices?

for i = 1 to n-1
 A(i+1:n,i) = A(i+1:n,i) / A(i,i) … BLAS 1 (scale a vector)
 A(i+1:n,i+1:n) = A(i+1:n , i+1:n) … BLAS 2 (rank-1 update)
 - A(i+1:n , i) * A(i , i+1:n)

03/01/2016 CS267 Lecture 13 22

Different Data Layouts for Parallel GE

Bad load balance:
P0 idle after first
n/4 steps

Load balanced, but
can’t easily use BLAS3

Can trade load balance
and BLAS3
performance by
choosing b, but
factorization of block
column is a bottleneck

Complicated addressing,
May not want full parallelism
In each column, row

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout 4) Block Skewed Layout

 The winner!

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

Bad load balance:
P0 idle after first
n/2 steps

0 1

2 3

5) 2D Row and Column Blocked Layout

b

02/14/2006 CS267 Lecture 9 23

Distributed GE with a 2D Block Cyclic Layout

02/14/2006 CS267 Lecture 9 24

M
at

rix
 m

ul
tip

ly
 o

f

 g
re

en
 =

 g
re

en
 -

bl
ue

 *
pi

nk

7

03/04/2010 CS267 Lecture 14

25

PDGEMM = PBLAS matrix multiply

Observations:
•  For fixed N, as P increasesn

Mflops increases, but less than
100% efficiency

•  For fixed P, as N increases,
Mflops (efficiency) rises

 DGEMM = BLAS routine
 for matrix multiply
Maximum speed for PDGEMM
 = # Procs * speed of DGEMM

Observations:
•  Efficiency always at least 48%
•  For fixed N, as P increases,

efficiency drops
•  For fixed P, as N increases,

efficiency increases

Review of Parallel MatMul

• Want Large Problem Size Per
Processor

03/01/2016

CS267 Lecture 14

26

Since it can run no faster than its
 inner loop (PDGEMM), we measure:
Efficiency =
 Speed(PDGESV)/Speed(PDGEMM)

Observations:
•  Efficiency well above 50% for large

enough problems
•  For fixed N, as P increases, efficiency

decreases (just as for PDGEMM)
•  For fixed P, as N increases efficiency

increases (just as for PDGEMM)
•  From bottom table, cost of solving

•  Ax=b about half of matrix multiply
for large enough matrices.

•  From the flop counts we would
expect it to be (2*n3)/(2/3*n3) = 3
times faster, but communication
makes it a little slower.

PDGESV = ScaLAPACK Parallel LU

Does ScaLAPACK Minimize Communication?
• Lower Bound: O(n2 / P1/2) words sent in O(P1/2) mess.

-  Attained by Cannon and SUMMA (nearly) for matmul

• ScaLAPACK:
-  O(n2 log P / P1/2) words sent – close enough
-  O(n log P) messages – too large
-  Why so many? One reduction costs O(log P) per column to

find maximum pivot, times n = #columns

• Need to abandon partial pivoting to reduce #messages
-  Suppose we have n x n matrix on P1/2 x P1/2 processor grid
-  Goal: For each panel of b columns spread over P1/2 procs,

identify b “good” pivot rows in one reduction
•  Call this factorization TSLU = “Tall Skinny LU”

-  Several natural bad (numerically unstable) ways explored,
but good way exists

•  SC08, “Communication Avoiding GE”, D., Grigori, Xiang
03/01/2016 CS267 Lecture 13 27

Choosing Rows by “Tournament Pivoting”

03/01/2016 CS267 Lecture 13 28

Wnxb =

W1
W2
W3
W4

P1·L1·U1
P2·L2·U2
P3·L3·U3
P4·L4·U4

=

Choose b pivot rows of W1, call them W1’
Choose b pivot rows of W2, call them W2’
Choose b pivot rows of W3, call them W3’
Choose b pivot rows of W4, call them W4’

W1’
W2’
W3’
W4’

P12·L12·U12

P34·L34·U34

=
Choose b pivot rows, call them W12’

Choose b pivot rows, call them W34’

W12’
W34’

= P1234·L1234·U1234

Choose b pivot rows

Go back to W and use these b pivot rows
(move them to top, do LU without pivoting)

Not the same pivots rows chosen as for GEPP
Need to show numerically stable (D., Grigori, Xiang, ‘11)

8

Minimizing Communication in TSLU

W	=		
W1	
W2	
W3	
W4	

LU	
LU	
LU	
LU	

LU	

LU	

LU	
Parallel:	

W	=		
W1	
W2	
W3	
W4	

LU	
LU	

LU	

LU	

Sequen-al:	

W	=		
W1	
W2	
W3	
W4	

LU	
LU	 LU	

LU	
LU	

LU	
LU	

Dual	Core:	

Can	Choose	reduc-on	tree	dynamically	
Mul-core	/	Mul-socket	/	Mul-rack	/	Mul-site	/	Out-of-core:		?	

CS267 Lecture 13
03/01/2016 29

Same idea for QR of Tall-skinny matrix (TSQR)

W	=		
W1	
W2	
W3	
W4	

QR	
QR	
QR	
QR	

QR	

QR	

QR	
Parallel:	

W	=		
W1	
W2	
W3	
W4	

QR	
QR	

QR	

QR	

Sequen-al:	

W	=		
W1	
W2	
W3	
W4	

QR	
QR	 QR	

QR	
QR	

QR	
QR	

Dual	Core:	

First	step	of	SVD	of	Tall-Skinny	matrix	

CS267 Lecture 13
03/01/2016 30

Performance vs ScaLAPACK LU

•  TSLU
–  IBM Power 5

•  Up to 4.37x faster (16 procs, 1M x 150)
– Cray XT4

•  Up to 5.52x faster (8 procs, 1M x 150)
•  CALU

–  IBM Power 5

•  Up to 2.29x faster (64 procs, 1000 x 1000)
– Cray XT4

•  Up to 1.81x faster (64 procs, 1000 x 1000)
•  See INRIA Tech Report 6523 (2008), paper at SC08

CS267 Lecture 13 03/01/2016 31

TSQR Performance Results
•  Parallel

– Intel Clovertown
–  Up to 8x speedup (8 core, dual socket, 10M x 10)

– Pentium III cluster, Dolphin Interconnect, MPICH
•  Up to 6.7x speedup (16 procs, 100K x 200)

– BlueGene/L
•  Up to 4x speedup (32 procs, 1M x 50)

-  Tesla C 2050 / Fermi
•  Up to 13x (110,592 x 100)

-  Grid – 4x on 4 cities vs 1 city (Dongarra, Langou et al)
-  Cloud – (Gleich and Benson) ~2 map-reduces

•  Sequential
– “Infinite speedup” for out-of-core on PowerPC laptop

•  As little as 2x slowdown vs (predicted) infinite DRAM
•  LAPACK with virtual memory never finished

•  SVD costs about the same
•  Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer,

others
32

Data from Grey Ballard, Mark Hoemmen, Laura Grigori, Julien Langou, Jack
Dongarra, Michael Anderson

9

	Petascale	machine	with	8192	procs,	each	at	500	GFlops/s,	a	bandwidth	of	4	GB/s.	

CALU speedup prediction for a Petascale machine - up to 81x faster

./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ

P	=	8192	

33

Summary of dense sequential O(n3) algorithms
attaining communication lower bounds

Computation 2-Level Mem Multiple Level

Min #Words Min# Messages Min #Words Min #Messages

BLAS-3 [1,2] [1,2] [1,2] [1,2]

Cholesky [3,4,5,6] [3,5,6] [3,5,6] [3,5,6]

LU [6,7,8,9] [7,8] [6,7,9] [7]

Sym Indef [10] [10] [10] [10]

QR [7,11,12,13] [7,11,13] [7,12,13] [7,13]

Eig(A=AT) [14,15] [14,15] [14] [14]

SVD [14,15,16] [14,15,16] [14,16] [14,16]

Eig(A) [14] [14] [14] [14]

03/01/2016 CS267 Lecture 13 34

•  References are from Table 3.1 in “Communication lower bounds and
 optimal algorithms for numerical linear algebra”, Ballard et al, 2014

•  #words moved = Ω(n3/M1/2), #messages = Ω(n3/M3/2)
•  Cache-oblivious, Ours, LAPACK, Randomized

Summary of dense parallel O(n3/p) algorithms
attaining communication lower bounds

03/01/2016 CS267 Lecture 13 35

•  References are from Table 3.2 in “Communication lower bounds and
 optimal algorithms for numerical linear algebra”, Ballard et al, 2014
•  Assume nxn matrices on p procs, minimum memory per proc: M = O(n2/p)

•  #words moved = Ω(n2/p1/2), #messages = Ω(p1/2),
•  Ours, ScaLAPACK, Randomized

•  ScaLAPACK sends > n/p1/2 times too many messages (except Cholesky)

Computation Minimizes # Words Minimizes # Messages

BLAS3 [1,2,3,4] [1,2,3,4]
Cholesky [2] [2]
LU [2,5,10,11] [5,10,11]
Symmetric Indefinite [2,6,9] [6,9]

QR [2,7] [7]
Eig(A=AT) and SVD [2,8,9] [8,9]

Eig(A) [8] [8]

CLASS PROJECTS

Can we do even better?

36

•  Assume nxn matrices on p processors
•  Use c copies of data: M = O(cn2 / p) per processor
•  Increasing M reduces lower bounds:

#words_moved = Ω((n3/ P) / M1/2) = Ω(n2 / (c1/2 P1/2))
#messages = Ω((n3/ P) / M3/2) = Ω(P1/2 / c3/2)

•  Attainable for Matmul
•  Not attainable for LU, Cholesky, QR
•  Thm: #words_moved * #messages = Ω(n2)

•  Lowering #words by factor c1/2 must increase #messages by
same factor

•  Cor: Perfect strong scaling impossible for LU, Cholesky,QR
•  Both lower bounds attainable for Cholesky, LU,

QR (via Cholesky QR):
•  #words_moved = Ω(n2 / (c1/2 P1/2))
•  #messages = Ω(c1/2 P1/2)

CLASS PROJECTS

10

LU Speedups from
Tournament Pivoting and 2.5D

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e

rc
e

n
ta

g
e

 o
f

m
a

ch
in

e
 p

e
a

k

#nodes

2.5D LU with CA-pivoting on BG/P (n=65,536)

2.5D LU (CA-pvt)
2D LU (CA-pvt)

ScaLAPACK PDGETRF

2.5D vs 2D LU
With and Without Pivoting

 0

 20

 40

 60

 80

 100

NO-pivot 2D

NO-pivot 2.5D

CA-pivot 2D

CA-pivot 2.5D

T
im

e
 (

se
c)

LU on 16,384 nodes of BG/P (n=131,072)

2X faster

2X faster

compute
idle

communication

Dense Linear Algebra on Recent Architectures
• Multicore

-  How do we schedule all parallel tasks to minimize idle time?

• GPUs
-  Heterogeneous computer: consists of functional units

(CPU and GPU) that are good at different tasks
-  How do we divide the work between the GPU and CPU to

take maximal advantage of both?
-  Challenging now, will get more so as platforms become

more heterogeneous

03/01/2016 CS267 Lecture 13 39

Multicore: Expressing Parallelism with a DAG
• DAG = Directed Acyclic Graph

-  S1 → S2 means statement S2 “depends on” statement S1
-  Can execute in parallel any Si without input dependencies

• For simplicity, consider Cholesky A = LLT, not LU
-  N by N matrix, numbered from A(0,0) to A(N-1,N-1)
-  “Left looking” code: at step k, completely compute column k of L

03/02/2009 CS267 Lecture 11 40

for k = 0 to N-1
 for n = 0 to k-1
 A(k,k) = A(k,k) – A(k,n)*A(k,n)
 A(k,k) = sqrt(A(k,k))
 for m = k+1 to N-1
 for n = 0 to k-1
 A(m,k) = A(m,k) – A(m,n)*A(k,n)
 A(m,k) = A(m,k) / A(k,k)

11

Expressing Parallelism with a DAG - Cholesky

03/02/2009
CS267 Lecture 11 41

for k = 0 to N-1
 for n = 0 to k-1
 A(k,k) = A(k,k) – A(k,n)*A(k,n)
 A(k,k) = sqrt(A(k,k))
 for m = k+1 to N-1
 for n = 0 to k-1
 A(m,k) = A(m,k) – A(m,n)*A(k,n)
 A(m,k) = A(m,k) · A(k,k)-1

S1(k,n)
S2(k)

S3(k,m,n)
S4(k,m)

n

k

m

S1(k,n)

S2(k)

S3(k,m,n) S4(k,m)

DAG has ≈N3/6 vertices:
 S1(k,n) → S2(k) for n=0:k-1
 S3(k,m,n) → S4(k,m) for n=0:k-1
 S2(k) → S4(k,m) for m=k+1:N
 S4(k,m) → S3 (k’,m,k) for k’>k
 S4(k,m) → S3(k,m’,k) for m’>m

Expressing Parallelism with a DAG – Block Cholesky

03/02/2009
CS267 Lecture 11 42

for k = 0 to N/b-1
 for n = 0 to k-1
 A[k,k] = A[k,k] – A[k,n]*A[k,n]T

 A[k,k] = unblocked_Cholesky(A[k,k])
 for m = k+1 to N/b-1
 for n = 0 to k-1
 A[m,k] = A[m,k] – A[m,n]*A[k,n]T
 A[m,k] = A[m,k] · A[k,k]-1

S1(k,n)
S2(k)

S3(k,m,n)
S4(k,m)

n

k

m

S1(k,n)

S2(k)

S3(k,m,n) S4(k,m)

Same DAG, but only
≈(N/b)3/6 vertices

•  Each A[i,j] is a b-by-b block

SYRK:
POTRF:

GEMM:
TRSM:

• Note implied order of
summation from left
to right

• Not necessary for
correctness, but it
does reflect what the
sequential code does

• Can process DAG in
any order respecting
dependences

03/02/2009

CS267 Lecture 11

43

Sample Cholesky DAG with
#blocks in any row or column = N/b = 5

Slide courtesy of Jakub Kurzak, UTK

Scheduling options
• Static (pre-assign tasks to processors) vs

Dynamic (idle processors grab ready jobs from work-queue)
-  If dynamic, does scheduler take user hints/priorities?

• Respect locality (eg processor must have some task data in
its cache) vs not

• Build and store entire DAG to schedule it (which may be
very large, (N/b)3), vs
Build just the next few “levels” at a time (smaller, but less
information for scheduler)

• Programmer builds DAG & schedule vs
Depend on compiler or run-time system

-  Ease of programming, vs not exploiting user knowledge
-  If compiler, how conservative is detection of parallelism?
-  Generally useful, not just linear algebra

03/01/2016 CS267 Lecture 13 44

12

Schedulers tested
•  Cilk

•  programmer-defined parallelism
•  spawn – creates independent tasks
•  sync – synchronizes a sub-branch of the tree

•  SMPSs
•  dependency-defined parallelism
•  pragma-based annotation of tasks (directionality of

the parameters)

•  PLASMA (Static Pipeline)
•  programmer-defined (hard-coded)
•  apriori processing order
•  stalling on dependencies Slide courtesy of Jakub Kurzak, UTK

Measured Results for Tiled Cholesky

PLASMA:

Slide courtesy of Jakub Kurzak, UTK

•  Measured on Intel Tigerton 2.4 GHz
•  Cilk 1D: one task is whole panel, but with “look ahead”
•  Cilk 2D: tasks are blocks, scheduler steals work, little locality
•  PLASMA works best

Cilk

SMPSs

PLASMA (Static Pipeline)

More Measured Results for Tiled Cholesky
•  Measured on Intel Tigerton 2.4 GHz

Slide courtesy of Jakub Kurzak, UTK

Still More Measured Results for Tiled Cholesky

quad-socket, quad-core (16 cores total) Intel Tigerton 2.4 GHz

•  PLASMA (static pipeline) –
best

•  SMPSs – somewhat worse
•  Cilk 2D – inferior
•  Cilk 1D – still worse

Slide courtesy of Jakub Kurzak, UTK

13

49

Intel’s Clovertown Quad Core

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000 13000 14000 15000

Problems Size

M
flo

p/
s

1.	LAPACK	(BLAS	Fork-Join	Parallelism)	

2.	ScaLAPACK	(Mess	Pass	using	mem	copy)	

3.	DAG	Based	(Dynamic	Scheduling)	

3 Implementations of LU factorization
Quad core w/2 sockets per board, w/ 8 Threads

8	Core	Experiments	

Source:	Jack	Dongarra	

Scheduling on Multicore – Next Steps
• PLASMA 2.8.0 released 12/2015

-  Includes BLAS, Cholesky, QR, LU, LDLT, eig, svd
-  icl.cs.utk.edu/plasma/

• Future of PLASMA
-  Continue adding functions
-  Add dynamic scheduling

•  QUARK dynamic scheduler released 12/2011
•  DAGs for eigenproblems are too complicated to do by hand
•  Plan to adopt OPenMP4.0 DAG scheduling features

-  Still assume homogeneity of available cores
•  What about GPUs, or mixtures of CPUs and GPUs?

- MAGMA
•  icl.cs.utk.edu/magma

03/01/2016 CS267 Lecture 13 50

CLASS PROJECTS

Dense Linear Algebra on GPUs
• Source: Vasily Volkov’s SC08 paper

-  Best Student Paper Award (729 citations)

• New challenges
-  More complicated memory hierarchy
-  Not like “L1 inside L2 inside …”,

•  Need to choose which memory to use carefully
•  Need to move data manually

-  GPU does some operations much faster than CPU, but not all
-  CPU and GPU fastest using different data layouts

03/01/2016 CS267 Lecture 13 51

Motivation

•  Goal:	understand	bo[lenecks	in	the	dense	linear	algebra	kernels	
•  Requires	detailed	understanding	of	the	GPU	architecture	
•  Result	1:	New	coding	recommenda-ons	for	high	performance	on	GPUs	
•  Result	2:	New	,	fast	variants	of	LU,	QR,	Cholesky,	other		rou-nes	

•  NVIDIA	released	CUBLAS	1.0	in	2007,	which	is	BLAS	for	GPUs	
•  This	enables	a	straighcorward	port	of	LAPACK	to	GPU	

•  Consider	single	precision	only	

52

0	 50	 100	 150	 200	 250	 300	 350	

LAPACK	
SGETRF	

BLAS	
SGEMM	

peak	in	
a*b+c	

Gflop/s	

GeForce	8800	GTX	

Core2	Quad	2.4GHz	

CUBLAS	1.1		

naive	

MKL		10.0	

MKL		10.0	 2007	results	

not	so	great	in	matrix-
matrix	mulUply	

disappoinUng	performance	in	
(naive)	LU	factorizaUon	

impressive	sheer	
compute	power	

03/01/2016 CS267 Lecture 13

14

GPU Memory Hierarchy

53

• Register file is the fastest and the largest on-chip
memory

-  Constrained to vector operations only

• Shared memory permits indexed and shared access
-  However, 2-4x smaller and 4x lower bandwidth than

registers
•  Only 1 operand in shared memory is allowed versus 4 register

operands
-  Some instructions run slower if using shared memory

64 KB vector register file16 KB
store

crossbar

16 lanes

64 lanes

CS267 Lecture 13 03/01/2016

(Some new) NVIDIA coding recommendations

•  Minimize communication with CPU memory
•  Keep as much data in registers as possible

-  Largest, fastest on-GPU memory
-  Vector-only operations

•  Use as little shared memory as possible
-  Smaller, slower than registers; use for communication, sharing only
-  Speed limit: 66% of peak with one shared mem argument

•  Use vector length VL=64, not max VL = 512
-  Strip mine longer vectors into shorter ones

•  Final matmul code similar to Cray X1 or IBM 3090 vector codes

54 CS267 Lecture 13 03/01/2016

__global__ void sgemmNN(const float *A, int lda, const float *B, int ldb, float* C, int ldc, int k, float alpha, float beta)
{

 A += blockIdx.x * 64 + threadIdx.x + threadIdx.y*16;
 B += threadIdx.x + (blockIdx.y * 16 + threadIdx.y) * ldb;
 C += blockIdx.x * 64 + threadIdx.x + (threadIdx.y + blockIdx.y * ldc) * 16;
 __shared__ float bs[16][17];
 float c[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

 const float *Blast = B + k;
 do
 {

#pragma unroll
 for(int i = 0; i < 16; i += 4)
 bs[threadIdx.x][threadIdx.y+i] = B[i*ldb];
 B += 16;
 __syncthreads();

#pragma unroll
 for(int i = 0; i < 16; i++, A += lda)

 {
 c[0] += A[0]*bs[i][0]; c[1] += A[0]*bs[i][1]; c[2] += A[0]*bs[i][2]; c[3] += A[0]*bs[i][3];
 c[4] += A[0]*bs[i][4]; c[5] += A[0]*bs[i][5]; c[6] += A[0]*bs[i][6]; c[7] += A[0]*bs[i][7];
 c[8] += A[0]*bs[i][8]; c[9] += A[0]*bs[i][9]; c[10] += A[0]*bs[i][10]; c[11] += A[0]*bs[i][11];
 c[12] += A[0]*bs[i][12]; c[13] += A[0]*bs[i][13]; c[14] += A[0]*bs[i][14]; c[15] += A[0]*bs[i][15];

 }
 __syncthreads();
 } while(B < Blast);
 for(int i = 0; i < 16; i++, C += ldc)
 C[0] = alpha*c[i] + beta*C[0];

}

Compute	pointers	to	the	data	

Declare	the	on-chip	storage	

Read	next	B’s	block	

Store	C’s	block	to	memory	

The	bo[leneck:	
Read	A’s	columns	
Do	Rank-1	updates	

55 CS267 Lecture 13
03/01/2016

New code vs. CUBLAS 1.1

56

Performance	in	mul-plying	two	NxN	matrices	on	GeForce	8800	GTX:	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

64	 128	 256	 512	 1024	 2048	 4096	

Fr
ac
Uo

n	
of
	P
ea
k	

N	

CUBLAS	1.1	(37%)	

our	implementaUon	(60%)	

mulUply-and-add	with	an	operand	in	shared	memory	(66%)	

CS267 Lecture 13 03/01/2016

15

The Progress So Far

•  Achieved predictable performance in SGEMM
-  Which does O(N3) work in LU factorization

•  But LU factorization (naïve SGETRF) still underperforms
-  Must be due to the rest O(N2) work done in BLAS1 and BLAS2
-  Why O(N2) work takes so much time?

57

0	 50	 100	 150	 200	 250	 300	 350	

LAPACK	SGETRF	

BLAS	SGEMM	

peak	in	a*b+c	

Gflop/s	

Core2	Quad	

CUBLAS	1.1	

naive	

Core2	Quad	

Core2	Quad	

in	registers	
using	shared	memory	

our	implementaUon	(now	in	CUBLAS	2.0)	

w/CUBLAS2.0	

Good	compared	to	
the	new,	smaller	peak	

Where	does	the	Ume	go?	

ArithmeUc	runs	slower	if	
using	shared	memory	

GeForce	8800	GTX	

CS267 Lecture 13 03/01/2016

Row-Pivoting in LU Factorization

58

Exchange	two	rows	of	an	NxN	matrix	(SSWAP	in	CUBLAS	2.0):	

Row	pivo-ng	in	column-major	layout	on	GPU	is	very	slow	
This	alone	consumes	half	of	the	run-me	in	naïve	SGETRF		

4	

8	

16	

32	

64	

128	

256	

512	

1024	

0	 2048	 4096	 6144	 8192	 10240	 12288	 14336	 16384	

m
ic
ro
se
co
nd

s	

	N	

matrix	in	row-major	layout	

(aligned	unit-stride	access)	

matrix	in	colum
n-major	layout	

(stride-N	acce
ss)	

40x	

CS267 Lecture 13 03/01/2016

BLAS1 Performance

•  Peak	bandwidth	of	these	GPUs	differs	by	a	factor	of	4.4	
•  But	run-mes	are	similar	
•  Small	tasks	on	GPU	are	overhead	bound	

59

Scale	a	column	of	an	NxN	matrix	that	fits	in	the	GPU	memory	
(assumes	aligned,	unit-stride	access)	

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	 2048	 4096	 6144	 8192	 10240	 12288	 14336	 16384	

m
ic
ro
se
co
nd

s	

N	

GeForce	8600	GTS,	peak	=	32	GB/s	
GeForce	GTX	280,	peak	=	141	GB/s	

CS267 Lecture 13 03/01/2016

Panel Factorization

•  Invoking	small	BLAS	opera-ons	on	GPU	from	CPU	is	slow	
•  Can	we	call	a	sequence	of	BLAS	opera-ons	from	GPU?	

•  Requires	barrier	synchroniza-on	aker	each	parallel	BLAS	opera-on	
•  Barrier	is	possible	but	requires	sequen-al	consistency	for	correctness	

60

Factorizing	Nx64	matrix	in	GPU	memory	using	LAPACK’s	SGETF2:	

0	

5	

10	

15	

20	

25	

64	 128	 256	 512	 1024	 2048	 4096	 8192	 16384	 32768	

Gfl
op

/s
	

N	

(including	tr
ansfer	to	CP

U	and	back)	

GeF
orce

	GTX
280

	

bo
un
d	

bound	assumes	4	µs	overhead	per	BLAS	call	
and	127	GB/s	bandwidth	in	memory	access	
(these	are	the	best	sustained	numbers)	

Core2	Quad		

CS267 Lecture 13 03/01/2016

16

Design of fast matrix factorizations on GPU
• Use GPU for matmul only, not BLAS2 or BLAS1
• Factor panels on CPU
• Use “look-ahead” to overlap CPU and GPU work

-  GPU updates matrix while CPU factoring next panel

• Use row-major layout on GPU, column-major on CPU
-  Convert on the fly

• Substitute triangular solves LX= B with multiply by L-1

-  For stability CPU needs to check || L-1 ||

• Use variable-sized panels for load balance
• For two GPUs with one CPU, use column-cyclic layout

on GPUs

03/01/2016 CS267 Lecture 13 61

Raw Performance of Factorizations on GPU

03/01/2016 CS267 Lecture 13 62

0

50

100

150

200

250

300

350

64 128 256 512 1024 2048 4096 8192 16384

G
flo

p/
s

Order of Matrix

QR
Cholesky
LU

78%

49%

51%

Speedup of Factorizations on GPU over CPU

03/01/2016 CS267 Lecture 13 63

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

64 128 256 512 1024 2048 4096 8192 16384

Sp
ee

du
p

vs
 C

or
e2

 Q
ua

d

Order of Matrix

QR
Cholesky
LU

4.4x

2.7x

GTX280

8800GTX

GPU only useful on large enough matrices

Where does the time go?
• Time breakdown for LU on 8800 GTX

03/01/2016 CS267 Lecture 13 64

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

448 704 1088 1664 2496 3648 5312 7744 11264

Ti
m

e

Order of Matrix

CPU-GPU	transfer

transpose
look-ahead

CPU/GPU
overlap

GPU

CPU

17

Importance of various optimizations on GPU
•  Slowdown when omitting one of the optimizations on GTX 280

03/01/2016 CS267 Lecture 13 65

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

64 128 256 512 1024 2048 4096 8192 16384

Sl
ow

do
w

n

Order of Matrix

overlap	CPU/GPU
transpose	matrix
TRSM	via	GEMM
batch	pivoting

Results for matmul, LU on NVIDIA

• What we’ve achieved:
-  Identified realistic peak speed of GPU architecture
-  Achieved a large fraction of this peak in matrix multiply
-  Achieved a large fraction of the matrix multiply rate in dense

factorizations

0	 50	 100	 150	 200	 250	 300	 350	

LAPACK	SGETRF	

BLAS	SGEMM	

peak	in	a*b+c	

Gflop/s	

Core2	Quad	

CUBLAS	1.1	

naive	

Core2	Quad	

Core2	Quad	

in	registers	
if	using	shared	memory	

our	implementaUon	(now	in	CUBLAS	2.0)	

our	implementaUon	 GeForce	8800	GTX	

03/01/2016 CS267 Lecture 13 66

Class Projects
•  Pick one (of many) functions/algorithms
•  Pick a target parallel platform
•  Pick a “parallel programming framework”

-  LAPACK – all parallelism in BLAS
-  ScaLAPACK – distributed memory using MPI
-  PLASMA – DAG scheduling on multicore

•  Parallel Linear Algebra for Scalable Multi-core Architectures
•  http://icl.cs.utk.edu/plasma/

-  MAGMA – DAG scheduling for heterogeneous platforms
•  Matrix Algebra on GPU and Multicore Architectures
•  http://icl.cs.utk.edu/magma/

-  Spark, Elemental, …
•  Design, implement, measure, model and/or compare performance

-  Can be missing entirely on target platform
-  May exist, but with a different programming framework

67

