
CS267 Lecture 2 1

02/25/2016! CS267 Lecture 12! 1!

CS 267  
Dense Linear Algebra: 
History and Structure, 

Parallel Matrix Multiplication"
James Demmel!

!
www.cs.berkeley.edu/~demmel/cs267_Spr16!

!

Quick review of earlier lecture
• What do you call

• A program written in PyGAS, a Global Address
Space language based on Python…

• That uses a Monte Carlo simulation algorithm to
approximate π …

• That has a race condition, so that it gives you a
different funny answer every time you run it?

 Monte - π - thon

02/25/2016! CS267 Lecture 12! 2!

02/25/2016! CS267 Lecture 12! 3!

Outline
• History and motivation

• What is dense linear algebra?
• Why minimize communication?
• Lower bound on communication

• Parallel Matrix-matrix multiplication
• Attaining the lower bound

• Other Parallel Algorithms (next lecture)

02/25/2016! CS267 Lecture 12! 4!

Outline
• History and motivation

• What is dense linear algebra?
• Why minimize communication?
• Lower bound on communication

• Parallel Matrix-matrix multiplication
• Attaining the lower bound

• Other Parallel Algorithms (next lecture)

CS267 Lecture 2 2

5!

Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

What is dense linear algebra?
•  Not just matmul!
•  Linear Systems: Ax=b
•  Least Squares: choose x to minimize ||Ax-b||2

•  Overdetermined or underdetermined; Unconstrained, constrained, or weighted

•  Eigenvalues and vectors of Symmetric Matrices
•  Standard (Ax = λx), Generalized (Ax=λBx)

•  Eigenvalues and vectors of Unsymmetric matrices
•  Eigenvalues, Schur form, eigenvectors, invariant subspaces
•  Standard, Generalized

•  Singular Values and vectors (SVD)
•  Standard, Generalized

•  Different matrix structures
•  Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded …
•  27 types in LAPACK (and growing…)

•  Level of detail
•  Simple Driver (“x=A\b”)
•  Expert Drivers with error bounds, extra-precision, other options
•  Lower level routines (“apply certain kind of orthogonal transformation”, matmul…)

CS267 Lecture 12! 6!02/25/2016!

Organizing Linear Algebra – in books

www.netlib.org/lapack www.netlib.org/scalapack

www.cs.utk.edu/~dongarra/etemplates www.netlib.org/templates

gams.nist.gov

A brief history of (Dense) Linear Algebra software (1/7)

• Libraries like EISPACK (for eigenvalue problems)

• Then the BLAS (1) were invented (1973-1977)
• Standard library of 15 operations (mostly) on vectors

•  “AXPY” (y = α·x + y), dot product, scale (x = α·x), etc
•  Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC

• Goals
•  Common “pattern” to ease programming, readability
•  Robustness, via careful coding (avoiding over/underflow)
•  Portability + Efficiency via machine specific implementations

• Why BLAS 1 ? They do O(n1) ops on O(n1) data
• Used in libraries like LINPACK (for linear systems)

•  Source of the name “LINPACK Benchmark” (not the code!)

02/25/2016! CS267 Lecture 12! 8!

•  In the beginning was the do-loop…

CS267 Lecture 2 3

02/25/2016! CS267 Lecture 12! 9!

Current Records for Solving Dense Systems (11/2013)

•  Linpack Benchmark
•  Fastest machine overall (www.top500.org)

•  Tianhe-2 (Guangzhou, China)
•  33.9 Petaflops out of 54.9 Petaflops peak (n=10M)
•  3.1M cores, of which 2.7M are accelerator cores

•  Intel Xeon E5-2692 (Ivy Bridge) and
Xeon Phi 31S1P

•  1 Pbyte memory
•  17.8 MWatts of power, 1.9 Gflops/Watt

•  Historical data (www.netlib.org/performance)
•  Palm Pilot III
•  1.69 Kiloflops
•  n = 100

Current Records for Solving Dense Systems (11/2015) A brief history of (Dense) Linear Algebra software (2/7)
• But the BLAS-1 weren’t enough

• Consider AXPY (y = α·x + y): 2n flops on 3n read/writes
• Computational intensity = (2n)/(3n) = 2/3
• Too low to run near peak speed (read/write dominates)
• Hard to vectorize (“SIMD’ize”) on supercomputers of

the day (1980s)
• So the BLAS-2 were invented (1984-1986)

• Standard library of 25 operations (mostly) on matrix/
vector pairs

•  “GEMV”: y = α·A·x + β·x, “GER”: A = A + α·x·yT, x = T-1·x
•  Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC

• Why BLAS 2 ? They do O(n2) ops on O(n2) data
• So computational intensity still just ~(2n2)/(n2) = 2

•  OK for vector machines, but not for machine with caches
02/25/2016! CS267 Lecture 12! 10!

A brief history of (Dense) Linear Algebra software (3/7)
• The next step: BLAS-3 (1987-1988)

• Standard library of 9 operations (mostly) on matrix/matrix pairs
•  “GEMM”: C = α·A·B + β·C, C = α·A·AT + β·C, B = T-1·B
•  Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC

• Why BLAS 3 ? They do O(n3) ops on O(n2) data
• So computational intensity (2n3)/(4n2) = n/2 – big at last!

•  Good for machines with caches, other mem. hierarchy levels
• How much BLAS1/2/3 code so far (all at www.netlib.org/blas)

• Source: 142 routines, 31K LOC, Testing: 28K LOC
•  Reference (unoptimized) implementation only
•  Ex: 3 nested loops for GEMM

•  Lots more optimized code (eg Homework 1)
•  Motivates “automatic tuning” of the BLAS

• Part of standard math libraries (eg AMD ACML, Intel MKL)

02/25/2016! CS267 Lecture 12! 11! 02/25/2009! CS267 Lecture 8! 12!

BLAS Standards Committee to start meeting again May 2016:
 Batched BLAS: many independent BLAS operations at once
 Reproducible BLAS: getting bitwise identical answers from
 run-to-run, despite nonassociate floating point, and dynamic
 scheduling of resources (bebop.cs.berkeley.edu/reproblas)
 Low-Precision BLAS: 16 bit floating point

See www.netlib.org/blas/blast-forum/ for previous extension attempt
 New functions, Sparse BLAS, Extended Precision BLAS

CS267 Lecture 2 4

A brief history of (Dense) Linear Algebra software (4/7)
•  LAPACK – “Linear Algebra PACKage” - uses BLAS-3 (1989 – now)

•  Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows – BLAS-1

•  How do we reorganize GE to use BLAS-3 ? (details later)
•  Contents of LAPACK (summary)

•  Algorithms that are (nearly) 100% BLAS 3
–  Linear Systems: solve Ax=b for x
–  Least Squares: choose x to minimize ||Ax-b||2

•  Algorithms that are only ≈50% BLAS 3
–  Eigenproblems: Find λ and x where Ax = λ x
–  Singular Value Decomposition (SVD)

•  Generalized problems (eg Ax = λ Bx)
•  Error bounds for everything
•  Lots of variants depending on A’s structure (banded, A=AT, etc)

•  How much code? (Release 3.6.0, Nov 2015) (www.netlib.org/lapack)
•  Source: 1750 routines, 721K LOC, Testing: 1094 routines, 472K LOC

•  Ongoing development (at UCB and elsewhere) (class projects!)
•  Next planned release June 2016

02/21/2012! CS267 Lecture 11!

13!

A brief history of (Dense) Linear Algebra software (5/7)
•  Is LAPACK parallel?

• Only if the BLAS are parallel (possible in shared memory)
• ScaLAPACK – “Scalable LAPACK” (1995 – now)

• For distributed memory – uses MPI
• More complex data structures, algorithms than LAPACK

•  Only subset of LAPACK’s functionality available
•  Details later (class projects!)

• All at www.netlib.org/scalapack

02/25/2016! CS267 Lecture 12! 14!

02/25/2016! CS267 Lecture 12! 15!

Success Stories for Sca/LAPACK (6/7)

Cosmic Microwave Background
Analysis, BOOMERanG

collaboration, MADCAP code (Apr.
27, 2000).

ScaLAPACK

•  Widely used
• Adopted by Mathworks, Cray,

Fujitsu, HP, IBM, IMSL, Intel,
NAG, NEC, SGI, …

•  7.5M webhits/year @ Netlib
(incl. CLAPACK, LAPACK95)

•  New Science discovered through the
solution of dense matrix systems

• Nature article on the flat
universe used ScaLAPACK

• Other articles in Physics
Review B that also use it

•  1998 Gordon Bell Prize
•  www.nersc.gov/assets/NewsImages/2003/

newNERSCresults050703.pdf

A brief future look at (Dense) Linear Algebra software (7/7)
• PLASMA, DPLASMA and MAGMA (now)

• Ongoing extensions to Multicore/GPU/Heterogeneous
• Can one software infrastructure accommodate all algorithms

and platforms of current (future) interest?
•  How much code generation and tuning can we automate?

• Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma})
• Other related projects

• Elemental (libelemental.org)
•  Distributed memory dense linear algebra
•  “Balance ease of use and high performance”

• FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)
•  Formal Linear Algebra Method Environment
•  Attempt to automate code generation across multiple platforms

• So far, none of these libraries minimize communication in all
cases (not even matmul!)

02/25/2016! CS267 Lecture 12! 16!

CS267 Lecture 2 5

17!

Back to basics:
Why avoiding communication is important (1/3)
Algorithms have two costs:
1. Arithmetic (FLOPS)
2. Communication: moving data between

•  levels of a memory hierarchy (sequential case)
• processors over a network (parallel case).

CPU
Cache

DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

CPU
DRAM

02/25/2016! CS267 Lecture 12!

Why avoiding communication is important (2/3)
•  Running time of an algorithm is sum of 3 terms:

•  # flops * time_per_flop
•  # words moved / bandwidth
•  # messages * latency

18!

communica(on	

•  Time_per_flop << 1/ bandwidth << latency
•  Gaps growing exponentially with time

•  Goal : organize linear algebra to avoid communication
•  Between all memory hierarchy levels

•  L1 L2 DRAM network, etc
•  Not just hiding communication (overlap with arith) (speedup ≤ 2x)
•  Arbitrary speedups possible

Annual improvements
Time_per_flop Bandwidth Latency

DRAM 26% 15%
Network 23% 5%

59%

02/25/2016!

•  Minimize communication to save time

CS267 Lecture 12!

Why Minimize Communication? (3/3)

1	

10	

100	

1000	

10000	

DP
	FL
OP
	

Re
gis
ter
	

1m
m	
on
-ch
ip	

5m
m	
on
-ch
ip	

Off
-ch
ip/
DR
AM

	

loc
al	
int
erc
on
ne
ct	

Cro
ss	
sys
tem

	

Pi
co
Jo
ul
es
	

now	

2018	

Source: John Shalf, LBL

Why Minimize Communication? (3/3)

1	

10	

100	

1000	

10000	

DP
	FL
OP
	

Re
gis
ter
	

1m
m	
on
-ch
ip	

5m
m	
on
-ch
ip	

Off
-ch
ip/
DR
AM

	

loc
al	
int
erc
on
ne
ct	

Cro
ss	
sys
tem

	

Pi
co
Jo
ul
es
	

now	

2018	

Source: John Shalf, LBL

Minimize communication to save energy

CS267 Lecture 2 6

Goal:
Organize Linear Algebra to Avoid Communication

21!

•  Between all memory hierarchy levels
•  L1 L2 DRAM network, etc

•  Not just hiding communication (overlap with arithmetic)
•  Speedup ≤ 2x

•  Arbitrary speedups/energy savings possible
•  Later: Same goal for other computational patterns

•  Lots of open problems

02/25/2016! CS267 Lecture 12!

Review: Blocked Matrix Multiply
• Blocked Matmul C = A·B breaks A, B and C into blocks

with dimensions that depend on cache size

22!

… Break Anxn, Bnxn, Cnxn into bxb blocks labeled A(i,j), etc
… b chosen so 3 bxb blocks fit in cache
for i = 1 to n/b, for j=1 to n/b, for k=1 to n/b
 C(i,j) = C(i,j) + A(i,k)·B(k,j) … b x b matmul, 4b2 reads/writes

•  When b=1, get “naïve” algorithm, want b larger …
•  (n/b)3 · 4b2 = 4n3/b reads/writes altogether
•  Minimized when 3b2 = cache size = M, yielding O(n3/M1/2) reads/writes

•  What if we had more levels of memory? (L1, L2, cache etc)?
•  Would need 3 more nested loops per level
•  Recursive (cache-oblivious algorithm) also possible

02/25/2016! CS267 Lecture 12!

Communication Lower Bounds: Prior Work on Matmul

• Assume n3 algorithm (i.e. not Strassen-like)
• Sequential case, with fast memory of size M

• Lower bound on #words moved to/from slow memory =
Ω (n3 / M1/2) [Hong, Kung, 81]

• Attained using blocked or cache-oblivious algorithms

23!

• Parallel case on P processors:
•  Let M be memory per processor; assume load balanced
•  Lower bound on #words moved

= Ω ((n3 /p) / M1/2)) [Irony, Tiskin, Toledo, 04]
•  If M = 3n2/p (one copy of each matrix), then

lower bound = Ω (n2 /p1/2)
• Attained by SUMMA, Cannon’s algorithm

NNZ (name of alg) Lower bound
on #words

Attained by

3n2 (“2D alg”) Ω (n2 / P1/2) [Cannon, 69]

3n2 P1/3 (“3D alg”) Ω (n2 / P2/3) [Johnson,93]

02/25/2016! CS267 Lecture 12!

New lower bound for all “direct” linear algebra

•  Holds for
•  Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, …
•  Some whole programs (sequences of these operations,

no matter how they are interleaved, eg computing Ak)
•  Dense and sparse matrices (where #flops << n3)
•  Sequential and parallel algorithms
•  Some graph-theoretic algorithms (eg Floyd-Warshall)

•  Generalizations later (Strassen-like algorithms, loops accessing arrays)
24!

Let M = “fast” memory size per processor
 = cache size (sequential case) or O(n2/p) (parallel case)
#flops = number of flops done per processor

 #words_moved per processor = Ω(#flops / M1/2)

 #messages_sent per processor = Ω (#flops / M3/2)

02/25/2016! CS267 Lecture 12!

•  Holds for
•  Matmul

CS267 Lecture 2 7

New lower bound for all “direct” linear algebra

•  Sequential case, dense n x n matrices, so O(n3) flops
•  #words_moved = Ω(n3/ M1/2)
•  #messages_sent = Ω(n3/ M3/2)

•  Parallel case, dense n x n matrices
•  Load balanced, so O(n3/p) flops processor
•  One copy of data, load balanced, so M = O(n2/p) per processor
•  #words_moved = Ω(n2/ p1/2)
•  #messages_sent = Ω(p1/2)

25!

Let M = “fast” memory size per processor
 = cache size (sequential case) or O(n2/p) (parallel case)
#flops = number of flops done per processor

 #words_moved per processor = Ω(#flops / M1/2)

 #messages_sent per processor = Ω (#flops / M3/2)

02/25/2016! CS267 Lecture 12!

SIAM Linear Algebra Prize, 2012

Can we attain these lower bounds?
•  Do conventional dense algorithms as implemented in LAPACK and

ScaLAPACK attain these bounds?
•  Mostly not yet, work in progress

•  If not, are there other algorithms that do?
•  Yes

•  Goals for algorithms:
•  Minimize #words_moved
•  Minimize #messages_sent

•  Need new data structures
•  Minimize for multiple memory hierarchy levels

•  Cache-oblivious algorithms would be simplest
•  Fewest flops when matrix fits in fastest memory

•  Cache-oblivious algorithms don’t always attain this
•  Attainable for nearly all dense linear algebra

•  Just a few prototype implementations so far (class projects!)
•  Only a few sparse algorithms so far (eg Cholesky)

26!02/25/2016! CS267 Lecture 12!

02/25/2016! CS267 Lecture 12! 27!

Outline
• History and motivation

• What is dense linear algebra?
• Why minimize communication?
• Lower bound on communication

• Parallel Matrix-matrix multiplication
• Attaining the lower bound

• Other Parallel Algorithms (next lecture)

02/25/2016! CS267 Lecture 12! 28!

Different Parallel Data Layouts for Matrices (not all!)

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

CS267 Lecture 2 8

02/25/2016! CS267 Lecture 12! 29!

Parallel Matrix-Vector Product
• Compute y = y + A*x, where A is a dense matrix
•  Layout:

•  1D row blocked
• A(i) refers to the n by n/p block row

that processor i owns,
•  x(i) and y(i) similarly refer to

segments of x,y owned by i
• Algorithm:

•  Foreach processor i
•  Broadcast x(i)
•  Compute y(i) = A(i)*x

• Algorithm uses the formula
y(i) = y(i) + A(i)*x = y(i) + Σj A(i,j)*x(j)

x

y

P0

P1

P2

P3

P0 P1 P2 P3

A(0)

A(1)

A(2)

A(3)

02/25/2016! CS267 Lecture 12! 30!

Matrix-Vector Product y = y + A*x
• A column layout of the matrix eliminates the broadcast of x

• But adds a reduction to update the destination y
• A 2D blocked layout uses a broadcast and reduction, both

on a subset of processors
• sqrt(p) for square processor grid

P0 P1 P2 P3

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

P12 P13 P14 P15

02/25/2016! CS267 Lecture 12! 31!

Parallel Matrix Multiply
• Computing C=C+A*B
• Using basic algorithm: 2*n3 Flops
• Variables are:

• Data layout: 1D? 2D? Other?
• Topology of machine: Ring? Torus?
• Scheduling communication

• Use of performance models for algorithm design
•  Message Time = “latency” + #words * time-per-word

 = α + n*β
• Efficiency (in any model):

• serial time / (p * parallel time)
• perfect (linear) speedup ↔ efficiency = 1

02/25/2016! CS267 Lecture 12! 32!

Matrix Multiply with 1D Column Layout
• Assume matrices are n x n and n is divisible by p

• A(i) refers to the n by n/p block column that processor i
owns (similiarly for B(i) and C(i))

• B(i,j) is the n/p by n/p sublock of B(i)
•  in rows j*n/p through (j+1)*n/p - 1

• Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + Σj A(j)*B(j,i)

p0 p1 p2 p3 p5 p4 p6 p7

May be a reasonable
assumption for analysis,
not for code

CS267 Lecture 2 9

02/25/2016! CS267 Lecture 12! 33!

Matrix Multiply: 1D Layout on Bus or Ring
• Algorithm uses the formula

C(i) = C(i) + A*B(i) = C(i) + Σj A(j)*B(j,i)

• First consider a bus-connected machine without
broadcast: only one pair of processors can
communicate at a time (ethernet)

• Second consider a machine with processors on a ring:
all processors may communicate with nearest neighbors
simultaneously

02/25/2016! CS267 Lecture 12! 34!

MatMul: 1D layout on Bus without Broadcast
Naïve algorithm:
 C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)
 for i = 0 to p-1
 for j = 0 to p-1 except i
 if (myproc == i) send A(i) to processor j
 if (myproc == j)
 receive A(i) from processor i
 C(myproc) = C(myproc) + A(i)*B(i,myproc)
 barrier

Cost of inner loop:
 computation: 2*n*(n/p)2 = 2*n3/p2
 communication: α + β*n2 /p

02/25/2016! CS267 Lecture 12! 35!

Naïve MatMul (continued)
Cost of inner loop:
 computation: 2*n*(n/p)2 = 2*n3/p2
 communication: α + β*n2 /p … approximately

Only 1 pair of processors (i and j) are active on any iteration,
 and of those, only i is doing computation
 => the algorithm is almost entirely serial

Running time:
 = (p*(p-1) + 1)*computation + p*(p-1)*communication
 ≈ 2*n3 + p2*α + p*n2*β	

 This is worse than the serial time and grows with p.

02/25/2016! CS267 Lecture 12! 36!

Matmul for 1D layout on a Processor Ring

•  Pairs of adjacent processors can communicate simultaneously

Copy A(myproc) into Tmp"
C(myproc) = C(myproc) + Tmp*B(myproc , myproc)"
for j = 1 to p-1"
 Send Tmp to processor myproc+1 mod p"
 Receive Tmp from processor myproc-1 mod p"
 C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)"

•  Same idea as for gravity in simple sharks and fish algorithm"
•  May want double buffering in practice for overlap"
•  Ignoring deadlock details in code"

•  Time of inner loop = 2*(α + β*n2/p) + 2*n*(n/p)2"

CS267 Lecture 2 10

02/25/2016! CS267 Lecture 12! 37!

Matmul for 1D layout on a Processor Ring
•  Time of inner loop = 2*(α + β*n2/p) + 2*n*(n/p)2

•  Total Time = 2*n* (n/p)2 + (p-1) * Time of inner loop
•  ≈ 2*n3/p + 2*p*α + 2*β*n2

•  (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:
•  Perfect speedup for arithmetic
•  A(myproc) must move to each other processor, costs at least
 (p-1)*cost of sending n*(n/p) words

•  Parallel Efficiency = 2*n3 / (p * Total Time)
 = 1/(1 + α * p2/(2*n3) + β * p/(2*n))
 = 1/ (1 + O(p/n))
•  Grows to 1 as n/p increases (or α and β shrink)

•  But far from communication lower bound
 02/25/2016! CS267 Lecture 12! 38!

Need to try 2D Matrix layout

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Summary of Parallel Matrix Multiply
• SUMMA

• Scalable Universal Matrix Multiply Algorithm
• Attains communication lower bounds (within log p)

• Cannon
• Historically first, attains lower bounds
• More assumptions

•  A and B square
•  P a perfect square

•  2.5D SUMMA
• Uses more memory to communicate even less

• Parallel Strassen
• Attains different, even lower bounds

02/25/2016! CS267 Lecture 12! 39! 02/25/2016! CS267 Lecture 12! 40!

SUMMA Algorithm
• SUMMA = Scalable Universal Matrix Multiply
• Presentation from van de Geijn and Watts

• www.netlib.org/lapack/lawns/lawn96.ps
• Similar ideas appeared many times

• Used in practice in PBLAS = Parallel BLAS
• www.netlib.org/lapack/lawns/lawn100.ps

CS267 Lecture 2 11

SUMMA uses Outer Product form of MatMul
• C = A*B means C(i,j) = Σk A(i,k)*B(k,j) !

• Column-wise outer product:
 C = A*B
 = Σk A(:,k)*B(k,:) !
 = Σk (k-th col of A)*(k-th row of B)!
!
• Block column-wise outer product
 (block size = 4 for illustration)
 C = A*B
 = A(:,1:4)*B(1:4,:) + A(:,5:8)*B(5:8,:) + …
 = Σk (k-th block of 4 cols of A)*!
 (k-th block of 4 rows of B)!
 02/25/2016! CS267 Lecture 12! 41!

42!

SUMMA – n x n matmul on P1/2 x P1/2 grid

•  C[i, j] is n/P1/2 x n/P1/2 submatrix of C on processor Pij!
•  A[i,k] is n/P1/2 x b submatrix of A!
•  B[k,j] is b x n/P1/2 submatrix of B !
•  C[i,j] = C[i,j] + Σk A[i,k]*B[k,j] !

•  summation over submatrices!
•  Need not be square processor grid !

* =
i"

j"

A[i,k]"

k"
k"

B[k,j]"

C[i,j]

02/25/2016! CS267 Lecture 12!

43!

SUMMA– n x n matmul on P1/2 x P1/2 grid

For k=0 to n-1 … or n/b-1 where b is the block size
 … = # cols in A(i,k) and # rows in B(k,j)
 for all i = 1 to pr … in parallel
 owner of A(i,k) broadcasts it to whole processor row
 for all j = 1 to pc … in parallel
 owner of B(k,j) broadcasts it to whole processor column
 Receive A(i,k) into Acol
 Receive B(k,j) into Brow
 C_myproc = C_myproc + Acol * Brow

* =
i"

j"

A[i,k]"

k"
k"

B[k,j]"

C(i,j)

For k=0 to n/b-1
 for all i = 1 to P1/2

 owner of A[i,k] broadcasts it to whole processor row (using binary tree)
 for all j = 1 to P1/2

 owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
 Receive A[i,k] into Acol
 Receive B[k,j] into Brow
 C_myproc = C_myproc + Acol * Brow

Brow

Acol

02/25/2016! CS267 Lecture 12! 44!

SUMMA Costs

For k=0 to n/b-1
 for all i = 1 to P1/2

 owner of A[i,k] broadcasts it to whole processor row (using binary tree)
 … #words = log P1/2 *b*n/P1/2 , #messages = log P1/2
 for all j = 1 to P1/2

 owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
 … same #words and #messages
 Receive A[i,k] into Acol
 Receive B[k,j] into Brow
 C_myproc = C_myproc + Acol * Brow … #flops = 2n2*b/P

°  Total #words = log P * n2 /P1/2"

°  Within factor of log P of lower bound"
°  (more complicated implementation removes log P factor)"

°  Total #messages = log P * n/b"
°  Choose b close to maximum, n/P1/2, to approach lower bound P1/2"

°  Total #flops = 2n3/P"

CS267 Lecture 2 12

02/25/2016! CS267 Lecture 8! 45!

PDGEMM = PBLAS routine
 for matrix multiply

Observations:
 For fixed N, as P increases
 Mflops increases, but
 less than 100% efficiency
 For fixed P, as N increases,
 Mflops (efficiency) rises

DGEMM = BLAS routine
 for matrix multiply

Maximum speed for PDGEMM
 = # Procs * speed of DGEMM

Observations (same as above):
 Efficiency always at least 48%
 For fixed N, as P increases,
 efficiency drops
 For fixed P, as N increases,
 efficiency increases

46!

Can we do better?
•  Lower bound assumed 1 copy of data: M = O(n2/P) per proc.
• What if matrix small enough to fit c>1 copies, so M = cn2/P ?

• #words_moved = Ω(#flops / M1/2) = Ω(n2 / (c1/2 P1/2))
• #messages = Ω(#flops / M3/2) = Ω(P1/2 /c3/2)

• Can we attain new lower bound?
• Special case: “3D Matmul”: c = P1/3

•  Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
•  Processors arranged in P1/3 x P1/3 x P1/3 grid
•  Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where

each submatrix is n/P1/3 x n/P1/3

• Not always that much memory available…

02/25/2016! CS267 Lecture 12!

2.5D Matrix Multiplication

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x (P/c)1/2 x c grid

c

(P/c)1/2

(P/c)1
/2

Example: P = 32, c = 2

02/25/2016! CS267 Lecture 12!

2.5D Matrix Multiplication

• Assume can fit cn2/P data per processor, c > 1
• Processors form (P/c)1/2 x (P/c)1/2 x c grid

k

j

i
Initially P(i,j,0) owns A(i,j) and B(i,j)
 each of size n(c/P)1/2 x n(c/P)1/2

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of Σm A(i,m)*B(m,j)
(3) Sum-reduce partial sums Σm A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,j)

CS267 Lecture 2 13

2.5D Matmul on IBM BG/P, n=64K

 0

 20

 40

 60

 80

 100

256 512 1024 2048

P
e
rc

e
n
ta

g
e
 o

f
m

a
ch

in
e
 p

e
a
k

#nodes

Matrix multiplication on BG/P (n=65,536)

2.5D MM
2D MM

•  As P increases, available memory grows è c increases proportionally to P
•  #flops, #words_moved, #messages per proc all decrease proportionally to P
•  #words_moved = Ω(#flops / M1/2) = Ω(n2 / (c1/2 P1/2))
•  #messages = Ω(#flops / M3/2) = Ω(P1/2 /c3/2)

•  Perfect strong scaling! But only up to c = P1/3

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

 0

 20

 40

 60

 80

 100

8192 131072

P
e
rc

e
n
ta

g
e
 o

f
m

a
c
h
in

e
 p

e
a
k

n

Matrix multiplication on 16,384 nodes of BG/P

12X faster

2.7X faster

Using c=16 matrix copies

2D MM
2.5D MM

02/25/2016! CS267 Lecture 12!

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

n=8192, 2D

n=8192, 2.5D

n=131072, 2D

n=131072, 2.5D

E
xe

cu
tio

n
 t

im
e

 n
o

rm
a

liz
e

d
 b

y
2

D

Matrix multiplication on 16,384 nodes of BG/P

95% reduction in comm computation
idle

communication

c = 16 copies

Distinguished Paper Award, EuroPar’11
SC’11 paper by Solomonik, Bhatele, D. 02/25/2016!

Perfect Strong Scaling – in Time and Energy
•  Every time you add a processor, you should use its memory M too
•  Start with minimal number of procs: PM = 3n2
•  Increase P by a factor of c è total memory increases by a factor of c
•  Notation for timing model:

•  γT , βT , αT = secs per flop, per word_moved, per message of size m
•  T(cP) = n3/(cP) [γT+ βT/M1/2 + αT/(mM1/2)]
 = T(P)/c
•  Notation for energy model:

•  γE , βE , αE = joules for same operations
•  δE = joules per word of memory used per sec
•  εE = joules per sec for leakage, etc.

•  E(cP) = cP { n3/(cP) [γE+ βE/M1/2 + αE/(mM1/2)] + δEMT(cP) + εET(cP) }
 = E(P)
•  c cannot increase forever: c <= P1/3 (3D algorithm)

•  Corresponds to lower bound on #messages hitting 1
•  Perfect scaling extends to Strassen’s matmul, direct N-body, …

•  “Perfect Strong Scaling Using No Additional Energy”
•  “Strong Scaling of Matmul and Memory-Indep. Comm. Lower Bounds”
•  Both at bebop.cs.berkeley.edu

CS267 Lecture 2 14

Classical Matmul vs Parallel Strassen
• Complexity of classical Matmul vs Strassen
• Flops: O(n3/p) vs O(nw/p) where w = log2 7 ~ 2.81
• Communication lower bound on #words:
 Ω((n3/p)/M1/2) = Ω(M(n/M1/2)3/p) vs Ω(M(n/M1/2)w/p)
• Communication lower bound on #messages:
 Ω((n3/p)/M3/2) = Ω((n/M1/2)3/p) vs Ω((n/M1/2)w/p)
• All attainable as M increases past O(n2/p), up to a limit:
 can increase M by factor up to p1/3 vs p1-2/w

 #words as low as Ω(n/p2/3) vs Ω(n/p2/w)
• Best Paper Prize, SPAA’11, Ballard, D., Holtz, Schwartz

• How well does parallel Strassen work in practice?

02/27/2014! CS267 Lecture 12! 53!

Strong scaling of Matmul on Hopper (n=94080)

02/25/2016!

CS267 Lecture 11!

54!

G. Ballard, D., O. Holtz, B. Lipshitz, O. Schwartz

“Communication-Avoiding Parallel Strassen”
bebop.cs.berkeley.edu, Supercomputing’12

02/25/2016! CS267 Lecture 12! 55!

ScaLAPACK Parallel Library Extensions of Lower Bound and
Optimal Algorithms

• For each processor that does G flops with fast memory of size M
 #words_moved = Ω(G/M1/2)
• Extension: for any program that “smells like”

• Nested loops …
• That access arrays …
• Where array subscripts are linear functions of loop indices

•  Ex: A(i,j), B(3*i-4*k+5*j, i-j, 2*k, …), …
• There is a constant s such that
 #words_moved = Ω(G/Ms-1)
• s comes from recent generalization of Loomis-Whitney (s=3/2)
• Ex: linear algebra, n-body, database join, …
• Lots of open questions: deriving s, optimal algorithms …

02/25/2016! CS267 Lecture 12! 56!

CS267 Lecture 2 15

Proof of Communication Lower Bound on C = A·B (1/4)

•  Proof from Irony/Toledo/Tiskin (2004)
•  Think of instruction stream being executed

•  Looks like “ … add, load, multiply, store, load, add, …”
•  Each load/store moves a word between fast and slow memory

•  We want to count the number of loads and stores, given that we are
multiplying n-by-n matrices C = A·B using the usual 2n3 flops, possibly
reordered assuming addition is commutative/associative

•  Assuming that at most M words can be stored in fast memory
•  Outline:

•  Break instruction stream into segments, each with M loads and stores
•  Somehow bound the maximum number of flops that can be done in

each segment, call it F
•  So F · # segments ≥ T = total flops = 2·n3 , so # segments ≥ T / F
•  So # loads & stores = M · #segments ≥ M · T / F

CS267 Lecture 12!02/25/2016! 57!

Load
Load
Load

Load

Load
Load
Load

Store

Store
Store

Store

FLOP

FLOP

FLOP
FLOP
FLOP

FLOP

FLOP

Ti
m

e

Segment 1

Segment 2

Segment 3

Illustrating Segments, for M=3

 ..
.

02/25/2016! 58!

Proof of Communication Lower Bound on C = A·B (2/4)
k

“A face”
“B

 fa
ce
”

“C face”
Cube representing

C(1,1) += A(1,3)·B(3,1)

•  If we have at most 2M “A squares”, 2M “B squares”, and

2M “C squares” on faces, how many cubes can we have?

i

j

A(2,1)

A(1,3)

B
(1

,3
)

B
(3

,1
)

C(1,1)

C(2,3)

A(1,1) B
(1

,1
)

A(1,2)

B
(2

,1
)

59!

Proof of Communication Lower Bound on C = A·B (3/5)

• Given segment of instruction stream with M loads & stores, how
many adds & multiplies (F) can we do?

•  At most 2M entries of C, 2M entries of A and/or 2M entries
of B can be accessed

• Use geometry:
• Represent n3 multiplications by n x n x n cube
• One n x n face represents A

•  each 1 x 1 subsquare represents one A(i,k)
• One n x n face represents B

•  each 1 x 1 subsquare represents one B(k,j)
• One n x n face represents C

•  each 1 x 1 subsquare represents one C(i,j)
• Each 1 x 1 x 1 subcube represents one C(i,j) += A(i,k) · B(k,j)

•  May be added directly to C(i,j), or to temporary accumulator
60!

CS267 Lecture 2 16

Proof of Communication Lower Bound on C = A·B (3/4)

x

z

z

y

x
y

k

A shadow

B shadow

C shadow

j

i

cubes in black box with
 side lengths x, y and z
= Volume of black box
= x·y·z
= (xz · zy · yx)1/2
= (#A□s · #B□s · #C□s)1/2

(i,k) is in A shadow if (i,j,k) in 3D set
(j,k) is in B shadow if (i,j,k) in 3D set
(i,j) is in C shadow if (i,j,k) in 3D set

Thm (Loomis & Whitney, 1949)
 # cubes in 3D set = Volume of 3D set
 ≤ (area(A shadow) · area(B shadow) ·
 area(C shadow)) 1/2

61!

Proof of Communication Lower Bound on C = A·B (4/4)

• Consider one “segment” of instructions with M loads, stores
• Can be at most 2M entries of A, B, C available in one segment
• Volume of set of cubes representing possible multiply/adds in

one segment is ≤ (2M · 2M · 2M)1/2 = (2M) 3/2 ≡ F
•  # Segments ≥ ⎣2n3 / F⎦
•  # Loads & Stores = M · #Segments ≥ M · ⎣2n3 / F⎦
 ≥ n3 / (2M)1/2 – M = Ω(n3 / M1/2)

• Parallel Case: apply reasoning to one processor out of P
•  # Adds and Muls ≥ 2n3 / P (at least one proc does this)
• M= n2 / P (each processor gets equal fraction of matrix)
•  # “Load & Stores” = # words moved from or to other procs
≥ M · (2n3 /P) / F= M · (2n3 /P) / (2M)3/2 = n2 / (2P)1/2

62!

