
CS267 Lecture 2 1

CS267 Lecture 7! 1!

Distributed Memory  
Machines and Programming 

 
Lecture 7 "

James Demmel !
www.cs.berkeley.edu/~demmel/cs267_Spr16!

!
Slides from Kathy Yelick!

02/09/2016 2!CS267 Lecture 7!

Recap of Lecture 6

• Shared memory multiprocessors

• Caches may be either shared or distributed.
•  Multicore chips are likely to have shared caches
•  Cache hit performance is better if they are distributed

(each cache is smaller/closer) but they must be kept
coherent -- multiple cached copies of same location must
be kept equal.

• Requires clever hardware (see CS252, CS258).
• Distant memory much more expensive to access.
• Machines scale to 10s or 100s of processors.

• Shared memory programming
• Starting, stopping threads.
• Communication by reading/writing shared variables.
• Synchronization with locks, barriers.

02/09/2016 3!CS267 Lecture 7!

Outline

• Distributed Memory Architectures
• Properties of communication networks
• Topologies
• Performance models

• Programming Distributed Memory Machines
using Message Passing

• Overview of MPI
• Basic send/receive use
• Non-blocking communication
• Collectives

02/09/2016

Architectures in Top 500, Nov 2014

CS267 Lecture 2 2

02/09/2016 5!CS267 Lecture 7!

Historical Perspective
• Early distributed memory machines were:

•  Collection of microprocessors.
•  Communication was performed using bi-directional queues

between nearest neighbors.
• Messages were forwarded by processors on path.

•  “Store and forward” networking
• There was a strong emphasis on topology in algorithms,

in order to minimize the number of hops = minimize time

02/09/2016 6!CS267 Lecture 7!

Network Analogy
• To have a large number of different transfers occurring at once,

you need a large number of distinct wires
•  Not just a bus, as in shared memory

• Networks are like streets:
•  Link = street.
•  Switch = intersection.
•  Distances (hops) = number of blocks traveled.
•  Routing algorithm = travel plan.

• Properties:
• Latency: how long to get between nodes in the network.

•  Street: time for one car = dist (miles) / speed (miles/hr)
• Bandwidth: how much data can be moved per unit time.

•  Street: cars/hour = density (cars/mile) * speed (miles/hr) * #lanes
•  Network bandwidth is limited by the bit rate per wire and #wires

02/09/2016 7!CS267 Lecture 7!

Design Characteristics of a Network
• Topology (how things are connected)

• Crossbar; ring; 2-D, 3-D, higher-D mesh or torus;
hypercube; tree; butterfly; perfect shuffle, dragon fly, …

• Routing algorithm:
• Example in 2D torus: all east-west then all north-south

(avoids deadlock).
• Switching strategy:

• Circuit switching: full path reserved for entire message,
like the telephone.

• Packet switching: message broken into separately-
routed packets, like the post office, or internet

• Flow control (what if there is congestion):
• Stall, store data temporarily in buffers, re-route data to

other nodes, tell source node to temporarily halt,
discard, etc.

02/09/2016 8!CS267 Lecture 7!

Performance Properties of a Network: Latency
• Diameter: the maximum (over all pairs of nodes) of the

shortest path between a given pair of nodes.
•  Latency: delay between send and receive times

• Latency tends to vary widely across architectures
• Vendors often report hardware latencies (wire time)
• Application programmers care about software

latencies (user program to user program)
• Observations:

• Latencies differ by 1-2 orders across network designs
• Software/hardware overhead at source/destination

dominate cost (1s-10s usecs)
• Hardware latency varies with distance (10s-100s nsec

per hop) but is small compared to overheads
•  Latency is key for programs with many small messages

CS267 Lecture 2 3

02/09/2016 9!CS267 Lecture 7!

Latency on Some Machines/Networks

•  Latencies shown are from a ping-pong test using MPI
•  These are roundtrip numbers: many people use ½ of roundtrip time

to approximate 1-way latency (which can’t easily be measured)

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

18.5

24.2

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tri

p
La

te
nc

y
(u

se
c)

MPI ping-pong

02/09/2016 10!CS267 Lecture 7!

End to End Latency (1/2 roundtrip) Over Time

6.9745

36.34

7.2755

3.3

12.0805
9.25

2.6

6.905

11.027

4.81

nCube/2

nCube/2

CM5

CM5 CS2

CS2

SP1

SP2

Paragon

T3D
T3D

SPP

KSR

SPP

Cenju3

T3E

T3E18.916

SP-Power3

Quadrics

Myrinet

Quadrics

1

10

100

1990 1995 2000 2005 2010
Year (approximate)

us
ec

•  Latency has not improved significantly, unlike Moore’s Law
•  T3E (shmem) was lowest point – in 1997

Data from Kathy Yelick, UCB and NERSC"

02/09/2016 11!CS267 Lecture 7!

Performance Properties of a Network: Bandwidth
• The bandwidth of a link = # wires / time-per-bit
• Bandwidth typically in Gigabytes/sec (GB/s),

i.e., 8* 220 bits per second
• Effective bandwidth is usually lower than physical link

bandwidth due to packet overhead.
Routing
and control
header

Data
payload

Error code

Trailer

• Bandwidth is important for applications
with mostly large messages

02/09/2016 12!CS267 Lecture 7!

Bandwidth on Existing Networks

•  Flood bandwidth (throughput of back-to-back 2MB messages)

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
) MPI

CS267 Lecture 2 4

02/09/2016 13!CS267 Lecture 7!

Bandwidth Chart

0

50

100

150

200

250

300

350

400

2048 4096 8192 16384 32768 65536 131072
Message Size (Bytes)

Ba
nd

w
id

th
 (M

B/
se

c)

T3E/MPI
T3E/Shmem
IBM/MPI
IBM/LAPI
Compaq/Put
Compaq/Get
M2K/MPI
M2K/GM
Dolphin/MPI
Giganet/VIPL
SysKonnect

Data from Mike Welcome, NERSC"

Note: bandwidth depends on SW, not just HW

02/09/2016 14!CS267 Lecture 7!

Performance Properties of a Network: Bisection Bandwidth

• Bisection bandwidth: bandwidth across smallest cut that
divides network into two equal halves

• Bandwidth across “narrowest” part of the network

bisection
cut

not a
bisection
cut

bisection bw= link bw bisection bw = sqrt(p) * link bw

• Bisection bandwidth is important for algorithms in which
all processors need to communicate with all others

02/09/2016 15!CS267 Lecture 7!

Network Topology
•  In the past, there was considerable research in network

topology and in mapping algorithms to topology.
• Key cost to be minimized: number of “hops” between

nodes (e.g. “store and forward”)
• Modern networks hide hop cost (i.e., “wormhole

routing”), so topology less of a factor in performance
of many algorithms

• Example: On IBM SP system, hardware latency varies
from 0.5 usec to 1.5 usec, but user-level message
passing latency is roughly 36 usec.

• Need some background in network topology
• Algorithms may have a communication topology
• Example later of big performance impact

02/09/2016 16!CS267 Lecture 7!

Linear and Ring Topologies
•  Linear array

• Diameter = n-1; average distance ~n/3.
• Bisection bandwidth = 1 (in units of link bandwidth).

• Torus or Ring

• Diameter = n/2; average distance ~ n/4.
• Bisection bandwidth = 2.
• Natural for algorithms that work with 1D arrays.

CS267 Lecture 2 5

02/09/2016 17!CS267 Lecture 7!

Meshes and Tori – used in Hopper

Two dimensional mesh
• Diameter = 2 * (sqrt(n) – 1)
• Bisection bandwidth = sqrt(n)

• Generalizes to higher dimensions
• Cray XT (eg Hopper@NERSC) uses 3D Torus

•  Natural for algorithms that work with 2D and/or 3D arrays (matmul)

Two dimensional torus
• Diameter = sqrt(n)
• Bisection bandwidth = 2* sqrt(n)

02/09/2016 18!CS267 Lecture 7!

Hypercubes
• Number of nodes n = 2d for dimension d.

•  Diameter = d.
•  Bisection bandwidth = n/2.

•  0d 1d 2d 3d 4d

• Popular in early machines (Intel iPSC, NCUBE).
•  Lots of clever algorithms.
•  See 1996 online CS267 notes.

• Greycode addressing:
•  Each node connected to

d others with 1 bit different. 001 000

100

010 011

111

101

110

02/09/2016 19!CS267 Lecture 7!

Trees
• Diameter = log n.
• Bisection bandwidth = 1.
• Easy layout as planar graph.
• Many tree algorithms (e.g., summation).
• Fat trees avoid bisection bandwidth problem:

•  More (or wider) links near top.
•  Example: Thinking Machines CM-5.

02/09/2016 20!CS267 Lecture 7!

Butterflies
• Diameter = log n.
• Bisection bandwidth = n.
• Cost: lots of wires.
• Used in BBN Butterfly.
• Natural for FFT.

O 1 O 1

O 1 O 1

butterfly switch
multistage butterfly network

Ex: to get from proc 101 to 110,
Compare bit-by-bit and
Switch if they disagree, else not

CS267 Lecture 2 6

02/09/2016

Does Topology Matter?

 128

 256

 512

 1024

 2048

 4096

 8192

8 64 512 4096

B
a
n
d
w

id
th

 (
M

B
/s

e
c)

#nodes

1 MB multicast on BG/P, Cray XT5, and Cray XE6

BG/P
XE6
XT5

21!CS267 Lecture 7!
See EECS Tech Report UCB/EECS-2011-92, August 2011

02/09/2016

Dragonflies – used in Edison
•  Motivation: Exploit gap in cost and performance between optical

interconnects (which go between cabinets in a machine room) and electrical
networks (inside cabinet)

•  Optical more expensive but higher bandwidth when long
•  Electrical networks cheaper, faster when short

•  Combine in hierarchy
•  One-to-many via electrical networks inside cabinet
•  Just a few long optical interconnects between cabinets

•  Clever routing algorithm to avoid bottlenecks:
•  Route from source to randomly chosen intermediate cabinet
•  Route from intermediate cabinet to destination

•  Outcome: programmer can (usually) ignore topology, get good performance
•  Important in virtualized, dynamic environment
•  Programmer can still create serial bottlenecks
•  Drawback: variable performance

•  Details in “Technology-Drive, Highly-Scalable Dragonfly Topology,” J. Kim.
W. Dally, S. Scott, D. Abts, ISCA 2008 22!

CS267 Lecture 7!

02/09/2016 23!CS267 Lecture 7!

Evolution of Distributed Memory Machines
• Special queue connections are being replaced by direct

memory access (DMA):
•  Network Interface (NI) processor packs or copies messages.
•  CPU initiates transfer, goes on computing.

• Wormhole routing in hardware:
•  NIs do not interrupt CPUs along path.
•  Long message sends are pipelined.
•  NIs don’t wait for complete message before forwarding

• Message passing libraries provide store-and-forward
abstraction:

•  Can send/receive between any pair of nodes, not just along one wire.
•  Time depends on distance since each NI along path must

participate.

CS267 Lecture 7! 24!

Performance
Models"

CS267 Lecture 2 7

02/09/2016 25!CS267 Lecture 7!

Shared Memory Performance Models
• Parallel Random Access Memory (PRAM)
• All memory access operations complete in one clock

period -- no concept of memory hierarchy (“too good to
be true”).

•  OK for understanding whether an algorithm has enough
parallelism at all (see CS273).

•  Parallel algorithm design strategy: first do a PRAM algorithm,
then worry about memory/communication time (sometimes
works)

• Slightly more realistic versions exist
•  E.g., Concurrent Read Exclusive Write (CREW) PRAM.
•  Still missing the memory hierarchy

02/09/2016 26!CS267 Lecture 7!

Latency and Bandwidth Model
• Time to send message of length n is roughly

• Topology is assumed irrelevant.
• Often called “α-β model” and written

• Usually α >> β >> time per flop.
•  One long message is cheaper than many short ones.

•  Can do hundreds or thousands of flops for cost of one message.
•  Lesson: Need large computation-to-communication ratio to

be efficient.
•  LogP – more detailed model (Latency/overhead/gap/Proc.)

Time = latency + n*cost_per_word
 = latency + n/bandwidth

Time = α + n*β

α + n*β << n*(α + 1*β)

02/09/2016 27!CS267 Lecture 7!

Alpha-Beta Parameters on Various Machines
• These numbers were obtained empirically

machine α β

T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GigE/MPI 5.854 0.00872

α is latency in usecs
β is BW in usecs per Byte

How well does the model
 Time = α + n*β
predict actual performance?

02/09/2016 28!CS267 Lecture 7!

1

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm

T3E/MPI

IBM/LAPI

IBM/MPI

Quadrics/Shm

Quadrics/MPI

Myrinet/GM

Myrinet/MPI

GigE/VIPL

GigE/MPI

Drop Page Fields Here

Sum of model

size

machine

Model Time Varying Message Size & Machines

CS267 Lecture 2 8

02/09/2016 29!CS267 Lecture 7!

1

10

100

1000

10000

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072

T3E/Shm
T3E/MPI
IBM/LAPI
IBM/MPI
Quadrics/Shm
Quadrics/MPI
Myrinet/GM
Myrinet/MPI
GigE/VIPL
GigE/MPI

Drop Page Fields Here

Sum of gap

size

machine

Measured Message Time

02/09/2016 30!CS267 Lecture 7!

Slides from
Jonathan Carter (jtcarter@lbl.gov),

Katherine Yelick (yelick@cs.berkeley.edu),
Bill Gropp (wgropp@illinois.edu)

Programming 
Distributed Memory Machines  

with  
Message Passing"

02/09/2016 CS267 Lecture 7! 31!

Message Passing Libraries (1)
• Many “message passing libraries” were once available

•  Chameleon, from ANL.
•  CMMD, from Thinking Machines.
•  Express, commercial.
•  MPL, native library on IBM SP-2.
•  NX, native library on Intel Paragon.
•  Zipcode, from LLL.
•  PVM, Parallel Virtual Machine, public, from ORNL/UTK.
•  Others...
•  MPI, Message Passing Interface, now the industry standard.

• Need standards to write portable code.

02/09/2016 CS267 Lecture 7! 32!

Message Passing Libraries (2)
• All communication, synchronization require subroutine calls

•  No shared variables
•  Program run on a single processor just like any uniprocessor

program, except for calls to message passing library
• Subroutines for

•  Communication
•  Pairwise or point-to-point: Send and Receive
•  Collectives all processor get together to

–  Move data: Broadcast, Scatter/gather
–  Compute and move: sum, product, max, prefix sum, …

of data on many processors
•  Synchronization

•  Barrier
•  No locks because there are no shared variables to protect

•  Enquiries
•  How many processes? Which one am I? Any messages waiting?

CS267 Lecture 2 9

02/09/2016 CS267 Lecture 7! 33!

Novel Features of MPI
• Communicators encapsulate communication spaces for

library safety
• Datatypes reduce copying costs and permit

heterogeneity
• Multiple communication modes allow precise buffer

management
• Extensive collective operations for scalable global

communication
• Process topologies permit efficient process placement,

user views of process layout
• Profiling interface encourages portable tools

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 34!

MPI References

• The Standard itself:
• at http://www.mpi-forum.org
• All MPI official releases, in both postscript and HTML
• Latest version MPI 3.1, released June 2015

• Other information on Web:
• at http://www.mcs.anl.gov/research/projects/mpi/index.htm
• pointers to lots of stuff, including other talks and tutorials,

a FAQ, other MPI pages

Slide source: Bill Gropp, ANL

02/09/2016 CS267 Lecture 7! 35!

Books on MPI

•  Using MPI: Portable Parallel Programming
with the Message-Passing Interface (2nd edition),
by Gropp, Lusk, and Skjellum, MIT Press,
1999.

•  Using MPI-2: Portable Parallel Programming
with the Message-Passing Interface, by Gropp,
Lusk, and Thakur, MIT Press, 1999.

•  MPI: The Complete Reference - Vol 1 The MPI Core, by
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT
Press, 1998.

•  MPI: The Complete Reference - Vol 2 The MPI Extensions,
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg,
Saphir, and Snir, MIT Press, 1998.

•  Designing and Building Parallel Programs, by Ian Foster,
Addison-Wesley, 1995.

•  Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997.

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 36!

Finding Out About the Environment

• Two important questions that arise early in a
parallel program are:

• How many processes are participating in this
computation?

• Which one am I?
• MPI provides functions to answer these

questions:
• MPI_Comm_size reports the number of processes.
• MPI_Comm_rank reports the rank, a number between

0 and size-1, identifying the calling process

Slide source: Bill Gropp, ANL

CS267 Lecture 2 10

02/09/2016 CS267 Lecture 7! 37!

Hello (C)

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL

Note: hidden slides show Fortran and C++ versions of each example

02/09/2016 CS267 Lecture 7! 38!

Hello (Fortran)

program main
include 'mpif.h'
integer ierr, rank, size

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)
print *, 'I am ', rank, ' of ', size
call MPI_FINALIZE(ierr)
end

Slide source: Bill Gropp, ANL

02/09/2016 CS267 Lecture 7! 39!

Hello (C++)
#include "mpi.h"
#include <iostream>

int main(int argc, char *argv[])
{
 int rank, size;
 MPI::Init(argc, argv);
 rank = MPI::COMM_WORLD.Get_rank();
 size = MPI::COMM_WORLD.Get_size();
 std::cout << "I am " << rank << " of " << size <<
 "\n";

 MPI::Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 40!

Notes on Hello World
• All MPI programs begin with MPI_Init and end with

MPI_Finalize
• MPI_COMM_WORLD is defined by mpi.h (in C) or

mpif.h (in Fortran) and designates all processes in the
MPI “job”

• Each statement executes independently in each process
•  including the printf/print statements

• The MPI-1 Standard does not specify how to run an MPI
program, but many implementations provide
mpirun –np 4 a.out

Slide source: Bill Gropp, ANL

CS267 Lecture 2 11

02/09/2016 CS267 Lecture 7! 41!

MPI Basic Send/Receive

• We need to fill in the details in

• Things that need specifying:
• How will “data” be described?
• How will processes be identified?
• How will the receiver recognize/screen messages?
• What will it mean for these operations to complete?

Process 0 Process 1

Send(data)

Receive(data)

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 42!

Some Basic Concepts

• Processes can be collected into groups
• Each message is sent in a context, and must be

received in the same context
• Provides necessary support for libraries

• A group and context together form a
communicator

• A process is identified by its rank in the group
associated with a communicator

• There is a default communicator whose group
contains all initial processes, called
MPI_COMM_WORLD

Slide source: Bill Gropp, ANL

02/09/2016 CS267 Lecture 7! 43!

MPI Datatypes

• The data in a message to send or receive is described
by a triple (address, count, datatype), where

• An MPI datatype is recursively defined as:
•  predefined, corresponding to a data type from the language

(e.g., MPI_INT, MPI_DOUBLE)
•  a contiguous array of MPI datatypes
•  a strided block of datatypes
•  an indexed array of blocks of datatypes
•  an arbitrary structure of datatypes

• There are MPI functions to construct custom datatypes,
in particular ones for subarrays

• May hurt performance if datatypes are complex

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 44!

MPI Tags

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving
process in identifying the message

• Messages can be screened at the receiving end
by specifying a specific tag, or not screened by
specifying MPI_ANY_TAG as the tag in a
receive

• Some non-MPI message-passing systems have
called tags “message types”. MPI calls them
tags to avoid confusion with datatypes

Slide source: Bill Gropp, ANL

CS267 Lecture 2 12

02/09/2016 CS267 Lecture 7! 45!

MPI Basic (Blocking) Send

MPI_SEND(start, count, datatype, dest, tag,
comm)

• The message buffer is described by (start, count,
datatype).

• The target process is specified by dest, which is the rank of
the target process in the communicator specified by comm.

• When this function returns, the data has been delivered to
the system and the buffer can be reused. The message
may not have been received by the target process.

Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

02/09/2016 CS267 Lecture 7!
46!

MPI Basic (Blocking) Receive

MPI_RECV(start, count, datatype, source, tag,
comm, status)

• Waits until a matching (both source and tag) message is
received from the system, and the buffer can be used

• source is rank in communicator specified by comm, or
MPI_ANY_SOURCE

• tag is a tag to be matched or MPI_ANY_TAG
•  receiving fewer than count occurrences of datatype is

OK, but receiving more is an error
• status contains further information (e.g. size of message)

Slide source: Bill Gropp, ANL

A(10)
B(20)

MPI_Send(A, 10, MPI_DOUBLE, 1, …) MPI_Recv(B, 20, MPI_DOUBLE, 0, …)

02/09/2016 CS267 Lecture 7! 47!

A Simple MPI Program

#include “mpi.h”
#include <stdio.h>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI_Status status;
 MPI_Init(&argv, &argc);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 /* Process 0 sends and Process 1 receives */
 if (rank == 0) {
 buf = 123456;
 MPI_Send(&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (rank == 1) {
 MPI_Recv(&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
 &status);
 printf(“Received %d\n”, buf);
 }

 MPI_Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 48!

A Simple MPI Program (Fortran)

 program main
 include ‘mpif.h’
 integer rank, buf, ierr, status(MPI_STATUS_SIZE)

 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, rank, ierr)
C Process 0 sends and Process 1 receives
 if (rank .eq. 0) then
 buf = 123456
 call MPI_Send(buf, 1, MPI_INTEGER, 1, 0,
 * MPI_COMM_WORLD, ierr)
 else if (rank .eq. 1) then
 call MPI_Recv(buf, 1, MPI_INTEGER, 0, 0,
 * MPI_COMM_WORLD, status, ierr)
 print *, “Received “, buf
 endif
 call MPI_Finalize(ierr)
 end

Slide source: Bill Gropp, ANL

CS267 Lecture 2 13

02/09/2016 CS267 Lecture 7! 49!

A Simple MPI Program (C++)

#include “mpi.h”
#include <iostream>
int main(int argc, char *argv[])
{
 int rank, buf;
 MPI::Init(argv, argc);
 rank = MPI::COMM_WORLD.Get_rank();

 // Process 0 sends and Process 1 receives
 if (rank == 0) {
 buf = 123456;
 MPI::COMM_WORLD.Send(&buf, 1, MPI::INT, 1, 0);
 }
 else if (rank == 1) {
 MPI::COMM_WORLD.Recv(&buf, 1, MPI::INT, 0, 0);
 std::cout << “Received “ << buf << “\n”;
 }

 MPI::Finalize();
 return 0;
}

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 50!

Retrieving Further Information

• Status is a data structure allocated in the user’s program.
•  In C:

int recvd_tag, recvd_from, recvd_count;
MPI_Status status;
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status)
recvd_tag = status.MPI_TAG;
recvd_from = status.MPI_SOURCE;
MPI_Get_count(&status, datatype, &recvd_count);

Slide source: Bill Gropp, ANL

02/09/2016 CS267 Lecture 7! 51!

MPI is Simple
• Many parallel programs can be written using just these

six functions, only two of which are non-trivial:
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECV

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 52!

Another Approach to Parallelism
• Collective routines provide a higher-level way to

organize a parallel program
• Each process executes the same communication

operations
• MPI provides a rich set of collective operations…

Slide source: Bill Gropp, ANL

CS267 Lecture 2 14

02/09/2016 CS267 Lecture 7! 53!

Collective Operations in MPI

• Collective operations are called by all processes in a
communicator

• MPI_BCAST distributes data from one process (the
root) to all others in a communicator

• MPI_REDUCE combines data from all processes in
communicator and returns it to one process

•  In many numerical algorithms, SEND/RECEIVE can be
replaced by BCAST/REDUCE, improving both simplicity
and efficiency

Slide source: Bill Gropp, ANL
02/09/2016 CS267 Lecture 7! 54!

MPI can be simple

• Claim: most MPI applications can be written with only 6
functions (although which 6 may differ)

• You may use more for convenience or performance

• Using point-to-point:
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_SEND
• MPI_RECEIVE

• Using collectives:
• MPI_INIT
• MPI_FINALIZE
• MPI_COMM_SIZE
• MPI_COMM_RANK
• MPI_BCAST
• MPI_REDUCE

02/09/2016

Example: Calculating Pi

• Simple program written in a data parallel style in MPI
•  E.g., for a reduction (recall “tricks with trees” lecture), each

process will first reduce (sum) its own values, then call a
collective to combine them

• Estimates pi by approximating the area of the quadrant
of a unit circle

• Each process gets 1/p of the intervals (mapped round
robin, i.e., a cyclic mapping)

55!CS267 Lecture 7!

E.g., in a 4-process run, each
process gets every 4th interval.
Process 0 slices are in red.

02/09/2016 CS267 Lecture 7! 56!

Example: PI in C – 1/2

#include "mpi.h"
#include <math.h>

#include <stdio.h>
int main(int argc, char *argv[])
{

int done = 0, n, myid, numprocs, i, rc;
double PI25DT = 3.141592653589793238462643;
double mypi, pi, h, sum, x, a;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
while (!done) {
 if (myid == 0) {
 printf("Enter the number of intervals: (0 quits) ");
 scanf("%d",&n);
 }
 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);
 if (n == 0) break;

Slide source: Bill Gropp, ANL

CS267 Lecture 2 15

02/09/2016 CS267 Lecture 7! 57!

Example: PI in C – 2/2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 * sqrt(1.0 - x*x);
 }
 mypi = h * sum;
 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
 MPI_COMM_WORLD);
 if (myid == 0)
 printf("pi is approximately %.16f, Error is .16f\n",
 pi, fabs(pi - PI25DT));
}
MPI_Finalize();

 return 0;
}

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 58!

Example: PI in Fortran – 1/2

 program main
 include ‘mpif.h’
 integer done, n, myid, numprocs, i, rc
 double pi25dt, mypi, pi, h, sum, x, z
 data done/.false./
 data PI25DT/3.141592653589793238462643/
 call MPI_Init(ierr)
 call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr)
 do while (.not. done)
 if (myid .eq. 0) then
 print *,”Enter the number of intervals: (0 quits)“
 read *, n
 endif
 call MPI_Bcast(n, 1, MPI_INTEGER, 0,
 * MPI_COMM_WORLD, ierr)
 if (n .eq. 0) goto 10

Slide source: Bill Gropp, ANL

02/09/2016 CS267 Lecture 7! 59!

Example: PI in Fortran – 2/2

 h = 1.0 / n
 sum = 0.0

 do i=myid+1,n,numprocs
 x = h * (i - 0.5)

 sum += 4.0 / (1.0 + x*x)
 enddo
 mypi = h * sum
 call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION,
 * MPI_SUM, 0, MPI_COMM_WORLD, ierr)
 if (myid .eq. 0) then
 print *, "pi is approximately “, pi,
 * “, Error is “, abs(pi - PI25DT)

 enddo
10   continue

 call MPI_Finalize(ierr)
 end

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 60!

Example: PI in C++ - 1/2
#include "mpi.h"
#include <math.h>
#include <iostream>
int main(int argc, char *argv[])
{
 int done = 0, n, myid, numprocs, i, rc;
 double PI25DT = 3.141592653589793238462643;
 double mypi, pi, h, sum, x, a;
 MPI::Init(argc, argv);
 numprocs = MPI::COMM_WORLD.Get_size();
 myid = MPI::COMM_WORLD.Get_rank();
 while (!done) {
 if (myid == 0) {
 std::cout << "Enter the number of intervals: (0
quits) ";
 std::cin >> n;;
 }
 MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0);
 if (n == 0) break;

Slide source: Bill Gropp, ANL

CS267 Lecture 2 16

02/09/2016 CS267 Lecture 7! 61!

Example: PI in C++ - 2/2

 h = 1.0 / (double) n;
 sum = 0.0;
 for (i = myid + 1; i <= n; i += numprocs) {
 x = h * ((double)i - 0.5);
 sum += 4.0 / (1.0 + x*x);
 }
 mypi = h * sum;
 MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,
 MPI::SUM, 0);
 if (myid == 0)
 std::cout << "pi is approximately “ << pi <<
 “, Error is “ << fabs(pi - PI25DT) << “\n”;
}
MPI::Finalize();

 return 0;
}

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 62!

Synchronization
• MPI_Barrier(comm)
• Blocks until all processes in the group of the

communicator comm call it.
• Almost never required in a parallel program

•  Occasionally useful in measuring performance and load
balancing

02/09/2016 CS267 Lecture 7! 63!

Synchronization (Fortran)
• MPI_Barrier(comm, ierr)
• Blocks until all processes in the group of the

communicator comm call it.

02/09/2016 CS267 Lecture 7! 64!

Synchronization (C++)
• comm.Barrier();
• Blocks until all processes in the group of the

communicator comm call it.

CS267 Lecture 2 17

02/09/2016 CS267 Lecture 7! 65!

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0
P1

P2

P3

P0
P1

P2

P3

02/09/2016 CS267 Lecture 7! 66!

Comments on Broadcast, other Collectives
• All collective operations must be called by all processes

in the communicator
• MPI_Bcast is called by both the sender (called the root

process) and the processes that are to receive the
broadcast

•  “root” argument is the rank of the sender; this tells MPI which
process originates the broadcast and which receive

02/09/2016 CS267 Lecture 7! 67!

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3
B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0
P1

P2

P3

P0
P1

P2

P3

02/09/2016 CS267 Lecture 7! 68!

Collective Computation

P0
P1

P2

P3

P0
P1

P2

P3

A
B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

CS267 Lecture 2 18

02/09/2016 CS267 Lecture 7! 69!

MPI Collective Routines

• Many Routines: Allgather, Allgatherv,
Allreduce, Alltoall, Alltoallv, Bcast,
Gather, Gatherv, Reduce, Reduce_scatter,
Scan, Scatter, Scatterv

• All versions deliver results to all participating
processes, not just root.

• V versions allow the chunks to have variable sizes.
• Allreduce, Reduce, Reduce_scatter, and Scan

take both built-in and user-defined combiner functions.
• MPI-2 adds Alltoallw, Exscan, intercommunicator

versions of most routines

02/09/2016 CS267 Lecture 7! 70!

MPI Built-in Collective Computation Operations
• MPI_MAX
• MPI_MIN
• MPI_PROD
• MPI_SUM
• MPI_LAND
• MPI_LOR
• MPI_LXOR
• MPI_BAND
• MPI_BOR
• MPI_BXOR
• MPI_MAXLOC
• MPI_MINLOC

Maximum
Minimum
Product
Sum
Logical and
Logical or
Logical exclusive or
Binary and
Binary or
Binary exclusive or
Maximum and location
Minimum and location

