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Recap of Lecture 6 

• Shared memory multiprocessors 

• Caches may be either shared or distributed. 
•  Multicore chips are likely to have shared caches 
•  Cache hit performance is better if they are distributed 

(each cache is smaller/closer) but they must be kept 
coherent -- multiple cached copies of same location must 
be kept equal. 

• Requires clever hardware (see CS252, CS258). 
• Distant memory much more expensive to access. 
• Machines scale to 10s or 100s of processors. 

• Shared memory programming  
• Starting, stopping threads. 
• Communication by reading/writing shared variables. 
• Synchronization with locks, barriers. 
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Outline 

• Distributed Memory Architectures 
• Properties of communication networks 
• Topologies 
• Performance models 

• Programming Distributed Memory Machines 
using Message Passing 

• Overview of MPI 
• Basic send/receive use 
• Non-blocking communication 
• Collectives 

02/09/2016 

Architectures in Top 500, Nov 2014 
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Historical Perspective 
• Early distributed memory machines were: 

•  Collection of microprocessors. 
•  Communication was performed using bi-directional queues 

between nearest neighbors. 
• Messages were forwarded by processors on path. 

•  “Store and forward” networking 
• There was a strong emphasis on topology in algorithms, 

in order to minimize the number of hops = minimize time 
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Network Analogy 
• To have a large number of different transfers occurring at once, 

you need a large number of distinct wires 
•  Not just a bus, as in shared memory 

• Networks are like streets: 
•  Link = street. 
•  Switch = intersection. 
•  Distances (hops) = number of blocks traveled. 
•  Routing algorithm = travel plan. 

• Properties: 
• Latency: how long to get between nodes in the network. 

•  Street: time for one car = dist (miles) / speed (miles/hr) 
• Bandwidth: how much data can be moved per unit time. 

•  Street: cars/hour = density (cars/mile) * speed (miles/hr) * #lanes 
•  Network bandwidth is limited by the bit rate per wire and #wires 
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Design Characteristics of a Network 
• Topology (how things are connected) 

• Crossbar; ring; 2-D, 3-D, higher-D mesh or torus; 
hypercube; tree; butterfly; perfect shuffle, dragon fly, … 

• Routing algorithm: 
• Example in 2D torus: all east-west then all north-south 

(avoids deadlock). 
• Switching strategy: 

• Circuit switching: full path reserved for entire message, 
like the telephone. 

• Packet switching: message broken into separately-
routed packets, like the post office, or internet   

• Flow control (what if there is congestion): 
• Stall, store data temporarily in buffers, re-route data to 

other nodes, tell source node to temporarily halt, 
discard, etc. 
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Performance Properties of a Network: Latency 
• Diameter:  the maximum (over all pairs of nodes) of the 

shortest path between a given pair of nodes. 
•  Latency: delay between send and receive times 

• Latency tends to vary widely across architectures 
• Vendors often report hardware latencies (wire time) 
• Application programmers care about software 

latencies (user program to user program) 
• Observations: 

• Latencies differ by 1-2 orders across network designs 
• Software/hardware overhead at source/destination 

dominate cost (1s-10s usecs) 
• Hardware latency varies with distance (10s-100s nsec 

per hop) but is small compared to overheads 
•  Latency is key for programs with many small messages 
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Latency on Some Machines/Networks 

•  Latencies shown are from a ping-pong test using MPI 
•  These are roundtrip numbers: many people use ½ of roundtrip time 

to approximate 1-way latency (which can’t easily be measured) 

8-byte Roundtrip Latency
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End to End Latency (1/2 roundtrip) Over Time 
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•  Latency has not improved significantly, unlike Moore’s Law 
•  T3E (shmem) was lowest point – in 1997 

Data from Kathy Yelick, UCB and NERSC"

02/09/2016 11!CS267 Lecture 7!

Performance Properties of a Network: Bandwidth 
• The bandwidth of a link =   # wires / time-per-bit 
• Bandwidth typically in Gigabytes/sec (GB/s),          

i.e., 8* 220 bits per second 
• Effective bandwidth is usually lower than physical link 

bandwidth due to packet overhead. 
Routing 
and control 
header 

 

Data 
payload 

 

 

Error code 

Trailer 

• Bandwidth is important for applications 
with mostly large messages 
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Bandwidth on Existing Networks 

•  Flood bandwidth (throughput of back-to-back 2MB messages) 

Flood Bandwidth for 2MB messages
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Bandwidth Chart 
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Note: bandwidth depends on SW, not just HW 
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Performance Properties of a Network: Bisection Bandwidth 

• Bisection bandwidth:  bandwidth across smallest cut that 
divides network into two equal halves 

• Bandwidth across “narrowest” part of the network 

bisection  
cut 

not a  
bisection 
cut  

bisection bw= link bw bisection bw = sqrt(p) * link bw 

• Bisection bandwidth is important for algorithms in which 
all processors need to communicate with all others 
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Network Topology 
•  In the past, there was considerable research in network 

topology and in mapping algorithms to topology. 
• Key cost to be minimized:  number of “hops” between 

nodes (e.g. “store and forward”) 
• Modern networks hide hop cost (i.e., “wormhole 

routing”), so topology less of a factor in performance 
of many algorithms 

• Example:  On IBM SP system, hardware latency varies 
from 0.5 usec to 1.5 usec, but user-level message 
passing latency is roughly 36 usec. 

• Need some background in network topology 
• Algorithms may have a communication topology 
• Example later of big performance impact  
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Linear and Ring Topologies 
•  Linear array 

• Diameter = n-1; average distance ~n/3. 
• Bisection bandwidth = 1 (in units of link bandwidth). 

• Torus or Ring 

• Diameter = n/2; average distance ~ n/4. 
• Bisection bandwidth = 2. 
• Natural for algorithms that work with 1D arrays. 
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Meshes and Tori – used in Hopper  

Two dimensional mesh  
• Diameter = 2 * (sqrt( n ) – 1) 
• Bisection bandwidth =   sqrt(n) 

• Generalizes to higher dimensions  
• Cray XT (eg Hopper@NERSC) uses 3D Torus 

•   Natural for algorithms that work with 2D and/or 3D arrays (matmul) 

Two dimensional torus 
• Diameter = sqrt( n ) 
• Bisection bandwidth =   2* sqrt(n) 
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Hypercubes 
• Number of nodes n = 2d   for dimension d. 

•  Diameter = d.  
•  Bisection bandwidth = n/2. 

 
•  0d       1d       2d           3d                  4d 

• Popular in early machines (Intel iPSC, NCUBE). 
•  Lots of clever algorithms.  
•  See 1996 online CS267 notes. 

• Greycode addressing: 
•  Each node connected to                                                                            

d others with 1 bit different.  001 000 

100 

010 011 

111 

101 

110 
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Trees 
• Diameter = log n. 
• Bisection bandwidth = 1. 
• Easy layout as planar graph. 
• Many tree algorithms (e.g., summation). 
• Fat trees avoid bisection bandwidth problem: 

•  More (or wider) links near top. 
•  Example: Thinking Machines CM-5. 
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Butterflies 
• Diameter = log n. 
• Bisection bandwidth = n. 
• Cost: lots of wires. 
• Used in BBN Butterfly. 
• Natural for FFT. 

O    1 O    1 

O    1 O    1 

butterfly switch 
multistage butterfly network 

Ex: to get from proc 101 to 110, 
Compare bit-by-bit and 
Switch if they disagree, else not 
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Does Topology Matter? 
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See EECS Tech Report  UCB/EECS-2011-92, August 2011 
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Dragonflies – used in Edison 
•  Motivation: Exploit gap in cost and performance between optical 

interconnects (which go between cabinets in a machine room) and electrical 
networks (inside cabinet) 

•  Optical more expensive but higher bandwidth when long 
•  Electrical networks cheaper, faster when short 

•  Combine in hierarchy 
•  One-to-many via electrical networks inside cabinet 
•  Just a few long optical interconnects between cabinets  

•  Clever routing algorithm to avoid bottlenecks: 
•  Route from source to randomly chosen intermediate cabinet 
•  Route from intermediate cabinet to destination 

•  Outcome: programmer can (usually) ignore topology, get good performance 
•  Important in virtualized, dynamic environment 
•  Programmer can still create serial bottlenecks 
•  Drawback: variable performance 

•  Details in “Technology-Drive, Highly-Scalable Dragonfly Topology,” J. Kim. 
W. Dally, S. Scott, D. Abts, ISCA 2008 22!
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Evolution of Distributed Memory Machines 
• Special queue connections are being replaced by direct 

memory access (DMA): 
•  Network Interface (NI) processor packs or copies messages. 
•  CPU initiates transfer, goes on computing. 

• Wormhole routing in hardware: 
•  NIs do not interrupt CPUs along path. 
•  Long message sends are pipelined. 
•  NIs don’t wait for complete message before forwarding 

• Message passing libraries provide store-and-forward 
abstraction: 

•  Can send/receive between any pair of nodes, not just along one wire. 
•  Time  depends on distance since each NI along  path must 

participate. 

CS267 Lecture 7! 24!

Performance 
Models"
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Shared Memory Performance Models 
• Parallel Random Access Memory (PRAM) 
• All memory access operations complete in one clock 

period -- no concept of memory hierarchy (“too good to 
be true”). 

•  OK for understanding whether an algorithm has enough 
parallelism at all (see CS273). 

•  Parallel algorithm design strategy: first do a PRAM algorithm, 
then worry about memory/communication time (sometimes 
works) 

• Slightly more realistic versions exist 
•  E.g., Concurrent Read Exclusive Write (CREW) PRAM. 
•  Still missing the memory hierarchy 
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Latency and Bandwidth Model 
• Time to send message of length n is roughly 

• Topology is assumed irrelevant. 
• Often called “α-β model” and written 

• Usually α >> β >> time per flop. 
•  One long message is cheaper than many short ones. 

•  Can do hundreds or thousands of flops for cost of one message. 
•  Lesson:  Need large computation-to-communication ratio to 

be efficient. 
•  LogP – more detailed model (Latency/overhead/gap/Proc.) 

Time = latency + n*cost_per_word 
         = latency + n/bandwidth 

Time = α + n*β 

α + n*β  <<  n*(α + 1*β) 
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Alpha-Beta Parameters on Various Machines 
• These numbers were obtained empirically  

machine α β

T3E/Shm 1.2 0.003
T3E/MPI 6.7 0.003
IBM/LAPI 9.4 0.003
IBM/MPI 7.6 0.004
Quadrics/Get 3.267 0.00498
Quadrics/Shm 1.3 0.005
Quadrics/MPI 7.3 0.005
Myrinet/GM 7.7 0.005
Myrinet/MPI 7.2 0.006
Dolphin/MPI 7.767 0.00529
Giganet/VIPL 3.0 0.010
GigE/VIPL 4.6 0.008
GigE/MPI 5.854 0.00872

α is latency in usecs 
β is BW in usecs per Byte 

How well does the model 
          Time = α + n*β 
predict actual performance? 
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Slides from  
Jonathan Carter (jtcarter@lbl.gov),  

Katherine Yelick (yelick@cs.berkeley.edu),  
Bill Gropp (wgropp@illinois.edu) 

Programming 
Distributed Memory Machines  

with  
Message Passing"
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Message Passing Libraries (1) 
• Many “message passing libraries” were once available 

•  Chameleon, from ANL. 
•  CMMD, from Thinking Machines. 
•  Express, commercial. 
•  MPL, native library on IBM SP-2. 
•  NX, native library on Intel Paragon. 
•  Zipcode, from LLL. 
•  PVM, Parallel Virtual Machine, public, from ORNL/UTK. 
•  Others... 
•  MPI, Message Passing Interface, now the industry standard. 

• Need standards to write portable code. 
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Message Passing Libraries (2) 
• All communication, synchronization require subroutine calls 

•  No shared variables 
•  Program run on a single processor just like any uniprocessor 

program, except for calls to message passing library 
• Subroutines for 

•  Communication  
•  Pairwise or point-to-point: Send and Receive 
•  Collectives all processor get together to 

–  Move data: Broadcast, Scatter/gather 
–  Compute and move: sum, product, max, prefix sum, …               

of data on many processors 
•  Synchronization  

•  Barrier 
•  No locks because there are no shared variables to protect 

•  Enquiries 
•  How many processes? Which one am I? Any messages waiting? 
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Novel Features of MPI 
• Communicators encapsulate communication spaces for 

library safety 
• Datatypes reduce copying costs and permit 

heterogeneity 
• Multiple communication modes allow precise buffer 

management 
• Extensive collective operations for scalable global 

communication 
• Process topologies permit efficient process placement, 

user views of process layout 
• Profiling interface encourages portable tools 

Slide source: Bill Gropp, ANL 
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MPI References 

• The Standard itself: 
• at http://www.mpi-forum.org 
• All MPI official releases, in both postscript and HTML 
• Latest version MPI 3.1, released June 2015 

• Other information on Web: 
• at http://www.mcs.anl.gov/research/projects/mpi/index.htm  
• pointers to lots of stuff, including other talks and tutorials,   

a FAQ, other MPI pages 

Slide source: Bill Gropp, ANL 
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Books on MPI 

•  Using MPI:  Portable Parallel Programming  
with the Message-Passing Interface (2nd edition),  
by Gropp, Lusk, and Skjellum, MIT Press,  
1999. 

•  Using MPI-2:  Portable Parallel Programming  
with the Message-Passing Interface, by Gropp,  
Lusk, and Thakur, MIT Press, 1999. 

•  MPI:  The Complete Reference - Vol 1 The MPI Core, by 
Snir, Otto, Huss-Lederman, Walker, and Dongarra, MIT 
Press, 1998. 

•  MPI: The Complete Reference - Vol 2 The MPI Extensions, 
by Gropp, Huss-Lederman, Lumsdaine, Lusk, Nitzberg, 
Saphir, and Snir, MIT Press, 1998. 

•  Designing and Building Parallel Programs, by Ian Foster, 
Addison-Wesley, 1995. 

•  Parallel Programming with MPI, by Peter Pacheco, Morgan-
Kaufmann, 1997. 

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 36!

Finding Out About the Environment 

• Two important questions that arise early in a 
parallel program are: 

• How many processes are participating in this 
computation? 

• Which one am I? 
• MPI provides functions to answer these 

questions: 
• MPI_Comm_size reports the number of processes. 
• MPI_Comm_rank reports the rank, a number between 

0 and size-1, identifying the calling process 

Slide source: Bill Gropp, ANL 
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Hello (C) 

#include "mpi.h" 
#include <stdio.h> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI_Init( &argc, &argv ); 
    MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
    MPI_Comm_size( MPI_COMM_WORLD, &size ); 
    printf( "I am %d of %d\n", rank, size ); 
    MPI_Finalize(); 
    return 0; 
} 

Slide source: Bill Gropp, ANL 

Note: hidden slides show Fortran and C++ versions of each example 
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Hello (Fortran) 

program main 
include 'mpif.h' 
integer ierr, rank, size 
 
call MPI_INIT( ierr ) 
call MPI_COMM_RANK( MPI_COMM_WORLD, rank, ierr ) 
call MPI_COMM_SIZE( MPI_COMM_WORLD, size, ierr ) 
print *, 'I am ', rank, ' of ', size 
call MPI_FINALIZE( ierr ) 
end 

Slide source: Bill Gropp, ANL 
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Hello (C++) 
#include "mpi.h" 
#include <iostream> 
 
int main( int argc, char *argv[] ) 
{ 
    int rank, size; 
    MPI::Init(argc, argv); 
    rank = MPI::COMM_WORLD.Get_rank(); 
    size = MPI::COMM_WORLD.Get_size(); 
    std::cout << "I am " << rank << " of " << size << 
   "\n"; 

    MPI::Finalize(); 
    return 0; 
} 

Slide source: Bill Gropp, ANL 
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Notes on Hello World 
• All MPI programs begin with MPI_Init and end with 

MPI_Finalize 
• MPI_COMM_WORLD is defined by mpi.h (in C) or 

mpif.h (in Fortran) and designates all processes in the 
MPI “job” 

• Each statement executes independently in each process 
•  including the printf/print statements 

• The MPI-1 Standard does not specify how to run an MPI 
program, but many implementations provide  
mpirun –np 4 a.out 

Slide source: Bill Gropp, ANL 



CS267 Lecture 2 11 

02/09/2016 CS267 Lecture 7! 41!

MPI Basic Send/Receive 

• We need to fill in the details in 

• Things that need specifying: 
• How will “data” be described? 
• How will processes be identified? 
• How will the receiver recognize/screen messages? 
• What will it mean for these operations to complete? 

Process 0 Process 1 

Send(data) 

Receive(data) 

Slide source: Bill Gropp, ANL 
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Some Basic Concepts 

• Processes can be collected into groups 
• Each message is sent in a context, and must be 

received in the same context 
• Provides necessary support for libraries 

• A group and context together form a 
communicator 

• A process is identified by its rank in the group 
associated with a communicator 

• There is a default communicator whose group 
contains all initial processes, called 
MPI_COMM_WORLD 

Slide source: Bill Gropp, ANL 
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MPI Datatypes 

• The data in a message to send or receive is described 
by a triple (address, count, datatype), where 

• An MPI datatype is recursively defined as: 
•  predefined, corresponding to a data type from the language 

(e.g., MPI_INT, MPI_DOUBLE) 
•  a contiguous array of MPI datatypes 
•  a strided block of datatypes 
•  an indexed array of blocks of datatypes 
•  an arbitrary structure of datatypes 

• There are MPI functions to construct custom datatypes, 
in particular ones for subarrays 

• May hurt performance if datatypes are complex 

Slide source: Bill Gropp, ANL 
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MPI Tags 

• Messages are sent with an accompanying user-
defined integer tag, to assist the receiving 
process in identifying the message 

• Messages can be screened at the receiving end 
by specifying a specific tag, or not screened by 
specifying MPI_ANY_TAG as the tag in a 
receive 

• Some non-MPI message-passing systems have 
called tags “message types”.  MPI calls them 
tags to avoid confusion with datatypes 

Slide source: Bill Gropp, ANL 



CS267 Lecture 2 12 

02/09/2016 CS267 Lecture 7! 45!

MPI Basic (Blocking) Send 

MPI_SEND(start, count, datatype, dest, tag, 
comm) 

• The message buffer is described by (start, count, 
datatype). 

• The target process is specified by dest, which is the rank of 
the target process in the communicator specified by comm. 

• When this function returns, the data has been delivered to 
the system and the buffer can be reused.  The message 
may not have been received by the target process. 

Slide source: Bill Gropp, ANL 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 

02/09/2016 CS267 Lecture 7!
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MPI Basic (Blocking) Receive 

MPI_RECV(start, count, datatype, source, tag, 
comm, status) 

• Waits until a matching (both source and tag) message is 
received from the system, and the buffer can be used 

• source is rank in communicator specified by comm, or 
MPI_ANY_SOURCE 

• tag is a tag to be matched  or MPI_ANY_TAG 
•  receiving fewer than count occurrences of datatype is 

OK, but receiving more is an error 
• status contains further information (e.g. size of message) 

Slide source: Bill Gropp, ANL 

A(10) 
B(20) 

MPI_Send( A, 10, MPI_DOUBLE, 1, …) MPI_Recv( B, 20, MPI_DOUBLE, 0, … ) 

02/09/2016 CS267 Lecture 7! 47!

A Simple MPI Program 

#include “mpi.h” 
#include <stdio.h> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI_Status status; 
  MPI_Init(&argv, &argc);    
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
 
  /* Process 0 sends and Process 1 receives */ 
  if (rank == 0) { 
    buf = 123456; 
    MPI_Send( &buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD); 
  } 
  else if (rank == 1) { 
    MPI_Recv( &buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,  
              &status ); 
    printf( “Received %d\n”, buf ); 
  } 
 
  MPI_Finalize(); 
  return 0; 
} 

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 48!

A Simple MPI Program (Fortran) 

     program main 
     include ‘mpif.h’ 
     integer rank, buf, ierr, status(MPI_STATUS_SIZE) 
      
     call MPI_Init(ierr)  
     call MPI_Comm_rank( MPI_COMM_WORLD, rank, ierr ) 
C Process 0 sends and Process 1 receives  
     if (rank .eq. 0) then 
        buf = 123456 
        call MPI_Send( buf, 1, MPI_INTEGER, 1, 0,  
    *                  MPI_COMM_WORLD, ierr ) 
     else if (rank .eq. 1) then 
        call MPI_Recv( buf, 1, MPI_INTEGER, 0, 0, 
    *                  MPI_COMM_WORLD, status, ierr ) 
        print *, “Received “, buf 
     endif 
     call MPI_Finalize(ierr) 
     end 

Slide source: Bill Gropp, ANL 



CS267 Lecture 2 13 

02/09/2016 CS267 Lecture 7! 49!

A Simple MPI Program (C++) 

#include “mpi.h” 
#include <iostream> 
int main( int argc, char *argv[]) 
{ 
  int rank, buf; 
  MPI::Init(argv, argc); 
  rank = MPI::COMM_WORLD.Get_rank(); 
 
  // Process 0 sends and Process 1 receives  
  if (rank == 0) { 
    buf = 123456; 
    MPI::COMM_WORLD.Send( &buf, 1, MPI::INT, 1, 0 ); 
  } 
  else if (rank == 1) { 
    MPI::COMM_WORLD.Recv( &buf, 1, MPI::INT, 0, 0 ); 
    std::cout << “Received “ << buf << “\n”; 
  } 
 
  MPI::Finalize(); 
  return 0; 
} 

Slide source: Bill Gropp, ANL 
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Retrieving Further Information 

• Status is a data structure allocated in the user’s program. 
•  In C: 

int recvd_tag, recvd_from, recvd_count; 
MPI_Status status; 
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, ..., &status ) 
recvd_tag  = status.MPI_TAG; 
recvd_from = status.MPI_SOURCE; 
MPI_Get_count( &status, datatype, &recvd_count ); 

Slide source: Bill Gropp, ANL 
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MPI is Simple 
• Many parallel programs can be written using just these 

six functions, only two of which are non-trivial: 
• MPI_INIT 
• MPI_FINALIZE 
• MPI_COMM_SIZE 
• MPI_COMM_RANK 
• MPI_SEND 
• MPI_RECV 

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 52!

Another Approach to Parallelism 
• Collective routines provide a higher-level way to 

organize a parallel program 
• Each process executes the same communication 

operations 
• MPI provides a rich set of collective operations… 

Slide source: Bill Gropp, ANL 
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Collective Operations in MPI 

• Collective operations are called by all processes in a 
communicator 

• MPI_BCAST distributes data from one process (the 
root) to all others in a communicator 

• MPI_REDUCE combines data from all processes in 
communicator and returns it to one process 

•  In many numerical algorithms, SEND/RECEIVE can be 
replaced by BCAST/REDUCE, improving both simplicity 
and efficiency 

Slide source: Bill Gropp, ANL 
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MPI can be simple 

• Claim: most MPI applications can be written with only 6 
functions (although which 6 may differ) 

• You may use more for convenience or performance 

• Using point-to-point: 
• MPI_INIT 
• MPI_FINALIZE 
• MPI_COMM_SIZE 
• MPI_COMM_RANK 
• MPI_SEND 
• MPI_RECEIVE 

• Using collectives: 
• MPI_INIT 
• MPI_FINALIZE 
• MPI_COMM_SIZE 
• MPI_COMM_RANK 
• MPI_BCAST 
• MPI_REDUCE 

02/09/2016 

Example: Calculating Pi 

• Simple program written in a data parallel style in MPI 
•  E.g., for a reduction (recall “tricks with trees” lecture), each 

process will first reduce (sum) its own values, then call a 
collective to combine them 

• Estimates pi by approximating the area of the quadrant 
of a unit circle 

• Each process gets 1/p of the intervals (mapped round 
robin, i.e., a cyclic mapping) 

55!CS267 Lecture 7!

E.g., in a 4-process run, each 
process gets every 4th interval.  
Process 0 slices are in red. 
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Example:  PI in C – 1/2 

#include "mpi.h" 
#include <math.h> 

#include <stdio.h> 
int main(int argc, char *argv[]) 
{ 

int done = 0, n, myid, numprocs, i, rc; 
double PI25DT = 3.141592653589793238462643; 
double mypi, pi, h, sum, x, a; 
MPI_Init(&argc,&argv); 
MPI_Comm_size(MPI_COMM_WORLD,&numprocs); 
MPI_Comm_rank(MPI_COMM_WORLD,&myid); 
while (!done)  { 
  if (myid == 0) { 
    printf("Enter the number of intervals: (0 quits) "); 
    scanf("%d",&n); 
  } 
  MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD); 
  if (n == 0) break; 

Slide source: Bill Gropp, ANL 
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Example:  PI in C – 2/2 

    h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 * sqrt(1.0 - x*x); 
  } 
  mypi = h * sum; 
  MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 
             MPI_COMM_WORLD); 
  if (myid == 0) 
    printf("pi is approximately %.16f, Error is .16f\n", 
            pi, fabs(pi - PI25DT)); 
} 
MPI_Finalize(); 

  return 0; 
} 

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 58!

Example:  PI in Fortran – 1/2 

     program main 
     include ‘mpif.h’  
     integer done, n, myid, numprocs, i, rc 
     double pi25dt, mypi, pi, h, sum, x, z 
     data done/.false./ 
     data PI25DT/3.141592653589793238462643/ 
     call MPI_Init(ierr) 
     call MPI_Comm_size(MPI_COMM_WORLD,numprocs, ierr ) 
     call MPI_Comm_rank(MPI_COMM_WORLD,myid, ierr) 
     do while (.not. done) 
       if (myid .eq. 0) then 
        print *,”Enter the number of intervals: (0 quits)“ 
        read *, n 
       endif 
       call MPI_Bcast(n, 1, MPI_INTEGER, 0, 
   *                   MPI_COMM_WORLD, ierr ) 
       if (n .eq. 0) goto 10 

Slide source: Bill Gropp, ANL 
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Example:  PI in Fortran – 2/2 

        h   = 1.0 / n 
    sum = 0.0 

        do i=myid+1,n,numprocs 
          x = h * (i - 0.5) 

      sum += 4.0 / (1.0 + x*x) 
    enddo 
    mypi = h * sum 
    call MPI_Reduce(mypi, pi, 1, MPI_DOUBLE_PRECISION, 
   *                MPI_SUM, 0, MPI_COMM_WORLD, ierr ) 
    if (myid .eq. 0) then 
        print *, "pi is approximately “, pi,  
   *      “, Error is “, abs(pi - PI25DT) 

    enddo 
10   continue 

    call MPI_Finalize( ierr ) 
    end 
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Example:  PI in C++ - 1/2 
#include "mpi.h" 
#include <math.h> 
#include <iostream> 
int main(int argc, char *argv[]) 
{ 
  int done = 0, n, myid, numprocs, i, rc; 
  double PI25DT = 3.141592653589793238462643; 
  double mypi, pi, h, sum, x, a; 
  MPI::Init(argc, argv); 
  numprocs = MPI::COMM_WORLD.Get_size(); 
  myid     = MPI::COMM_WORLD.Get_rank(); 
  while (!done)  { 
    if (myid == 0) { 
      std::cout << "Enter the number of intervals: (0 
quits) "; 
      std::cin >> n;; 
    } 
    MPI::COMM_WORLD.Bcast(&n, 1, MPI::INT, 0 ); 
    if (n == 0) break; 

Slide source: Bill Gropp, ANL 
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Example:  PI in C++ - 2/2 

     h   = 1.0 / (double) n; 
  sum = 0.0; 
  for (i = myid + 1; i <= n; i += numprocs) { 
    x = h * ((double)i - 0.5); 
    sum += 4.0 / (1.0 + x*x); 
  } 
  mypi = h * sum; 
  MPI::COMM_WORLD.Reduce(&mypi, &pi, 1, MPI::DOUBLE,  
                        MPI::SUM, 0); 
  if (myid == 0) 
    std::cout << "pi is approximately “ << pi <<  
          “, Error is “ << fabs(pi - PI25DT) << “\n”; 
} 
MPI::Finalize(); 

  return 0; 
} 

Slide source: Bill Gropp, ANL 02/09/2016 CS267 Lecture 7! 62!

Synchronization 
• MPI_Barrier( comm ) 
• Blocks until all processes in the group of the 

communicator comm call it. 
• Almost never required in a parallel program 

•  Occasionally useful in measuring performance and load 
balancing 
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Synchronization (Fortran) 
• MPI_Barrier( comm, ierr ) 
• Blocks until all processes in the group of the 

communicator comm call it. 
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Synchronization (C++) 
• comm.Barrier(); 
• Blocks until all processes in the group of the 

communicator comm call it. 
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Collective Data Movement 
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Comments on Broadcast, other Collectives 
• All collective operations must be called by all processes 

in the communicator 
• MPI_Bcast is called by both the sender (called the root 

process) and the processes that are to receive the 
broadcast 

•  “root” argument is the rank of the sender; this tells MPI which 
process originates the broadcast and which receive 
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More Collective Data Movement 
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Collective Computation 
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MPI Collective Routines 

• Many Routines:  Allgather, Allgatherv, 
Allreduce, Alltoall, Alltoallv, Bcast, 
Gather, Gatherv, Reduce, Reduce_scatter, 
Scan, Scatter, Scatterv 

• All versions deliver results to all participating 
processes, not just root. 

• V versions allow the chunks to have variable sizes. 
• Allreduce, Reduce, Reduce_scatter, and Scan 

take both built-in and user-defined combiner functions. 
• MPI-2 adds Alltoallw, Exscan, intercommunicator 

versions of most routines 
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MPI Built-in Collective Computation Operations 
• MPI_MAX 
• MPI_MIN 
• MPI_PROD 
• MPI_SUM 
• MPI_LAND 
• MPI_LOR 
• MPI_LXOR 
• MPI_BAND 
• MPI_BOR 
• MPI_BXOR 
• MPI_MAXLOC 
• MPI_MINLOC 

Maximum 
Minimum 
Product 
Sum 
Logical and 
Logical or 
Logical exclusive or 
Binary and 
Binary or 
Binary exclusive or 
Maximum and location 
Minimum and location 


