

Recap of Last Lecture

- 4 kinds of simulations
- Discrete Event Systems
- Particle Systems
- Ordinary Differential Equations (ODEs)
- Partial Differential Equations (PDEs) (today)
- Common problems
- Load balancing
- May be due to lack of parallelism or poor work distribution
- Statically, divide grid (or graph) into blocks
- Dynamically, if load changes significantly during run
- Locality

Partition into large chunks with low surface-to-volume ratio - To minimize communication

Distributed particles according to location, but use irregular spatial decomposition (e.g., quad tree) for load balance

- Constant tension between these two
- Particle-Mesh method: can't balance particles (moving), balance mesh (fixed) and keep particles near mesh points without communication
2/2/2016 CS267 Lecture 5

Continuous Variables, Continuous Parameters Examples of such systems include

- Elliptic problems (steady state, global space dependence)
- Electrostatic or Gravitational Potential: Potential(position)
- Hyperbolic problems (time dependent, local space dependence):
- Sound waves: Pressure(position,time)
- Parabolic problems (time dependent, global space dependence)
- Heat flow: Temperature(position, time)
- Diffusion: Concentration(position, time)

Global vs Local Dependence

- Global means either a lot of communication, or tiny time steps
- Local arises from finite wave speeds: limits communication

Many problems combine features of above

- Fluid flow: Velocity,Pressure,Density(position,time)
- Elasticity: Stress,Strain(position,time)

2/2/2016
CS267 Lecture 5

Example: Deriving the Heat Equation

Consider a simple problem

- A bar of uniform material, insulated except at ends
- Let $u(x, t)$ be the temperature at position x at time t
- Heat travels from $x-h$ to $x+h$ at rate proportional to:

$$
\frac{d u(x, t)}{d t}=C * \frac{(u(x-h, t)-u(x, t)) / h-(u(x, t)-u(x+h, t)) / h}{h}
$$

- As $h \rightarrow 0$, we get the heat equation:

$$
\frac{d u(x, t)}{d t}=C * \frac{d^{2} u(x, t)}{\substack{\boldsymbol{d} x^{2} \\ \text { cs267 Lecture } 5}}
$$

2/2/2016

Explicit Solution of the Heat Equation

- Use "finite differences" with $u[j, i]$ as the temperature at
- time $t=i^{\star} \boldsymbol{\delta}(i=0,1,2, \ldots)$ and position $x=j^{*} h(j=0,1, \ldots, N=1 / h)$
- initial conditions on u[j,0]
- boundary conditions on $\mathrm{u}[0, \mathrm{i}]$ and $\mathrm{u}[\mathrm{N}, \mathrm{i}] i$
- At each timestep $i=0,1,2, \ldots$

For $\mathrm{j}=1$ to $\mathrm{N}-1$
$u[j, i+1]=z^{*} u[j-1, i]+\left(1-2^{*} z\right)^{*} u[j, i]+z^{*} u[j+1, i]$
where $\mathrm{z}=\mathrm{C} * \delta / \mathrm{h}^{2}$

- This corresponds to
- Matrix-vector-multiply by T (next slide)
- Combine nearest neighbors on grid

2/2/2016
CS267 Lecture 5

Details of the Explicit Method for Heat

$$
\frac{d u(x, t)}{d t}=C * \frac{d^{2} u(x, t)}{d x^{2}}
$$

- Discretize time and space using explicit approach (forward Euler) to approximate time derivative:
$(u(x, t+\delta)-u(x, t)) / \delta=C[(u(x-h, t)-u(x, t)) / h-(u(x, t)-u(x+h, t)) / h] / h$
$=C\left[u(x-h, t)-2^{*} u(x, t)+u(x+h, t)\right] / h^{2}$
Solve for $u(x, t+\delta)$.
$u(x, t+\delta)=u(x, t)+C^{*} \delta / h^{2}\left(u(x-h, t)-2^{*} u(x, t)+u(x+h, t)\right)$
- Let $z=C^{*} \delta / h^{2}$, simplify:

$$
u(x, t+\delta)=z^{*} u(x-h, t)+(1-2 z)^{*} u(x, t)+z^{*} u(x+h, t)
$$

- Change variable x to $j^{*} h$, t to $i^{*} \delta$, and $u(x, t)$ to $u[j, i]$

$$
u[j, i+1]=z^{*} u[j-1, i]+\left(1-2^{*} z\right)^{*} u[j, i]+z^{*} u[j+1, i]
$$

2/2/2016
CS267 Lecture 5

Matrix View of Explicit Method for Heat

$\cdot u[j, i+1]=z^{*} u[j-1, i]+\left(1-2^{*} z\right)^{*} u[j, i]+z^{*} u[j+1, i]$, same as:
$\cdot \mathrm{u}[:, \mathrm{i}+1]=\mathrm{T}^{*} \mathrm{u}[:, \mathrm{i}]$ where T is tridiagonal:

Graph and " 3 point stencil"

- L called Laplacian (in 1D
- For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal - More on the matrix/grid views later

2/2/2016
CS267 Lecture 5
8

Parallelism in Explicit Method for PDEs

- Sparse matrix vector multiply, via Graph Partitioning
- Partitioning the space (x) into p chunks
- good load balance (assuming large number of points relative to p)
- minimize communication (least dependence on data outside chunk)

- Generalizes to
- multiple dimensions.
- arbitrary graphs (= arbitrary sparse matrices).
- Explicit approach often used for hyperbolic equations - Finite wave speed, so only depend on nearest chunks
- Problem with explicit approach for heat (parabolic):
- numerical instability.
solution blows up eventually if $z=\mathrm{C} \delta / \mathrm{h}^{2}>.5$
- need to make the time step δ very small when h is small: $\delta<.5^{*} \mathrm{~h}^{2} / \mathrm{C}$ 2/2/2016 CS267 Lecture 5

Instability in Solving the Heat Equation Explicitly

Implicit Solution of the Heat Equation

$$
\frac{d u(x, t)}{d t}=C * \frac{d^{2} u(x, t)}{d x^{2}}
$$

- Discretize time and space using implicit approach
(Backward Euler) to approximate time derivative:
$(u(x, t+\delta)-u(x, t)) / d t=C^{*}\left(u(x-h, t+\delta)-2^{*} u(x, t+\delta)+u(x+h, t+\delta)\right) / h^{2}$ $u(x, t)=u(x, t+\delta)-C^{*} \delta / h^{2}\left(u(x-h, t+\delta)-2^{*} u(x, t+\delta)+u(x+h, t+\delta)\right)$
- Let $z=C^{*} \delta / h^{2}$ and change variable to $i^{*} \delta, x$ to $j^{*} h$ and $u(x, t)$ to $u[j, i]$

$$
\left(I+z^{*} L\right)^{*} u[:, i+1]=u[:, i]
$$

- Where I is identity and \square

$$
\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& -1 & 2 & -1 & \\
& & -1 & 2 & -1
\end{array}\right.
$$ $\begin{array}{ll}-1 & 2\end{array}$

CS267 Lecture 5
11

Implicit Solution of the Heat Equation

- The previous slide derived Backward Euler
- (I + z *L)* u[:, i+1] = u[:,i]
- But the Trapezoidal Rule has better numerical properties:

$$
\left(I+(z / 2)^{*} L\right)^{*} u[:, i+1]=\left(I-(z / 2)^{*} L\right) * u[:, i]
$$

- Again I is the identity matrix and L is:

- Other problems (elliptic instead of parabolic) yield

Poisson's equation ($L x=b$ in 1D)
2/2/2016
CS267 Lecture 5

Relation of Poisson to Gravity, Electrostatics

- Poisson equation arises in many problems
- E.g., force on particle at (x, y, z) due to particle at 0 is
$-(x, y, z) / r^{3}$, where $r=\operatorname{sqrt}\left(x^{2}+y^{2}+z^{2}\right)$
- Force is also gradient of potential $V=-1 / r$
$=-(d / d x \vee, d / d y \vee, d / d z \vee)=-g r a d V$
- V satisfies Poisson's equation (try working this out!)

2D Implicit Method

- Similar to the 1D case, but the matrix L is now

- Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D grid.
- To solve this system, there are several techniques.

2/2/2016
CS267 Lecture 5

Overview of Algorithms

Algorithms for 2D (3D) Poisson Equation (N vars)

Algorithm	Serial	PRAM	Memory	\#Procs
- Dense LU	N^{3}	N	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
- Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
- Jacobi	$\mathrm{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{2 / 3}\right)$	N	N
- Explicit Inv.	N^{2}	$\log \mathrm{~N}$	$\mathrm{~N}^{2}$	$\mathrm{~N}^{2}$
- Conj.Gradients $\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)}$ * $\log \mathrm{N}$	N	N	
- Red/Black SORN $\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	N	N	
- Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{2 / 3}\right)$	$\mathrm{N}^{*} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
- FFT	$\mathrm{N}^{*} \log \mathrm{~N}$	$\log \mathrm{~N}$	N	N
- Multigrid	N	$\log \mathrm{N}$	N	N
- Lower bound	N	$\log \mathrm{N}$	N	

All entries in "Big-Oh" sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
References: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. Decision tree to help choose algorithms:
www.netlib.org/linalg/html templates/Templates.html

- Sorted in two orders (roughly):

- from most general (works on any matrix) to most specialized (works on matrices "like" T). - Dense LU: Gaussian elimination; works on any N-by-N matrix
- Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main diagonal.
- Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative algorithm.
- Explicit Inverse: Assume we want to solve many systems with T, so we can precompute and store inv(T) "for free", and just multiply by it (but still expensive) -Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of T that Jacobi does not
- Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of T. Used in multigrid schemes
- Sparse LU: Gaussian elimination exploiting particular zero structure of T
- FFT (Fast Fourier Transform): Works only on matrices very like T.
- FFT (Fast Fourier Transform): Works only on matrices very like T.
- Multigrid: Also works on matrices like T, that come from elliptic PDEs
- Lower Bound: Serial (time to print answer); parallel (time to combine N inputs)
- Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

2/2/2016

CS267 Lecture 5

Mflop/s Versus Run Time in Practice

- Problem: Iterative solver for a convection-diffusion problem; run on a 1024-CPU NCUBE-2.
- Reference: Shadid and Tuminaro, SIAM Paralle Processing Conference, March 1991.

Solver	Flops	CPU Time(s) Mflop/s	
Jacobi	3.82×10^{12}	2124	1800
Gauss-Seidel	1.21×10^{12}	885	1365
Multigrid	2.13×10^{9}	7	318
- Which solver would you select?			

Comments on practical meshes

- Regular 1D, 2D, 3D meshes
- Important as building blocks for more complicated meshes
- Practical meshes are often irregular
- Composite meshes, consisting of multiple "bent" regular meshes joined at edges
- Unstructured meshes, with arbitrary mesh points and connectivities
- Adaptive meshes, which change resolution during solution process to put computational effort where needed

Summary of Approaches to Solving PDEs

- As with ODEs, either explicit or implicit approaches are possible
- Explicit, sparse matrix-vector multiplication
- Implicit, sparse matrix solve at each step
- Direct solvers are hard (more on this later)
- Iterative solves turn into sparse matrix-vector multiplication - Graph partitioning
- Graph and sparse matrix correspondence:
- Sparse matrix-vector multiplication is nearest neighbor "averaging" on the underlying mesh
- Not all nearest neighbor computations have the same efficiency
- Depends on the mesh structure (nonzero structure) and the number of Flops per point.
2/2/2016
CS267 Lecture 5

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
- need to communicate mesh points near boundary to neighboring processors.
- Often done with ghost regions
- Surface-to-volume ratio keeps communication down, but
- Still may be problematic in practice

Implemented using
"ghost" regions.
Adds memory overhead

Composite mesh from a mechanical structure

Converting the mesh to a matrix

2/2/2016
CS267 Lecture 5
22

Irregular mesh: NASA Airfoil in 2D (direct solution)

24

Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

2/2/2016

Source of Unstructured Finite Element Mesh: Vertebra
Study failure modes of trabecular Bone under stress

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta 2/2/2016 CS267 Lecture 5

Adaptive Mesh Refinement (AMR)

- Adaptive mesh around an explosion
- Refinement done by estimating errors; refine mesh if too large
- Parallelism
- Mostly between "patches," assigned to processors for load balance
- May exploit parallelism within a patch
- Projects:
- Titanium (http://www.cs.berkeley.edu/projects/titanium)
- Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

2/2/2016
CS267 Lecture 5
28

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement) See: http://www.lin.gov/CASC/SAMRAI/
2/2/2016 CS267 Lecture 5

Challenges of Irregular Meshes

- How to generate them in the first place
- Start from geometric description of object
- Triangle, a 2D mesh partitioner by Jonathan Shewchuk 3D harder!
- How to partition them
- ParMetis, a parallel graph partitioner
- How to design iterative solvers
- PETSc, a Portable Extensible Toolkit for Scientific Computing
- Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
- SuperLU, parallel sparse Gaussian elimination
- These are challenges to do sequentially, more so in parallel 2/2/2016

CS267 Lecture 5
30

- Current attempts to categorize main "kernels" dominating simulation codes
- "Seven Dwarfs" (P. Colella)
- Structured grids
- including locally structured grids, as in AMR
- Unstructured grids
- Spectral methods (Fast Fourier Transform)
- Dense Linear Algebra
- Sparse Linear Algebra
- Both explicit (SpMV) and implicit (solving)
- Particle Methods
- Monte Carlo/Embarrassing Parallelism/Map Reduce (easy!)
2/2/2016
CS267 Lecture 5 ${ }^{31}$

