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Solutions to Midterm 2

1. (a)

We first run the Extended GCD algorithm on 5 and 36.

ged(36,5) 1-36—7-5=1.
= ged(5, 1) 0-54+1-1=1.
= ged(1,0) =1 1-1+0-0=1.

Since we get that 36 — 7 -5 = 1, taking everything modulo 35 gives us that (—=7)-5 =
1 mod 35, and hence 57! = (=7) = 29 mod 35.

If 5z + 19 = 35 mod 36, then 5z = 35 — 19 = 16 mod 36, and z = 16 - 5~! mod 36. By
the previous part, 5! =29, and z = 16 - 29 = 32 mod 36.

No, 6z + 19 = 35 mod 36 does not have a solution. Note that finding such an z is equiv-
alent to finding z such that 6z = 16 mod 36. Since gcd(6,36) = 6 # 1, 6 does not have
an inverse modulo 36, and the only values 6z can take modulo 36 are 0,6, 12,18, 24, 30.

Note that the mere fact that ged(36,6) # 1 is not sufficient to claim that the equation
has no solution. For example, the equation 6x + 5 = 35 mod 36 does have a solution.
The fact that no solution exists requires that 35—19 = 16 is not a multiple of 6( mod 36).
(If ged(36,6) were equal to 1, then every integer mod36 would be some multiple of 6.)

The polynomial is

D=8 (@0 =) a0

3 (3_0)(3_1):x2+3x+2.

0—1)0-3) " (1-0)

Indeed, f(0) =2, (1) = 6 and f(3) = 20.

Let us assume there was a lower degree polynomial, which would have to be a linear
polynomial f(z) = az + b. Substituting values, we get f(0) = b = 2, and also f(1) =
a = 4. However, we also have f(3) = 3a = 18, which is not consistent. Hence there is
no lower degree polynomial that satisfies the given points.

Another (much simpler) way to see this is to use the result from class that there is a
unique polynomial of degree at most 2 that passes through the given points. Since f is
one such polynomial, there does not exist any other polynomial of degree 0, 1 or 2.
One more thing to notice: a few answers claimed that the points were not on a line and
hence could not belong to a linear polynomial. Though this is generally the right general
idea (though not a proof) when working over the reals, this intuition can be dangerously
wrong when working modulo some number.

One way of coming up with such a polynomial is to take g(2) = 0 (say), and then using
Lagrange to get the cubic polynomial 6z% — 2322 4+ 21z + 2. Another (much simpler)



way is to take g(z) = f(z) + h(z), where h is a polynomial that is 0 at the points
z =0,z =1,z = 3. E.g., taking h(z) = z(z — 1)(x — 3) would give us 23 — 322 + 6z + 2,
which satisfies the given constraints.

Note that the theorem about uniqueness of the polynomial does not preclude the exis-
tence of degree 3 polynomials .

3. (a) Ifg=|k/(p—1)], thenk=g¢q(p—1)+ (k mod (p — 1)). Now

k

a modp = aq(p_1)+(km0d(p_1))

mod p
— aq(pfl) . alkmOd(pfl) modp

-1. akmod(pfl)

mod p. (By Fermat’s Little Thm.)

(b) To evaluate a®*) mod p, we first find d = »° mod (p — 1). Using the algorithm for
exponentiation given in class, we can evaluate d in polynomial time in the length of the
representation of b, ¢, (p — 1).
Now, using the result of part (a), we know that a(*") = q(®*)mod(r=1) — 44 mod p. we can
again evaluate this in time polynomial in the representations of a,d,p. However, since
d is at most (p — 1), this is polynomial in the representations of a and p. (This last step
in the argument was something a lot of people missed.)

4. (a) To decrypt the message he has received, Bob just computes ¢ mod n = m® mod n = m.

(b) Given the primes p,q and the public key e, we can now compute d’ = e~! mod (p —
1)(g — 1). Note that since e is Bob’s public key, this inverse must exist. But now we
can compute ¢ = m = m. (Since inverses are unique, it must also be the case that
d' = d, but we do not need this for our procedure.)

Note that all the operations can be done efficiently in the representation of p and g. The
inverse can be computed by the (polynomial time) extended GCD algorithm and the
exponentiation can also be done in polynomial time.
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