
page 1 of 9 Your full name: 1

Final exam
CS70, Blum/Wagner, 19 May 2001

This is a closed book examination. One page of notes is permitted. Calculators are permitted.
Do all your work on the pages of this examination. Give reasons for all your answers.

Be sure to do all work for each problem on the pages provided for that problem.
Print your full name on every page of the examination.

Print your full name here: ,
(last) (first)

Sign your name:

Problem 1. (Repetitions) [10 points]
We say that a string of bits has k quadruply-repeated ones if there are k positions where four
consecutive 1’s appear in a row. For example, the string 0100111110 has two quadruply-repeated
ones.

What is the expected number of quadruply-repeated ones in a random n-bit string, when n ≥ 3
and all n-bit strings are equally likely? Justify your answer.



page 2 of 9 Your full name: 2

Problem 2. (There’s gold in them thar hills!) [20 points]
You have n gold coins. One of them is fraudulent, and the rest are good.

Unfortunately, you don’t know which one is fraudulent: they all look alike. Good coins weigh one
ounce, but the bad coin has a different weight, and this is the only way to identify which one is bad.
Fortunately, you have a balance scale and an endless supply of known-good coins (lucky you!).

Consider the following recursive algorithm for finding the bad coin from a set S of n coins:

FindBad(S):
1. If S has just one coin:
2. Return that coin.
3. Let n be the number of coins in S.
4. If n is not a multiple of 3:
5. Add enough known-good coins to S to bring the size up to a multiple of 3.
6. Return FindBad(S).
7. Randomly divide S into three piles A, B, C each of size n/3

(so that all ways to evenly divide n coins into three piles are equally likely).
8. Weigh pile A against pile B.
9. If the scale balances:
10. Return FindBad(C).
11. Merge piles A and B into a combined pile D.
12. Return FindBad(D).

Let an be the expected number of weighings used by the above algorithm to find the bad coin from
a set of n coins.

(a) [5 points] Fill in the following. Show your work.

a1 = .

a2 = .

a3 = .

a4 = .



page 3 of 9 Your full name: 3

(b) [15 points] Let lg n refer to the base-2 logarithm of n. Prove: an ≤ 3 lg n for all n ≥ 1.

[Hint: You might consider examining am, where m is the smallest multiple of 3 that is ≥ n. You
may assume without proof that, for this choice, 2m/3 < n holds for all n > 4. Also, you can freely
use the following facts about logarithms: lg(a) + lg(b) = lg(ab), m lg a = lg(am), lg 2 = 1, lg 4 = 2,
and lg x ≤ 0 when 0 < x ≤ 1.]

If necessary, you may state some small assumptions as needed to complete your proof and we will
give an appropriate amount of partial credit.



page 4 of 9 Your full name: 4

Problem 3. (Codebreaking) [20 points]
You’ve forgotten your code to your answering machine. All you remember is that it is a two-digit
code, and the two digits aren’t the same.

You have a clever idea: You’ll enter a string that contains all possible pairs of distinct digits. For
instance, if answering machine codes were made up from the digits 1,2,3, you could enter the string
121321231 and be sure of getting access, because every pair of distinct digits appears somewhere
in this string (for instance, 32 appears at the fourth position). However, this is not shortest string
with this property. To ease your weary fingers, you want to find a string with this property that is
as short as possible.

Let `n be the length of such a shortest string if the possible digits are 1, 2, . . . , n.

(a) [3 points] What is `3? Justify your answer. [Hint: consider the directed graph G = (V, E) with
V = {1, 2, 3} and E = {(i, j) : i 6= j}.]

(b) [1 point] What is `4?

(c) [10 points] What is `n? Prove your answer.



page 5 of 9 Your full name: 5

(d) [6 points] Give an algorithm for finding a string of length `n with the above property. Try to
avoid making it unnecessarily inefficient (try to make it run in time polynomial in n).



page 6 of 9 Your full name: 6

Problem 4. (A proof) [10 points]
Consider the following result, first proved many centuries ago.

Theorem 1 (Euclid). There exist infinitely many primes.

Proof. Assume to the contrary that there exist finitely many primes. Let these primes (in increasing
order) be p1 = 2, p2 = 3, p3 = 5, . . . , pk. Let qk = p1p2p3 · · · pk + 1. Note that qk is a new number
not in the list of primes p1, . . . , pk. At the same time, it is not divisible by pi for any i, since
qk ≡ p1p2p3 · · · pk + 1 ≡ 1 (mod pi), which would mean that qk is a new prime different from
p1, . . . , pk, which is a contradiction. This completes the proof.

Let p1, . . . , pk represent the first k primes. Are we guaranteed that p1p2p3 · · · pk +1 is always prime
for all k ≥ 1? Justify your answer.



page 7 of 9 Your full name: 7

Problem 5. (Error correcting codes) [15 points]
Let m1 < m2 < . . . < mk be k pairwise relatively prime (positive) integers. The term pairwise

relatively prime means that gcd(mi, mj) = 1 for all distinct (unequal) i, j ∈ {1, ..., k}. Here, as
usual, gcd = greatest common divisor.

(a) [2 points] Are 13,14,15,17 pairwise relatively prime?
Are 15,17,19,21 pairwise relatively prime?

For positive integers a, m, we computer scientists define: a mod m = remainder upon dividing a
by m = a − m · floor(a/m). For example, 7 mod 3 = 1, and 23 mod 5 = 3.

(b) [1 point] 42 mod 11 = .

Let S = {0, 1, . . . , s} be any finite set of consecutive nonnegative integers starting from 0. A
Chinese remainder code encodes an integer x ∈ S as a pair of k-tuples:

E(x) = [〈x mod m1, ..., x mod mk〉, 〈b1, ..., bk〉]

where bi is the parity of the bit string x mod mi. Recall that the parity of a bit string is the sum
modulo 2 of the bits of the string. For instance, the parity of 01101 is 1.

(c) [2 points] In the special case where S = {0, 1, 2, . . . , 63} is the set of all nonnegative 6-bit integers,
and m1, m2, m3 are the three pairwise relatively prime numbers m1 = 9 < m2 = 10 < m3 = 11, we
have (fill in the blanks):

E(27) = [〈0, 7, 〉, 〈0, 1, 〉]

(d) [2 points] In general, for any given pairwise relatively prime (positive) integers m1, . . . , mk,
what is the largest allowable value of s (the largest element in S) to ensure that the function E is
1:1 on S? In other words, you should find the largest value of s that ensures that

for all x, y ∈ S, [E(x) = E(y) ⇒ x = y].

Give your answer as a function of m1, . . . , mk:

s = .



page 8 of 9 Your full name: 8

In Chinese remainder codes, the parity bits are used to detect errors in each of the k entries of
〈x mod m1, ..., x mod mk〉.

As before, let S = {0, 1, 2, . . . , 63}, and let m1, m2, m3 be the three pairwise relatively prime
numbers m1 = 9 < m2 = 10 < m3 = 11.

(e) [4 points] Suppose that during transmission, at most one bit of E(x) is (mistakenly) flipped,
and that what is received is [〈8, 5, 6〉, 〈1, 1, 0〉]. How should this be decrypted?

x = .

(f) [1 point] Is it possible from [〈8, 5, 6〉, 〈1, 1, 0〉] to recover not only the original x but also the
encoded string, E(x)?
If so, what do you get for E(x)?

E(x) = .

In general, the above code detects and corrects any single (1-bit) error.

Most algorithms for decoding Chinese remainder codes make calls to a simple efficient subroutine
that computes:

Inverse(a1, . . . , ak; m1, . . . , mk):
Input: Pairwise relatively prime positive integers m1, . . . , mk, and

nonnegative integers a1, . . . , ak such that ai < mi for each i.
Output: The unique integer x in {0, . . . , m − 1} such that

x mod m1 = a1, . . . , x mod mk = ak, where m = m1 · · ·mk.

(g) [3 points] For example, Inverse(1, 2, 3; 9, 10, 11) = 982. Show that this answer is correct.



page 9 of 9 Your full name: 9

Extra Credit. (More error correcting codes)
This question, a continuation to the previous question, is optional and will count for extra credit.

Suppose we would like to detect and correct up to two (1-bit) errors in a set S, where S =
{0, 1, . . . , s}. Let k = 4. Let m1 < . . . < mk be pairwise relatively prime positive integers such that
m1m2 > s.

(a) Give an algorithm to decode the received transmission of x in case there are at most two (single-
bit) errors. Comment your algorithm so that it’s clear not only what it’s doing, but also why. You
may call the Inverse() subroutine of question 5(g) in your algorithm.

As usual, bit errors may be in an x mod mi or a bi or both. You might want to think about parts
(b), (c), and (d) before answering part (a).

(b) Justify briefly that your algorithm works in the case that there are exactly two 1-bit errors,
and no parity bits are in error.

(c) Justify briefly that your algorithm works in the case that there are exactly two 1-bit errors, and
two parity bits are in error.

(d) Justify briefly that your algorithm works in the case that there are two 1-bit errors, and
one of these errors occurs in a parity bit bi and the other in some bit of its associated integer
ai = x mod mi.


