
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner Notes 20

Random Variables and Expectation
Question: The homeworks of 20 students are collected in, randomly shuffled and returned to the students.
How many students receive their own homework?

To answer this question, we first need to specify the probability space: plainly, it should consist of all 20!
permutations of the homeworks, each with probability 1

20! . [Note that this is the same as the probability
space for card shuffling, except that the number of items being shuffled is now 20 rather than 52.] It helps
to have a picture of a permutation. Think of 20 books lined up on a shelf, labeled from left to right with
1,2, . . . ,20. A permutation π is just a reordering of the books, which we can describe just by listing their
labels from left to right. Let’s denote by πi the label of the book that is in position i. We are interested in the
number of books that are still in their original position, i.e., in the number of i’s such that πi = i. These are
often known as fixed points of the permutation.

Of course, our question does not have a simple numerical answer (such as 6), because the number depends on
the particular permutation we choose (i.e., on the sample point). Let’s call the number of fixed points X . To
make life simpler, let’s also shrink the class size down to 3 for a while. The following table gives a complete
listing of the sample space (of size 3! = 6), together with the corresponding value of X for each sample
point. [We use our bookshelf convention for writing a permutation: thus, for example, the permutation 312
means that book 3 is on the left, book 1 in the center, and book 2 on the right. You should check you agree
with this table.]

permutation π value of X
123 3
132 1
213 1
231 0
312 0
321 1

Thus we see that X takes on values 0, 1 or 3, depending on the sample point. A quantity like this, which
takes on some numerical value at each sample point, is called a random variable (or r.v.) on the sample
space.

Definition 20.1 (random variable): A random variable X on a sample space Ω is a function that assigns
to each sample point ω ∈ Ω a real number X(ω).

Until further notice, we’ll restrict our attention to discrete random variables: i.e., their values will be integers
or rationals, rather than arbitrary real numbers.

The r.v. X in our permutation example above is completely specified by its values at all sample points, as
given in the above table. (Thus, for example, X(123) = 3 etc.)

Rather than the value at each sample point, we are usually more interested in the set of points at which the
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r.v. takes on some given value. Let a be any real number. Then the set

{ω ∈ Ω : X(ω) = a}

is an event in the sample space (why?). We usually abbreviate this event to simply “X = a”. Since X = a is
an event, we can talk about its probability, Pr[X = a]. The collection of these probabilities, for all possible
values of a, is known as the distribution of the r.v. X .

Definition 20.2 (distribution): The distribution of a discrete random variable X is the collection of values
{(a,Pr[X = a]) : a ∈A }, where A is the set of all possible values taken by X . [In most of our examples, A

will be (some subset of) the integers.]

Thus the distribution of the random variable X in our permutation example above is

Pr[X = 0] =
1
3

; Pr[X = 1] =
1
2

; Pr[X = 3] =
1
6

;

and Pr[X = a] = 0 for all other values of a.

Notice that the sum of the probabilities Pr[X = a] over all possible values of a is exactly 1. This must always
be the case, for any random variable. Why? Because any random variable X must take on one, and only
one, value X(ω) at every sample point ω . I.e., the events X = a partition the sample space. So when we
sum up the probabilities of the events X = a, we are really summing up the probabilities of all the sample
points.

Expectation
In most applications, the complete distribution of a r.v. is very hard to calculate: for example, suppose we
go back to our original question with 20 students. In principle, we’d have to enumerate 20! ≈ 2.4× 1018

sample points, compute the value of X at each one, and count the number of points at which X takes on each
of its possible values! Moreover, even when we can compute the complete distribution of a r.v., it is often
not very informative.

For these reasons, we seek to compress the distribution into a more compact, convenient form that is also
easier to compute. The most widely used such form is the expectation (or mean or average) of the r.v.

Definition 20.3 (expectation): The expectation of a discrete random variable X is defined as

E(X) = ∑
a∈A

a×Pr[X = a],

where the sum is over all possible values taken by the r.v.

For our running permutation example, the expectation is

E(X) =

(

0×
1
3

)

+

(

1×
1
2

)

+

(

3×
1
6

)

= 0+
1
2

+
1
2

= 1.

I.e., the expected number of fixed points in a permutation of three items is exactly 1.

The expectation can be seen in some sense as a “typical” value of the r.v. (though note that it may not
actually be a value that the r.v. ever takes on). The question of how typical the expectation is for a given r.v.
is a very important one that we shall return to in a later lecture.

Here are some simple examples of expectations.
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1. Single die. Throw one fair die. Let X be the number that comes up. Then X takes on values 1,2, . . . ,6
each with probability 1

6 , so

E(X) =
1
6
(1+2+3+4+5+6) =

21
6

=
7
2
.

Note that X never actually takes on its expected value 7
2 .

2. Two dice. Throw two fair dice. Let X be the sum of their scores. Then the distribution of X is

a 2 3 4 5 6 7 8 9 10 11 12

Pr[X = a] 1
36

1
18

1
12

1
9

5
36

1
6

5
36

1
9

1
12

1
18

1
36

The expectation is therefore

E(X) =

(

2×
1
36

)

+

(

3×
1
18

)

+

(

4×
1
12

)

+ · · ·+

(

12×
1
36

)

= 7.

3. Roulette. A roulette wheel is spun. You bet $1 on Black. If a black number comes up, you receive
your stake plus $1; otherwise you lose your stake. Let X be your net winnings in one game. Then X
can take on the values +1 and −1, and Pr[X = 1] = 18

38 , Pr[X =−1] = 20
38 . [Recall that a roulette wheel

has 38 slots: the numbers 1,2, . . . ,36, half of which are red and half black, plus 0 and 00, which are
green.] Thus

E(X) =

(

1×
18
38

)

+

(

−1×
20
38

)

= −
1
19

;

i.e., you expect to lose about a nickel per game. Notice how the zeros tip the balance in favor of the
casino!

Linearity of expectation
So far, we’ve computed expectations by brute force: i.e., we have written down the whole distribution and
then added up the contributions for all possible values of the r.v. The real power of expectations is that in
many real-life examples they can be computed much more easily using a simple shortcut. The shortcut is
the following:

Theorem 20.1: For any two random variables X and Y on the same probability space, we have

E(X +Y ) = E(X)+E(Y ).

Also, for any constant c, we have
E(cX) = cE(X).

Proof: To make the proof easier, we will first rewrite the definition of expectation in a more convenient
form. Recall from Definition 20.3 that

E(X) = ∑
a∈A

a×Pr[X = a].

Let’s look at one term a×Pr[X = a] in the above sum. Notice that Pr[X = a], by definition, is the sum of
Pr[ω] over those sample points ω for which X(ω) = a. And we know that every sample point ω ∈ Ω is in
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exactly one of these events X = a. This means we can write out the above definition in a more long-winded
form as

E(X) = ∑
ω∈Ω

X(ω)×Pr[ω]. (1)

This equivalent definition of expectation will make the present proof much easier (though it is usually less
convenient for actual calculations).

Now let’s write out E(X +Y ) using equation (1).

E(X +Y ) = ∑ω∈Ω (X +Y )(ω)×Pr[ω]

= ∑ω∈Ω (X(ω)+Y (ω))×Pr[ω]

= ∑ω∈Ω

(

X(ω)×Pr[ω]
)

+∑ω∈Ω

(

Y (ω)×Pr[ω]
)

= E(X)+E(Y ).

In the last step, we used equation (1) twice.

This completes the proof of the first equality. The proof of the second equality is much simpler and is left
as an exercise. 2

Theorem 20.1 is very powerful: it says that the expectation of a sum of r.v.’s is the sum of their expectations,
with no assumptions about the r.v.’s. (Note that we didn’t require, for example, that X and Y are indepen-
dent.) We can use Theorem 20.1 to conclude things like E(3X − 5Y ) = 3E(X)− 5E(Y ). This property is
known as linearity of expectation. Important caveat: Theorem 20.1 does not say that E(XY ) = E(X)E(Y ),

or that E( 1
X ) = 1

E(X) etc. These claims are not true in general. It is only sums and differences and constant
multiples of random variables that behave so nicely.

Now let’s see some examples of Theorem 20.1 in action.

4. Two dice again. Here’s a much less painful way of computing E(X), where X is the sum of the scores
of the two dice. Note that X = X1 +X2, where Xi is the score on die i. We know from example 1 above
that E(X1) = E(X2) = 7

2 . So by Theorem 20.1 we have E(X) = E(X1)+E(X2) = 7.

5. More roulette. Suppose we play the above roulette game not once, but 1000 times. Let X be our
expected net winnings. Then X = X1 + X2 + . . . + X1000, where Xi is our net winnings in the ith
play. We know from earlier that E(Xi) = − 1

19 for each i. Therefore, by Theorem 20.1, E(X) =

E(X1) + E(X2) + · · ·+ E(X1000) = 1000× (− 1
19) = − 1000

19 ≈ −53. So if you play 1000 games, you
expect to lose about $53.

6. Homeworks. Let’s go back and answer our original question about the class of 20 students. Recall
that the r.v. X is the number of students who receive their own homework after shuffling (or equiva-
lently, the number of fixed points). To take advantage of Theorem 20.1, we need to write X as the sum
of simpler r.v.’s. But since X counts the number of times something happens, we can write it as a sum
using the following trick:

X = X1 +X2 + . . .+X20, where Xi =

{

1 if student i gets her own hw;

0 otherwise.
(2)

[You should think about this equation for a moment. Remember that all the X’s are random variables.
What does an equation involving random variables mean? What we mean is that, at every sample
point ω , we have X(ω) = X1(ω)+X2(ω)+ . . .+X20(ω). Why is this true?]
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A 0/1-valued random variable such as Xi is called an indicator random variable of the corresponding
event (in this case, the event that student i gets her own hw). For indicator r.v.’s, the expectation is
particularly easy to calculate. Namely,

E(Xi) = (0×Pr[Xi = 0])+(1×Pr[Xi = 1]) = Pr[Xi = 1].

But in our case, we have

Pr[Xi = 1] = Pr[student i gets her own hw] =
1
20

.

Now we can apply Theorem 20.1 to (2), to get

E(X) = E(X1)+E(X2)+ · · ·+E(X20) = 20×
1
20

= 1.

So we see that the expected number of students who get their own homeworks in a class of size 20
is 1. But this is exactly the same answer as we got for a class of size 3! And indeed, we can easily see
from the above calculation that we would get E(X) = 1 for any class size n: this is because we can
write X = X1 +X2 + . . .+Xn, and E(Xi) = 1

n for each i.

So the expected number of fixed points in a random permutation of n items is always 1, regardless of n.
Amazing, but true.

7. Coin tosses. Toss a fair coin 100 times. Let the r.v. X be the number of Heads. As in the previous
example, to take advantage of Theorem 20.1 we write

X = X1 +X2 + . . .+X100,

where Xi is the indicator r.v. of the event that the ith toss is Heads. Since the coin is fair, we have

E(Xi) = Pr[Xi = 1] = Pr[ith toss is Heads] = 1
2 .

Using Theorem 20.1, we therefore get

E(X) =
100

∑
i=1

= 100× 1
2 = 50.

More generally, the expected number of Heads in n tosses of a fair coin is n
2 . And in n tosses of a

biased coin with Heads probability p, it is np (why?).

8. Balls and bins. Throw m balls into n bins. Let the r.v. X be the number of balls that land in the
first bin. Then X behaves exactly like the number of Heads in n tosses of a biased coin, with Heads
probability 1

n (why?). So from example 7 we get E(X) = m
n .

In the special case m = n, the expected number of balls in any bin is 1. If we wanted to compute this
directly from the distribution of X , we’d get into a messy calculation involving binomial coefficients,
a bit like the load balancing example in the previous lecture.

Here’s another example on the same sample space. Let the r.v. Y be the number of empty bins. The
distribution of Y is horrible to contemplate: to get a feel for this, you might like to write it down
for m = n = 3 (3 balls, 3 bins). However, computing the expectation E(Y ) is a piece of cake using
Theorem 20.1. As usual, let’s write

Y = Y1 +Y2 + · · ·+Yn, (3)

CS 70, Spring 2005, Notes 20 5



where Yi is the indicator r.v. of the event “bin i is empty”. Again as usual, the expectation of Yi is easy:

E(Yi) = Pr[Yi = 1] = Pr[bin i is empty] =

(

1−
1
n

)m

;

recall that we computed this probability (quite easily) way back in lecture 17. Applying Theorem 20.1
to (3) we therefore have

E(Y ) =
n

∑
i=1

E(Yi) = n

(

1−
1
n

)m

,

a very simple formula, very easily derived.

Let’s see how it behaves in the special case m = n (same number of balls as bins). In this case we get
E(Y ) = n(1− 1

n)n. Now the quantity (1− 1
n)n can be approximated (for large enough values of n) by

the number 1
e .1 So we see that

E(Y ) →
n
e
≈ 0.368n as n → ∞.

The bottom line is that, if we throw (say) 1000 balls into 1000 bins, the expected number of empty
bins is about 368.

1More generally, it is a standard fact that for any constant c,

(1+ c
n )n → ec as n → ∞.

We just used this fact in the special case c = −1. The approximation is actually very good even for quite small values of n — try it
yourself! E.g., for n = 20 we already get (1− 1

n )n=0.358, which is very close to 1
e = 0.367 . . .. The approximation gets better and

better for larger n.
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