
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner Notes 9
Lecture Notes 8 described methods for logical reasoning based on satisfiability testing and introduced
Minesweeper. In this lecture, we show how to construct a complete Minesweeper program. We show
that some aspects of Minesweeper are computationally intractable if handled naı̈vely. Methods for problem
decomposition can help.

Minesweeper in CNF
Lecture Notes 8 gave a simple example of how to formulate a logical description of a Minesweeper display
as a set of clauses. If d is a display, CNF(d) denotes the corresponding CNF expression. We will now show
how to construct CNF(d) systematically for any display.

CNF(d) consists of propositions arising from each of the known squares, plus the global constraint on the
total number of mines left. We begin with the known squares. Consider a known square, such as (2,1) in the
following example repeated from Lecture Notes 8:

2
1 1 1 1

1 2 3

(2,1) has 1 mine adjacent to it. There are 5 adjacent squares; 2 of them have been probed and are known
to be safe; 0 of them are marked as a mine already. There are n=5−2−0=3 unknown adjacent squares,
of which k=1− 0=1 are mines. So we need to express in CNF the proposition that k of the n adjacent
unknown squares are mines. Call this proposition KN(k,n).

Let’s see what we have to work with. CNF requires a conjunction of disjunctions of literals. A disjunction
of literals means “at least one . . . ,” i.e., an inequality. The literals can be either “(i,j) contains a mine” or
“(i,j) doesn’t contain a mine.” Because KN(k,n) is entirely symmetric with respect to the unknown squares,
we might expect to generate clauses that are symmetric—for example, all positive literals or all negative
literals.

We begin by writing KN(k,n) as two inequalities:

KN(k,n) ≡ (U(k,n)∧L(k,n))

where

U(k,n) means that at most k of the n squares contain a mine.
L(k,n) means that at least k of the n squares contain a mine.

So how do we express “at most k” using clauses that say “at least one”? Consider any subset of k+1 squares
from the n unknown squares. If at most k are mines, then at least one is not a mine; the converse is also true.
So we have the following:
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U(k,n) ≡ for any k +1 squares out of n, at least one is not a mine.

Similarly, consider any subset of n− k +1 squares: if at least k of all n squares are mines, then at least one
of any n− k +1 squares must be a mine; the converse is also true. Hence

L(k,n) ≡ for any n− k +1 squares out of n, at least one is a mine.

Applying these formulations to the square (2,1) in the above example, where k=1 and n=3, we obtain:

U(1,3) ≡ for any 2 squares out of 3, at least one is not a mine.
L(1,3) ≡ for any 3 squares out of 3, at least one is a mine.

Translating into a Boolean expression, we obtain

U(1,3) ≡ (¬X1,2 ∨¬X2,2)∧ (¬X2,2 ∨¬X3,2)∧ (¬X3,2 ∨¬X1,2)
L(1,3) ≡ (X1,2 ∨X2,2 ∨X3,2)

exactly as we had in Lecture Notes 8.

Note that these expressions are valid when k > 0 and k +1 ≤ n. The case k = 0 simply means that KN(0,n)
is the conjunction of the clauses ¬Xi for all i. The case k +1 > n can only arise if k=n, i.e., all n variables
are mines; then we simply have the clauses Xi for all i.

We can also generate a CNF expression recursively as follows:

KN(k,n) ≡ ((Xn =⇒ KN(k−1,n−1))∧ (¬Xn =⇒ KN(k,n−1)))

with base cases at k=n and k = 0, as before. Assuming KN(k−1,n−1) and KN(k,n−1) can be expressed
in CNF, it is a simple distributivity step to express KN(k,n) in CNF. The expressions resulting from this
recursion look slightly different from those obtained above, but are logically equivalent.

In addition to the “local” constraints arising from squares, we also have the global constraint from the total
number of remaining mines, M:

G: Exactly M of the unknown squares on the board contain mines.

If there are B remaining unknown squares, this is a set of clauses of the form KN(M,B).

Preview: Counting things
We will now take a slight detour to check into how many clauses we are generating for Minesweeper.

Let |KN(n,k)| be the number of clauses in KN(n,k), using our first construction. How many is this? We
have the following equation:

|KN(n,k)| = |L(n,k)|+ |U(n,k)| = C(n,n− k +1)+C(n,k +1)

where the notation C(n,k) is defined as follows:

Definition 9.1 (Combinations): C(n,k) is the number of distinct subsets of size k drawn from a set of size
n.
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For example, C(4,2) = 6 because there are 6 subsets of size 2 in any set of size 4. C(n,k) is often pronounced
“n choose k.” We will also define a related quantity P(n,k):CHOOSE

Definition 9.2 (Permutations): P(n,k) is the number of distinct ordered k-tuples drawn without replace-
ment from a set of size n.

The basic distinction between P(n,k) and C(n,k) is that for P(n,k) order matters, whereas for C(n,k) it does
not. It is easiest to derive a formula for P(n,k) first:

Theorem 9.1: For any natural numbers n, k, such that k ≤ n,

P(n,k) =
n!

(n− k)!

Proof: The first element of the tuple can be drawn in n ways, the second in (n− 1) ways, and so on down
to the last element, which can be drawn in n− k + 1 ways. Hence, P(n,k) = n · (n− 1) · · ·(n− k + 1) =
n!/(n− k)!. 2

Any subset of k elements from n will occur repeatedly in the set of permutations, with k! different orderings.
Hence, we have the following formula for C(n,k):

Theorem 9.2: For any natural numbers n, k, such that k ≤ n,

C(n,k) =
n!

k!(n− k)!

We can see, by symmetry, that the following identity holds:

C(n,k) = C(n,n− k)

Hence, returning to our formula for the number of clauses we generate, we have

|KN(n,k)| = C(n,n− k +1)+C(n,k +1) = C(n,k−1)+C(n,k +1)

In the worst case, for an individual square, n=8 and k=4, giving us |KN(8,4)| = C(8,3)+C(8,5) = 112
clauses. This isn’t too big. But for the global constraint, on an 8×8 board with 10 mines (an easy case), we
have |KN(64,10)| = C(64,9)+C(64,11) = 771,136,366,336. So we’ll think of another way to handle the
global constraint!

Incidentally, it’s not too hard to prove a nasty lower bound on the largest number C(n,k), for any given n.

Theorem 9.3: For some k, C(n,k) ≥ 2n/(n+1).

Proof: Consider the sum over all k of C(n,k), which is the sum of the number of subsets of size k, for all k.
This is just the total number of subsets of a set of size n, which is 2n. That is,

n

∑
k=0

C(n,k) = 2n

Now the sum contains n+1 numbers, so at least one of them must be greater than or equal to 2n/(n+1). 2

The last step is an application of the generalized pigeonhole principle (see Rosen, p.245): if N objects are
GENERALIZED
PIGEONHOLE
PRINCIPLE

placed in k boxes, then there is at least one box with at least dN/ke objects.

End of detour! We’ll return to counting later when we do probability.
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A brain-dead algorithm for Minesweeper
2
1 3

1 2

2
1 1 m

1 2

Given a CNF representation CNF(d) of a Minesweeper display d, there are some “obvious” inferences one
can often make. For instance, in the example on the left, the CNF representation will be three unit clausesUNIT CLAUSES

with positive literals:

(X1,2)∧ (X2,2)∧ (X2,1)

Simply by and-elimination, we can see that the three squares contain mines (as one would hope). Similarly,
in the example on the right, the CNF representation will be

(¬X1,2)∧ (¬X2,2)

Again, we have unit clauses, this time with negative literals, and can conclude immediately that (1,2) and
(2,2) are safe. Thus, the conclusions that are “obvious” to a human player are also “obvious” in the CNF
representation. So we can define our first simple algorithm:

Definition 9.3 (Brain-Dead Minesweeper):

Given a display d, generate CNF(d).
If CNF(d) contains a positive unit clause (Xi, j), mark (i, j) as a mine
else if CNF(d) contains a negative unit clause (Xi, j), probe (i, j)
else probe a random unknown square.

You can measure how well this does—not especially well! There are many cases where this does not do
well; the two examples in Lecture Notes 8 (“three 1s” and “five 1s”) have no “obvious” move, but do have
logically sound moves. Just doing the obvious inferences does not yield complete strategy:

Definition 9.4 (Completeness (of an inference procedure)): A proof procedure is complete iff it canCOMPLETE

prove every proposition that is entailed by any given proposition.

Logical algorithms for minesweeper
To obtain a complete logical algorithm for Minesweeper, we use the notion of satisfiability testing from
Lecture Notes 8. Remember that if CNF(d)∧ (¬Xi, j) is unsatisfiable, then Xi, j is entailed by CNF(d).

Definition 9.5 (Logical Minesweeper, Mark I):

Given a display d, generate CNF(d).
If CNF(d) contains a positive unit clause (Xi, j), mark (i, j) as a mine
else if CNF(d) contains a negative unit clause (Xi, j), probe (i, j)
else if CNF(d)∧ (¬Xi, j) is unsatisfiable for any Xi, j in CNF(d), mark (i, j) as a mine
else if CNF(d)∧ (Xi, j) is unsatisfiable for any for any Xi, j in CNF(d), probe (i, j)
else probe a random unknown square.
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Notice that the algorithm doesn’t specify which mine to mark first if several mines can be identified, nor
which square to probe first if there are several safe squares. It is an interesting exercise to prove the follow-
ing:

Theorem 9.4: Between any two random moves, the Mark I algorithm marks exactly the same set of mines
and uncovers the same set of safe squares, regardless of the order of selection.

So, the Mark I basically makes every logically guaranteed move. In theory, this is fine; in practice, it won’t
work well at all. We have already seen that the global constraint can have exponentially many clauses.
Moreover, the global constraint is defined on all the variables on the board, so for an X ×Y board we’ll have
to enumerate 2XY models. Hopeless!

We will have to adopt a more subtle strategy. Let’s divide CNF(d) into the local constraints C(d) and the
global constraint G(d). First, we could simply pretend the global constraint doesn’t exist:

Definition 9.6 (Logical Minesweeper, Mark II): Identical to the Mark I except that CNF(d) is replaced
by C(d), the CNF form of the local constraints.

Theorem 9.5: Every square that is “guaranteed safe” or “guaranteed mine” with respect to C(d) is also
“guaranteed safe” or “guaranteed mine” with respect to C(d)∧G(d).

That is, the Mark II’s guaranteed moves are correct even though it ignores the global constraint! Is this some
weird special property of minesweeper and the nature of the global constraint? Actually, it’s just a special
case of a much simpler and more powerful theorem regarding the monotonicity of logic:MONOTONICITY

Theorem 9.6: For any propositions A, B, and C, if A |= C then A∧B |= C.

The proof of this is left as an exercise. It’s called monotonicity because as the set of known facts grows, the
set of entailed conclusions grows monotonically; adding more known facts can never invalidate a previously
derived conclusion.

The Mark II is much more efficient than the Mark I, because the variables of C(d) are just those unknown
variables that are adjacent to known squares. We’ll call these the fringe. The runtime of the Mark II isFRINGE

O(2F), where F is the size of the fringe. The remaining background squares will be called the background;BACKGROUND

there are B background squares.

Mark II plays a pretty good game of minesweeper, but it sometimes has to guess in cases where the global
constraint actually entails some guaranteed moves. There are two cases. First, the global constraint may rule
out some models of the local constraints, so that guaranteed moves on the fringe can be made based on the
remaining models. Second, the local constraints may determine some fixed number of mines on the fringe,
such that the background must be all mines (or all empty); this allows guaranteed moves in the background
squares. (You are asked to supply examples of these cases.) How can we incorporate the global constraint
in our algorithm? Essentially by adding additional checks into the satisfiability test, where those checks are
implemented “extralogically” (i.e., outside formal logic) by counting mines in models. Details of the Mark
III are left to the homework.

Problem structure
Consider the problem shown in Figure 1(a). Any human looking at it would recognize instantly that there
are really two separate problems here, if we ignore the global constraint. (It is also clear that there are no
logical moves in either of them.)

The Mark II algorithm, however, generates a CNF representation that includes all the fringe variables—12
in all, giving 212 =4096 models. We would like to be able to solve the subproblems separately. Each has
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(a) (b) (c)

Figure 1: Problem decomposition. (a) Two completely disjoint subproblems. (b) Partial decompo-
sition: if we knew X2,2, we would have two disjoint subproblems. (c) Here, one possible cutset is
{X2,1,X3,1,X4,1,X2,5,X3,5,X4,5}.

six variables, so we’d have a total cost of at most 26 + 26 = 128 models. This huge reduction is available
precisely because the exponential function grows so fast as the exponent increases. In fact, if we can divide
a problem of size n into n/k constant-size pieces of size k, the total cost grows as O(2k ·n/k), which is linear
in n!

Now we need to define the idea of problem decomposition more precisely. Decomposability is not some-PROBLEM
DECOMPOSITION

thing specific to minesweeper; it depends on some special structure in the CNF representation that some
minesweeper problems generate. If we can recognize that special structure, we can do problem decomposi-
tion for any problem that can be represented in CNF.

Intuitively, the idea is that the variables divide into two sets

{X1,4,X1,3,X2,3,X3,3,X4,3,X4,4} and {X1,1,X1,2,X2,2,X3,2,X4,2,X4,1}

such that no variable in one set has any “connection” to any variable in the other set. In CNF, two subsets of
clauses are “disconnected” if they have no variables in common.

Definition 9.7 (Disconnected expressions): Two Boolean expressions A and B are disconnected if theyDISCONNECTED

have no variables in common.

Figure 2(a) shows a graph (a network of nodes and links) illustrating the connectedness of the variables
for the minesweeper problem in Figure 2(a). Two nodes are directly connected in the graph if they appear
together in a clause. Disconnection of two sets of nodes is easy to see in this representation.

Now we need to understand the consequences of disconnection for the task of logical reasoning. Because
satisfiability is our canonical tool for reasoning, let’s see what happens:

Lemma 9.1: If two Boolean expressions A and B are disconnected, then A∧B is satisfiable iff A is satisfiable
and B is satisfiable.

Proof: Let XA be the variables of A and XB be the variables of B.
(⇒): Show that if A∧B is satisfiable then A is satisfiable and B is satisfiable. Let MAB be any model for
A∧B. Then A is true in MAB and B is true in MAB. Let MA be the subset of MAB specifying variables in A,
and define MB similarly. Since A and B share no variables, A must be true in MA and B in MB; hence A and
B are satisfiable.
(⇐): Show that if A is satisfiable and B is satisfiable then A∧B is satisfiable. Let MA be any model for A
and MB be any model for B. Define MAB =MA∪MB. If A is true in MA then it is true in MAB; similarly for B.
Hence A∧B is true in MAB, so A∧B is satisfiable. 2

From the lemma, the theorem we need follows directly:

Theorem 9.7: Let C be a CNF expression; and let C1 and C2 be CNF expressions such that (1) C1 and C2
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Figure 2: (a) Graph showing connectedness of the variables in Figure 1(a). (b) Graph for Figure 1(b).

share no variables, and (2) the union of the clauses in C1 and C2 gives exactly the clauses in C. Then for
any proposition A, C |= A if and only if C1 |= A or C2 |= A.

The “if and only if” is important here. The ⇐ direction is obvious—simply an application of monotonicity.
It holds even if the subsets do share variables! Thus, any square that is guaranteed with respect to any subset
of the constraints is also guaranteed with respect to all the constraints; so one way to achieve efficiency at
the expense of completeness is just to divide the variables into small subsets and prove whatever guarantees
one can from each subset.1 The ⇒ direction says that if the subsets are disconnected, we can be sure that
doing the proofs using the subsets does not lose any guarantees.

Our next example, in Figure 1(b), shows a case where the variables cannot be divided into two disconnected
sets. The graph is shown in Figure 2(b). So the simple decomposition approach will not help, and we appear
to be faced with a 10-variable fringe or 1024 models.

But consider the following strategy: if we knew the truth value of X2,2, then that variable would disappear
from all clauses containing it (replaced by T of F). In that case, the remaining variables would be divided
into two disconnected sets. This is easy to see in Figure 2(b): removal of the node for X2,2 disconnects the
two halves. The plan, then, is to solve the two halves with X2,2 =T and with X2,2 =F . The total cost is at
most 2(22 +27) = 264, substantially less than 1024.

A set of nodes whose removal divides a graph into two or more disconnected components is called a cutset.CUTSET

For the problem just examined, the cutset is {X2,2}. Sometimes it is not trivial to find a good cutset; for
example, in Figure 1(c), the smallest cutset has six variables—e.g., {X2,1,X3,1,X4,1,X2,5,X3,5,X4,5}. This is
best ascertained by looking at the graph for the problem. Without the cutset, the problem has 216 =65,536
models to check. There are 64 possible assignments for the cutset variables, and the remaining subproblems
have 5 variables each, so the total time is at most 64(25 + 25)=4096, i.e., 16 times faster than the original
formulation.

This section has given some ideas about the importance of problem structure and some methods of taking

1We’ll explore this idea more in the homework.
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advantage of it. Clearly, graphs and graph algorithms have a lot to do with it, and these are studied in much
greater depth in later courses.
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