
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner Notes 8

Why CNF?
Lecture Notes 6 introduced DNF and CNF, and stated that CNF is more natural for applications involving
reasoning. Why is this? There are two obvious reasons. First, reasoning uses collections of sentences (often
called databases or knowledge bases) that are naturally expressed as a conjunction of the sentences—theDATABASES

KNOWLEDGE BASES
knowledge base asserts that all the sentences it contains are true. Translating this conjunction into DNF
might involve unnecessary work and expansion of the size of the representation.

Second, many sentences used in reasoning are implications with several antecedents and a single conclusion.
These have the form P1 ∧ . . .∧Pk =⇒ Q. (Logic programs consist entirely of such sentences.) We have

(P1 ∧ . . .∧Pk =⇒ Q) ≡ (¬(P1 ∧ . . .∧Pk)∨Q)

≡ ((¬P1 ∨ . . .∨¬Pk)∨Q) (de Morgan’s)

≡ (¬P1 ∨ . . .∨¬Pk ∨Q) (associativity)

Hence, any implication sentence converts easily into a clause with the same number of literals.

Many problems of interest in CS can be converted into CNF representations; solved using theorem-proving
algorithms for CNF; and then the solution is translated back into the original language of the problem. Why
would we do this?

• Because we can work on finding efficient algorithms for CNF instead of finding efficient algorithms
for hundreds of different problems.

• Because we can take advantage of all the work other people have done in finding efficient algorithms
for CNF.

• Because often we find, once we reach CNF, that we have one or other special case of CNF for which
very efficient (e.g., linear-time) algorithms are known.

There are other “canonical problem” targets besides CNF, including matrix inversion and determinants, lin-
ear programming, and finding roots of polynomials. As one becomes a good computer scientists, oneLINEAR

PROGRAMMING

develops a mental “web” of interrelated standard computational problems and learns to map any new prob-
lem onto this web. Minesweeper is a good example.

Minesweeper
The rules of Minesweeper are as follows:

CS 70, Spring 2005, Notes 8 1



MINES LEFT: 6 MINES LEFT: 0 MINES LEFT: 1 MINES LEFT: 2
4
3
2
1

1 2 3 4

4 m 2 2 m
3 3 4 m 2
2 m m 2 1
1 m 3 1 0

1 2 3 4

2
1 1 1 1

1 2 3

2
1 1 1 1 1 1

1 2 3 4 5

(a) (b) (c) (d)

Figure 1: Minesweeper examples. (a) Initial display for a 4×4 game. (b) Final display after successful
discovery of all mines. (c) Simple case: only one solution. (d) Two possible solutions, but both have (3,1)
blank.

• The game is played by a single player on an X ×Y board. (We will use Cartesian coordinates, so that
(1,1) is at bottom left and (X,1) is at bottom right.) The display is initially empty. The player is told
the total number of mines remaining undiscovered; these are distributed uniformly at random on the
board. (See Figure 1(a).)

• At each turn the player has three options:

1. Mark a square as a mine; the display is updated and the total mine count is decremented by 1
(regardless of whether the mine actually exists).

2. Unmark a square; the mine mark is removed from a square, returning it to blank.

3. Probe a square; if the square contains a mine, the player loses. Otherwise, the display is up-
dated to indicate the number of mines in adjacent squares (adjacent horizontally, vertically, or
diagonally). If this number is 0, the adjacent squares are probed automatically, recursing until
non-zero counts are reached.

• The game is won when all mines have been correctly discovered and all non-mine squares have been
probed. (See Figure 1(b).)

Let us define a safe square as one that, given the available information, cannot contain a mine. Obviously,SAFE

one would like to probe only safe squares, and to mark as mines only those squares that are certain to be
there. Hence, the notion of logical proof is central to Minesweeper.

Many steps in Minesweeper simply involve “completing” around a square—the square is known to have
k mines around it, and those k are already discovered, so all remaining adjacent squares are safe. (Some
implementations offer to do this with a single click.) The dual case is where a square is known to have
k adjacent mines and has k blank adjacent squares, so they must all be mines. The vast majority of turns
involve one of these two kinds of steps.

Some simple examples of nontrivial reasoning in Minesweeper: First, consider Figure 1(c). Starting with
the 1 in (1,1); this implies there’s a mine in (1,2) or (2,2). This mine “satisfies” the 1 in (2,1); hence (3,2) is
safe (has no mine). Similarly, starting with the 1 in (3,1), we can show that (1,2) is safe. Hence, (2,2) has
the mine.

In Figure 1(d), we can repeat the reasoning above from either end to establish that (3,2) is safe. But there
are two possible worlds consistent with all the information (i.e., the knowledge base has two models): mines
in (1,2) and (4,2), or mines in (2,2) and (5,2). We cannot tell without more information; probing (3,2) will
not help us.

CS 70, Spring 2005, Notes 8 2



Playing Minesweeper as a human, one gradually learns to recognize a set of patterns with associated logical
proofs of varying difficulty. Each one seems rather ad hoc, and they’re certainly not systematic or complete,
in the sense that we certainly miss some instances where a logical move can be made.

Minesweeper in CNF
Now we’re ready to start formulating Minesweeper as a logical reasoning problem. In this lecture we’ll just
do a simple example and concentrate on the logical reasoning processes. In the next lecture we’ll do the full
formulation.

Let’s start with the example in Figure 1(c). First, we decide on the variables. We’ll let Xx,y be true iff (x,y)
contains a mine. For example, X1,2 is true if (1,2) (top left) contains a mine. For this problem instance, the
variables of interest are the three unknown squares X1,2, X2,2, and X3,2. We have the following known facts:

• (1,1) has one adjacent mine, so exactly one of X1,2 and X2,2 is true. Let’s call this proposition N1,1; it
is equivalent to two disjunctions. The first says that at least one is true, the second says that at least
one is false.

(X1,2 ∨X2,2)∧ (¬X1,2 ∨¬X2,2)

• (2,1) has one adjacent mine, so exactly one of X1,2, X2,2 is true. This is the proposition N2,1:

(X1,2 ∨X2,2 ∨X3,2)∧ (¬X1,2 ∨¬X2,2)∧ (¬X2,2 ∨¬X3,2)∧ (¬X3,2 ∨¬X1,2)

• (3,1) has one adjacent mine, so exactly one of X2,2 and X3,2 is true. This is the proposition N3,1:

(X2,2 ∨X3,2)∧ (¬X2,2 ∨¬X3,2)

• There is exactly one mine left. This is the “global constraint” G:

(X1,2 ∨X2,2 ∨X3,2)∧ (¬X1,2 ∨¬X2,2)∧ (¬X2,2 ∨¬X3,2)∧ (¬X3,2 ∨¬X1,2)

Notice that in this case G is exactly the same as N2,1.

Tthe conjunction of propositions N1,1∧N2,1∧N3,1∧G is a CNF representation of everything we know given
the displayed board. Let d be the display, and CNF(d) be the CNF representation of it. Then we are
interested in deciding which squares are safe and which are mines. For example, the question of whether
(1,2) is safe corresponds to deciding whether

CNF(d) |= ¬X1,2

A proof that CNF(d) entails ¬X1,2 offers a complete guarantee that (1,2) is safe, because it means that there
is no mine in (1,2) in any possible world (configuration of mines) consistent with what the display tells us.

CS 70, Spring 2005, Notes 8 3



Entailment and proof
This section offers a simple, complete proof method, which comes directly from the definition of entailment.
We offered a definition in Lecture Notes 1 in terms of “possible worlds.” We can be slightly more concise
here. We say that a complete assignment M is a model of a proposition P if P is true in M. Then we have
the following definition:

Definition 8.1 (Entailment): P |= Q iff Q is true in every model of P.

Let us illustrate this idea for Minesweeper. P is the proposition corresponding to all the known information—
CNF(d). Q is the proposition that (1,2) is safe, i.e., ¬X1,2. The variables are X1,2, X2,2, and X3,2, so there are
8 models. We can check each one (i.e., each configuration of mines), see if it is a model of CNF(d) (i.e.,
consistent with the display), and, if so, check that it is also a model of ¬X1,2 (i.e., has no mine in (1,2)).

Similarly, if (2,2) contains a mine in every model of CNF(d), then we have proved that (2,2) contains a
mine. In Figure 1(d), some models of CNF(d) have a mine in (2,3), some do not, hence we cannot prove
anything.

For propositional logic in general, finite expressions can contain only a finite number of variables, so the
number of possible models is finite. Therefore, we can always use this proof-by-truth-table, which is also
called model-checking:MODEL-CHECKING

To determine whether P |= Q, where P, Q are Boolean expressions on X1, . . . ,Xn:
For each possible model M ={X1 = t1, . . . ,Xn = tn}

If P is true in M
then if Q is false in M return “no”

Return “yes”

We will make this algorithm more concrete in the next section. For now, notice that its worst-case runtime
is O(2n), because there are 2n models to check. Notice also that we represent a model as a set of individual
variable assignments.

Validity and satisfiability
Definition 8.2 (Validity): A valid proposition (also known as a tautology) is a proposition that is true inVALID

every possible model.

Since T is true in every possible model, a valid sentence is logically equivalent to T . What good are valid
sentences? From our definition of entailment, we can derive the following fact:

Theorem 8.1: P |= Q if and only if the proposition (P =⇒ Q) is valid.

This is often called the deduction theorem. The proof follows directly from the definition of implication.
We can think of a model-checking proof as a test of validity, requiring a check over all models.

For some problems, we are happy to find any model where the known information is true. For exam-
ple, suppose we are given a Minesweeper board with some mines marked and some known and unknown
squares and asked to determine if the information given is consistent with some possible configuration (if
not, then someone has made a mistake!). Then we are asking if the proposition describing the given board
is satisfiable:

Definition 8.3 (Satisfiability): A satisfiable proposition is a proposition that is true in some model.SATISFIABLE

CS 70, Spring 2005, Notes 8 4



We say that if proposition P is true in model M, then M satisfies P. Satisfiability can be checked by theSATISFIES

obvious variant of the above algorithm for proof:

To determine whether P is satisfiable, where P is a Boolean expression on X1, . . . ,Xn:
For each possible model M ={X1 = t1, . . . ,Xn = tn}

If P is true in M then return “yes”
Return “no”

Many problems in computer science are really satisfiability problems. As one example, we might give a
timetabling problem in one of your homeworks, and this is an instance of a huge class called constraint
satisfaction problems, wherein one must find a set of values for some variables such that a collection ofCONSTRAINT

SATISFACTION

constraints are all satisfied.

Validity and satisfiability are of course connected: P is valid iff ¬P is unsatisfiable; contrapositively, P is
satisfiable iff ¬P is not valid. We also have the following useful result:

Theorem 8.2: P |= Q if and only if the proposition (P∧¬Q) is unsatisfiable.

As an exercise, try to prove this. It corresponds exactly to a proof by reductio ad absurdum—unsatisfiability
means a contradiction must be contained in (P∧¬Q). What it means in practice is that we can test entailment
as well as satisfiability using a satisfiability algorithm. So, from now on, we’ll talk about how to implement
satisfiability-testing rather than entailment.

Recursive satisfiability testing
Lecture Notes 7 gave a simple definition (eval) for evaluating a Boolean expression in a model. If all our
expressions are in CNF, we can use an even simpler method: a CNF expression is true iff every clause is
true; a clause is true iff some literal is true.

Now, how do we generate the models? We prefer not to build the entire truth table first and then run through
it! (This would require exponential space as well as exponential time; and space is more expensive than
time.) Instead, we can enumerate the models recursively as follows. Let M1...i be a partial model specifying
values for variables X1, . . . ,Xi, and let a completion of M1...i be any model for X1, . . . ,Xn agreeing with M1...i

on X1, . . . ,Xi. Now define satis f ies(P,M1...i) to be true iff P is true in some model that is a completion of
M1...i. Obviously, P is satisfiable iff satis f ies(P,{}) is true.

satis f ies(P,M1...n) is true iff P is true in M1...n.
If i < n, satis f ies(P,M1...i) is true iff

satis f ies(P,M1...i∪{Xi+1 =T}) is true
or

satis f ies(P,M1...i∪{Xi+1 =F}) is true

Whereas the truth table takes exponential space, this algorithm takes only linear space—the depth of the
recursion is at most n. The runtime of the algorithm is still O(2n) in the worst case, which is when P is
unsatisfiable. If P is easily satisfiable, the runtime may be much less.

For the purposes of minesweeper, one expects that most of the squares are neither guaranteed mines nor
guaranteed safe (especially when the “obvious” cases have already been taken care of), so most proof at-
tempts will terminate without necessarily enumerating all the models.

CS 70, Spring 2005, Notes 8 5


