
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner Notes 7
This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic
as a way of understanding proper reasoning and proofs, we now study it from a computational perspective.
Eventually we will find ways to manipulate logical expressions algorithmically so as to solve hard problems
automatically. In so doing, we will come across some fundamental notions of complexity. We will also have
a pretty good Minesweeper program.

Boolean expressions and Boolean functions
Just as arithmetic deals with all the mathematics that arises from operations on numbers, the study of
Boolean functions deals with all the mathematics that arises from operations on the Boolean values trueBOOLEAN VALUES

and false, which we will denote by T and F . (1 and 0 are also commonly used.) Despite there being just
two values, lots of interesting mathematics arises.

We begin with a formal constructive definition of the set of Boolean expressions or (Boolean formulæ orBOOLEAN
EXPRESSIONS

propositional logic expressions or propositional sentences). Notice that this is very similar to the definition
of binary trees, etc. It’s more complex because the set is more complex.

Let X be the set of proposition symbols {X1, . . .Xn} (also called Boolean variables), and B be the set ofPROPOSITION
SYMBOLS

Boolean expressions on X. (Notice that we underline the expressions themselves to avoid confusion with
the logical notation surrounding them. We won’t do this from now on, but you might want to do it mentally
if you find yourself getting confused.)

Definition 7.1 (Boolean expressions):

T ∈ B and F ∈ B
∀X ∈X [X ∈ B]
∀B∈B [¬B ∈ B]
∀B1,B2∈B [B1 ∧B2 ∈ B]
∀B1,B2∈B [B1 ∨B2 ∈ B]
∀B1,B2∈B [B1 =⇒ B2 ∈ B]
∀B1,B2∈B [B1 ⇔ B2 ∈ B]

To prove something about all Boolean expressions, we will need the following induction principle:

Axiom 7.1 (Induction over Boolean expressions):

For any property P, if P(T) and P(F) and ∀X ∈X P(X) and
∀B∈B [P(B) =⇒ P(¬B)] and
∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ∧B2)] and
∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ∨B2)] and
∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 =⇒ B2)] and
∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ⇔ B2)]
then ∀B∈B P(B).

CS 70, Spring 2005, Notes 7 1

P Q ¬P P∧Q P∨Q P =⇒ Q P ⇔ Q
False False True False False True True
False True True False True True False
True False False False True False False
True True False True True True True

Table 1: Truth tables for all the Boolean operators

Some useful terminology: an expression of the form B1 ∧B2 is called a conjunction; B1 and B2 are itsCONJUNCTION

conjuncts. An expression of the form B1 ∨B2 is called a disjunction; B1 and B2 are its disjuncts.DISJUNCTION

So much for the “syntax” of Boolean expressions. What do they mean? We can think of a Boolean expres-
sion as a representation of a Boolean function, in much the same way as arithmetic expressions such asBOOLEAN FUNCTION

x+ y represent the addition function.1

A Boolean expression on {X1, . . .Xn} has a truth value for any complete assignment of T/F to {X1, . . .Xn}.TRUTH VALUE
ASSIGNMENT

(Complete assignments are also called models, as we will see later; an assignment for which an expressionMODELS

has value T is called a model of that expression.) Any Boolean expression B therefore represents a function
that maps n-tuples of Boolean values into a Boolean value:

B(X1, . . . ,Xn) : {T,F}n 7→ {T,F}

(Here the notation {T,F}n means the set {T,F} Cartesian-producted with itself n−1 times.) For example,
a Boolean expression X1 ∧X2 on the set of symbols {X1,X2} maps pairs of Boolean values into a Boolean
value that is the “and” of the two inputs.

The rules for evaluation of an expression with respect to an assignment are given by the truth tables for
all the Boolean operators (see Table 1). That is, every symbol can be replaced by its value according to
the assignment, then the expression can be evaluated “bottom-up” just like any arithmetic expression. For
example, with the assignment {A=T,B=F}, the expression (A∧ (A =⇒ B)) =⇒ B becomes

[(T ∧ (T =⇒ F)) =⇒ F] = [(T ∧F) =⇒ F] = [F =⇒ F] = T

We can also provide a top-down recursive definition of the truth value of an expression. Let M be an
assignment, and let XM denote the value of X according to M. Then

∀X ∈X [eval(X ,M) = XM]
∀B∈B [eval(¬B,M) = ¬(eval(B,M))]
∀B1,B2∈B [eval(B1 ∧B2,M) = eval(B1,M)∧eval(B2,M)]
etc.

Notice that in the above evaluation rules we use the Boolean operators ¬, ∧, and so on as functions operating
on Boolean values rather than as logical operators in the defining propositions.

Given a precise definition of what expressions mean, we can define the following useful notion:

Definition 7.2 (Logical equivalence):

Two Boolean expressions on the same set of variables are logically equivalent iff they return theLOGICALLY
EQUIVALENT

1Note that there are several different arithmetic expressions that represent the same arithmetic function! For example, (x + y+
x− x)/1 is the same function of x,y as x+ y is. Note also that we use the word “function” here in the mathematical sense. You can
read more about functions in Rosen, Ch.1.6. For now, it’s just something that maps each possible input value to a specific output
value.

CS 70, Spring 2005, Notes 7 2

same truth value for every possible assignment of values to the variables; that is, they represent
the same Boolean function.

We’ll use the symbol ≡ as a shorthand for “is logically equivalent to.” Some obvious equivalences, all of
which can be checked using truth tables:

(A∧B) ≡ (B∧A) (commutative)
(A∨B) ≡ (B∨A) (commutative)
((A∧B)∧C) ≡ (A∧ (B∧C)) (associative)
((A∨B)∨C) ≡ (A∨ (B∨C)) (associative)
(A =⇒ B) ≡ (¬A∨B)
(A ⇔ B) ≡ ((A =⇒ B)∧ (B =⇒ A))
¬(A∧B) ≡ (¬A∨¬B) (de Morgan)
¬(A∨B) ≡ (¬A∧¬B) (de Morgan)
(A∧B) ≡ ¬(¬A∨¬B)
(A∨B) ≡ ¬(¬A∧¬B)
(A∨ (B∧C)) ≡ ((A∨B)∧ (A∨C)) (distributivity)
(A∧ (B∨C)) ≡ ((A∧B)∨ (A∧C)) (distributivity)

Because ∧ and ∨ are associative, we can write expressions such as A∧B∧C and A∨B∨C—that is, omitting
the parentheses that would normally be required—without fear of ambiguity. Given commutativity also,
these expressions can be thought of as conjunction or disjunction applied to sets of expressions.

From the above set of equivalences, we can see (at least informally) that every Boolean expression can be
written using just the operators ∧ and ¬. We can replace ⇔ by =⇒ and ∧. Then replace =⇒ by ∨ and ¬.
Then replace ∨ by ∧ and ¬. (A similar argument shows that ∨ and ¬ also suffice.) This informal argument
can be made rigorous by applying the induction principle for Boolean expressions. Later in this lecture we
will show how to use the induction principle to prove a stronger result: that every Boolean expression can
be rewritten using just a single logical operator.

A minimalist representation
Besides finding a compact representation for a Boolean function, circuit designers often prefer expressions
that use only a single type of Boolean operator—preferably one that corresponds to a simple transistor circuit
on a chip. The “nand” Boolean operator, written as A|B and equivalent to ¬(A∧B), is easily implemented
on a chip. We also have the following interesting fact:

Theorem 7.1: For every Boolean expression, there is a logically equivalent expression using only the |
operator.

We will do a full inductive proof (or some of one anyway) to show you what an induction over Boolean
expressions looks like.

Proof: The proof is by induction over Boolean expressions on the variables X. Let P(B) be the proposition
that B can be expressed using only the | operator.

• Base case: prove P(T), P(F), and ∀X ∈X P(X).
These are true since the expressions require no operators.

• Inductive step (¬): prove ∀B∈B [P(B) =⇒ P(¬B)].

CS 70, Spring 2005, Notes 7 3

1. The inductive hypothesis states that B can be expressed using only |. Let NF(B) (NAND-form
of B) be such an expression.

2. To prove: ¬B can be expressed using only |.

3. From the definition of |, we have

¬B ≡ (B|B)

≡ (NF(B)|NF(B)) by the induction hypothesis

4. Hence, there is an expression equivalent to ¬B that contains only |.

• Inductive step (∧): prove ∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ∧B2)].

1. The inductive hypothesis states that B1 and B2 can be expressed using only |. Let NF(B1) and
NF(B2) be such expressions.

2. To prove: B1 ∧B2 can be expressed using only |.

3. Now ∧ is the negation of |, so we have

(B1 ∧B2) ≡ ¬(B1|B2) ≡ ((B1|B2)|(B1|B2))

≡ ((NF(B1)|NF(B2))|(NF(B1)|NF(B2))) by the induction hypothesis

4. Hence, there is an expression equivalent to (B1 ∧B2) that contains only |.

• The remaining steps (for ∨, =⇒ , ⇔) are left as an exercise.

Hence, by the induction principle for Boolean expressions, for every Boolean expression, there is a logically
equivalent expression using only the | operator. 2

Notice the crucial use of the induction hypothesis in this proof! For example, in the proof for ¬B, the
expression that contains only | is the expression NF(B)|NF(B). The expression B|B could contain anything
at all, since B is just an arbitrary Boolean expression.

Notice that, as is often the case with inductive proofs, the proof gives a recursive conversion algorithm
directly. Conversion to NAND-form can, however, give a very large expansion of the expression.

The steps omitted in the proof above can be done by further equivalences involving |. A similar proof, using
just the standard equivalences given earlier, establishes that every Boolean expression can be written using
∧ and ¬ (or using ∨ and ¬). Essentially, we use the equivalence that replaces ⇔ by =⇒ and ∧; and the
equivalence that replaces =⇒ by ∨ and ¬; and the equivalence that replaces ∨ by ∧ and ¬.

Normal forms
A normal form for an expression is usually a subset of the standard syntax of expressions, such that eitherNORMAL FORM

every expression can be rewritten in the normal form, or that expressions in the normal form have certain
interesting properties. By restricting the form, we can often find simple and/or efficient algorithms for
manipulating the expressions.

The first normal form we will study is called disjunctive normal form or DNF. In DNF, every expressionDISJUNCTIVE NORMAL
FORM

is a disjunction of conjunctions of literals. A literal is a Boolean variable or its negation. For example, theLITERAL

following expression is in DNF:

(A∧¬B)∨ (B∧¬C)∨ (A∧¬C∧¬D)

CS 70, Spring 2005, Notes 7 4

Notice that DNF is generous with operators but very strict about nesting: a single level of disjunction and a
single level of conjunction within each disjunct. DNF is a complete normal form, that is, we can establishCOMPLETE

the following:

Theorem 7.2: For every Boolean expression, there is a logically equivalent DNF expression.

Proof: Given a Boolean expression B, consider its truth-table description. In particular, consider those rows
of the truth table where the value of the expression is T . Each such row is specified by a conjunction of
literals, one literal for each variable. The disjunction of these conjunctions is logically equivalent to B. 2

DNF is very commonly used in circuit design. Note that the DNF expression obtained directly from the truth
table has as many disjuncts as there are T s in the truth table’s value column. Logic minimization deals withLOGIC MINIMIZATION

methods to reduce the size of such expressions by eliminating and combining disjuncts.

In the area of logical reasoning systems, conjunctive normal form (CNF) is much more commonly used.CONJUNCTIVE
NORMAL FORM

In CNF, every expression is a conjunction of disjunctions of literals. A disjunction of literals is called a
clause. For example, the following expression is in CNF:CLAUSE

(¬A∨B)∧ (¬B∨¬C)∧ (A∨C∨D)

We can easily show the following result:

Theorem 7.3: For every Boolean expression, there is a logically equivalent CNF expression.

Proof: Any Boolean expression B is logically equivalent to the conjunction of the negation of each row of its
truth table with value F . The negation of each row is the negation of a conjunction of literals, which (by de
Morgan’s law) is equivalent to a disjunction of the negations of literals, which is equivalent to a disjunction
of literals. 2

Another way to find a CNF expression logically equivalent to any given expression is through a recursive
transformation process. This does not require constructing the truth table for the expression, and can result
in much smaller CNF expressions.

The steps are as follows:

1. Eliminate ⇔ , replacing A ⇔ B with (A =⇒ B)∧ (B =⇒ A).

2. Eliminate =⇒ , replacing it A =⇒ B with ¬A∨B.

3. Now we have an expression containing only ∧, ∨, and ¬. The conversion of ¬CNF(A) into CNF,
where CNF(A) is the CNF equivalent of expression A, is extremely painful. Therefore, we prefer to
“move ¬ inwards” using the following operations:

¬(¬A) ≡ A
¬(A∧B) ≡ (¬A∨¬B) (de Morgan)
¬(A∨B) ≡ (¬A∧¬B) (de Morgan)

Repeated application of these operations results in an expression containing nested ∧ and ∨ operators
applied to literals. (This is an easy proof by induction, very similar to the NAND proof.)

4. Now we apply the distributivity law, distributing ∧ over ∨ wherever possible, resulting in a CNF
expression.

We will now prove formally that the last step does indeed result in a CNF expression, as stated.

CS 70, Spring 2005, Notes 7 5

Theorem 7.4: Let B be any Boolean expression constructed from the operators ∧, ∨, and ¬, where ¬ is
applied only to variables. Then there is a CNF expression logically equivalent to B.

Obviously, we could prove this simply by appealing to Theorem 6.4; but this would leave us with an algo-
rithm involving a truth-table construction, which we wish to avoid. Let’s see how to do it recursively.

Proof: The proof is by induction over Boolean expressions on the variables X. Let P(B) be the proposition
that B can be expressed in CNF; we assume B contains only ∧, ∨, and ¬, where ¬ is applied only to variables.

• Base case: prove P(T), P(F), and ∀X ∈X P(X) and ∀X ∈X P(¬X).
These are true since a conjunction of one disjunction of one literal is equivalent to the literal.

• Inductive step (∧): prove ∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ∧B2)].

1. The inductive hypothesis states that B1 and B2 can be expressed in CNF. Let CNF(B1) and
CNF(B2) be two such expressions.

2. To prove: B1 ∧B2 can be expressed in CNF.

3. By the inductive hypothesis, we have

B1 ∧B2 ≡ CNF(B1)∧CNF(B2)

≡ (C1
1 ∧ . . .∧Cm

1)∧ (C1
2 ∧ . . .∧Cn

2) (Ci
js are clauses)

≡ (C1
1 ∧ . . .∧Cm

1 ∧C1
2 ∧ . . .∧Cn

2)

4. Hence, B1 ∧B2 is equivalent to an expression in CNF.

• Inductive step (∨): prove ∀B1,B2∈B [P(B1)∧P(B2) =⇒ P(B1 ∨B2)].

1. The inductive hypothesis states that B1 and B2 can be expressed in CNF. Let CNF(B1) and
CNF(B2) be two such expressions.

2. To prove: B1 ∨B2 can be expressed in CNF.

3. By the inductive hypothesis, we have

B1 ∨B2 ≡ CNF(B1)∨CNF(B2)

≡ (C1
1 ∧ . . .∧Cm

1)∨ (C1
2 ∧ . . .∧Cn

2) (Ci
js are clauses)

≡ (C1
1 ∨C1

2)∧ (C1
1 ∨C2

2)∧ . . .∧ (Cm
1 ∨Cn−1

2)∧ (Cm
1 ∨Cn

2)

4. By associativity of ∨, each expression of the form (Ci
1 ∨C j

2) is equivalent to a single clause
containing all the literals in the two clauses.

5. Hence, B1 ∨B2 is equivalent to an expression in CNF.

Hence, any Boolean expression constructed from the operators ∧, ∨, and ¬, where ¬ is applied only to
variables, is logically equivalent to an expression in CNF. 2

This process therefore “flattens” the logical expression, which might have many levels of nesting, into two
levels. In the process, it can enormously enlarge it; the distributivity step converting DNF into CNF can
give an exponential blowup when applied to nested disjunctions (see below). As with the conversion to
NAND-form, the proof gives a recursive conversion algorithm directly.

+ ++

CS 70, Spring 2005, Notes 7 6

Direct conversion between CNF and DNF
Let’s look briefly at direct conversion of DNF into CNF and CNF into DNF. We’ll be using the distributivity
rules; since these are symmetrical with respect to ∧ and ∨, whatever we say about one direction applies to
the other. So let’s look at DNF into CNF.

Let’s start with a very simple case:

(A∧B)∨ (C∧D)

≡ (A∨ (C∧D))∧ (B∨ (C∧D))

≡ (A∨C)∧ (A∨D)∧ (B∨C)∧ (B∨D)

Now let’s add one further term:

(A∧B)∨ (C∧D)∨ (E ∧F)

≡ [(A∨C)∧ (A∨D))∧ (B∨C)∧ (B∨D)]∨ (E ∧F)

≡ {[(A∨C)∧ (A∨D)∧ (B∨C)∧ (B∨D)]∨E}

∧ {[(A∨C)∧ (A∨D)∧ (B∨C)∧ (B∨D)]∨F}

≡ (A∨C∨E)∧ (A∨D∨E)∧ (B∨C∨E)∧ (B∨D∨E)

∧(A∨C∨F)∧ (A∨D∨F)∧ (B∨C∨F)∧ (B∨D∨F)

The pattern becomes clear: the CNF clauses consist of every possibly k-tuple of literals taken, one each, from
the k terms of the DNF. Thus, we conjecture that if a DNF expression has k terms, each containing l literals,
the equivalent CNF obtained by distributivity will have lk clauses, each containing k literals. (This can be
verified by induction.) Thus, there can be an exponential blowup in converting from DNF to CNF; and, by
symmetry, in converting from CNF into DNF. We will see in the next lecture that it is almost inevitable that
some small CNF expressions have a smallest DNF equivalent that is exponentially larger.

CS 70, Spring 2005, Notes 7 7

