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This lecture completes our general introduction to proof methods. We begin with examples of induction
principles for domains other than the natural numbers, including strings, trees, and pairs of numbers. We
then introduce the general principle of well-founded induction, which yields as special cases all sorts of
induction principles for all sorts of domains.

Induction over things besides numbers

Persons other than pure mathematicians often write programs that manipulate objects other than natural
numbers—for example, strings, lists, trees, arrays, hash tables, programs, airline schedules, and so on. So
far, the examples of induction we have seen deal with induction over the natural numbers. How does this
help with these other domains?

One answer is that we can do inductive proofs over natural numbers that correspond to the size of the
objects under consideration. Suppose we want to prove that s P(s) for the domain of strings. Then define
a proposition on natural numbers as follows:

Q(n) is the property that every string s of length n satisfies P(s).

Then a proof that Vn Q(n) by induction on n establishes that /s P(s).

Similarly, we can prove things about trees by induction on the depth of the tree, or about programs by
induction on the number of symbols in the program. These inductions can become quite cumbersome and
unnatural. Let’s suppose we had never heard of the natural numbers; could we still do anything with strings
and trees and programs? It turns out that we can define very natural induction principles for these sorts of
objects without mentioning numbers at all.

An induction princip]e for strings

Let’s write a recursive algorithm for reversing a string and show that it works correctly.

First, we will need to say what strings are. The elements of a string are symbols drawn from a set of
symbols called an alphabet, which is usually denoted %. For example, if Z={a, b}, then strings can consist
of sequences of as and bs. Z* denotes the set of all possible strings on the alphabet Z, and always includes
the empty string, which is denoted A. Every symbol of Z is also a string of length 1. (Note: this property in
particular distinguishes strings from lists; but in general reasoning about strings is quite similar to reasoning
about lists.)

The basic way to construct strings is by concatenation. If s1 and s, are strings, then their concatenation is
also a string and is written s1S, or s - S if punctuation is needed for clarity. Concatenation is defined as
follows:

Axiom 4.1 (Concatenation):
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VseX*A-.s=5-A=s
VaeXVsy,sp€2 (a-S1)-Sp=a-(S1-S2)

Just as Peano did for the natural numbers, we now provide axioms concerning what strings are, then we
state an induction principle that allows proofs for all strings. Strings satisfy the following axioms:
Axiom 4.2 (Strings):

The empty string is a string: A € Z*
Joining any symbol to a string gives a string: Vae> vVse2* a-se€ X*

Because these axioms do not strictly define strings, we need an induction principle to construct proofs over
all strings:

Axiom 4.3 (String Induction):

For any property P,
if P(A) and Yae X VseZ* (P(s) = P(a-s)),
then Yse Z* P(s).

RuCTnAL This is a simple instance of structural induction, where a set of axioms defines the way in which objects
in a set are constructed and an induction principle uses the construction step repeatedly to cover the entire

CONSTRUCTOR domain. Here, “-” is the constructor for the domain of strings, just as “+1” is the constructor for the natural
numbers.

Notice that numbers appear nowhere in these axioms. We can do proofs thinking only about the objects in
question. Let’s define a function that reverses a string and prove that it works.

Axiom 4.4 (Reverse):

r(A)=A
VacZVseZ*r(a-s)=r(s)-a

We would like to say something like “for every string s, r(s) reverses it.” To make this a precise theorem,
we’ll need some independent, non-recursive way to say what we mean by reversing! There are several ways
to do this, of which the easiest is to take advantage of “dot dot dot” notation:

Theorem 4.1: VseZX*, lets=ajay...an; thenr(s)=an...aza1
Proof: The proof is by induction over the strings on the alphabet Z. Let P(s) be the proposition that if
S=ajay...an thenr(s)=an...aza;.

* Base case: prove P(A).
P(A) is the proposition that r(A)=A, which is true by definition.
* Inductive step: prove P(s) = P(a-s) forallacX, sex*.
1. The inductive hypothesis states that, for some arbitrary string s, if s=ajay...an, thenr(s)=an...aza;.
2. To prove: for every symbol a, r(a-s)=ay...azaja.
3. By the axiom for reverse,
r(a-s) = r(s)-aby the reverse axiom
= ap...azaa by the inductive hypothesis
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Hence, by the string induction principle, for every string s, r(s) reverses it. O

We could alternatively have proven this theorem by induction over the length of the input string. It is an
excellent exercise to work out the details of how to do this, and compare to the above method.

Induction over ]oinary trees

Trees are a fundamental data structure in computer science, underlying efficient implementations in many
areas including databases, graphics, compilers, editors, optimization, game-playing, and so on. Trees are
also used to represent expressions in formal languages. Here we study their most basic form: the binary
tree. Binary trees include lists (as in Lisp and Scheme), which have ni | as the rightmost leaf.

In the theory of binary trees, we begin with atoms, which are trees with no branches. A is the set of atoms,
which may or may not be finite. We construct trees (T) using the e (cons) operator. (In practice, any object
can be an atom as long as it’s distinguishable as one.) We will treat only the case of full binary trees, where
every node has zero or two children.

Axiom 4.5 (Full Binary Trees):

Every atom isatree: VacAJac T|
Consing any two trees gives a tree: Vi;,t, €T [ty oty € T|

The induction principle for trees says that if P holds for all atoms, and if the truth of P for any two trees
implies the truth of P for their composition, then P holds for all trees:

Axiom 4.6 (Full Binary Tree Induction):

For any property P,
if vacAP(a)

and Vty,toe T [P(tl) A P(tz) = P(t1 otz)]
then vt T P(t).

Many useful predicates and functions can be defined on trees, including

* leaf(a,t) is true iff atom a is a leaf of tree t.

* t; <ty istrue iff tree ty is a proper subtree of tree t.

count(t) denotes the number of leaves of the tree t.

depth(t) denotes the depth of the tree, where any atom has depth 0.

balanced (t) is true iff t is a balanced binary tree.

Here we define leaf, leaving the others as exercises:
Axiom 4.7 (Leaf):

VacAvteT leaf(t,a) & t=a
Vae AWty toeT leaf(a,tyoty) < leaf(a,ty) Vleaf(a,ty)
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It’s not easy to prove that definitions of such basic functions are correct, since the “specification” of the
function is hard to write in any form that is simpler than the definition itself. Let’s look at a slightly less
simple function: the function maxleaf(t) returns the largest leaf of the tree t, where the atoms are constrained
to be numbers.

Axiom 4.8 (Maxleaf):

Vaec A maxleaf(a) = a
Vi1, to € T maxleaf(t; ot;) = max(maxleaf(ty), maxleaf(ty))

The function maxleaf is “correct” if it satisfies two properties: first, maxleaf(t) has to be greater than or
equal to every leaf of t; second (and often forgotten), maxleaf(t) has to be a leaf of t!

Let’s prove the second property first:

Theorem 4.2: For every tree, t, maxleaf(t) is a leaf of t.

Proof: The proof is by induction over the binary trees on the atoms A. Let P(t) be the proposition
leaf(maxleaf(t),t).

* Base case: prove Yac AP(a).
P(a) is the proposition that leaf(maxleaf(a),a), which is equivalent by substitution to the proposition
leaf(a,a), which is true by definition.

* Inductive step: prove P(t1) AP(tz) = P(tyety) forallt;,t,eT.

1. The inductive hypothesis states that leaf(maxleaf(t1),t1) A leaf(maxleaf(tz),t2).

2. To prove: leaf(maxleaf(t; ot),t1 oty).
3. By the definition above, maxleaf(t; ety) = max(maxleaf(t; ), maxleaf(t,)).
4. Since Vx,y [(max(x,y) =x) V (max(x,y)=Y)], we have

(maxleaf(t; ot;) =maxleaf(t1)) vV (maxleaf(t; o t;) =maxleaf(t)).
5. Substituting in the induction hypothesis, we obtain
leaf(maxleaf(t; ot2),t1) V leaf(maxleaf(ty ot2),t2).
6. Hence, by the definition of leaf,

leaf(maxleaf(t; oty),t; oty).
Hence, by the binary induction principle, for every tree t, maxleaf(t) is a leaf of t. O
The other part of the verification is the following (the proof is left as an exercise):
Theorem 4.3: For every tree, t, maxleaf(t) is greater than or equal to every leaf of t.

Tree induction seems very natural. Could we do a similar proof using natural number induction? Certainly
we can prove facts about trees by induction over the depth of the tree. P(n) would state that all trees of depth
n satisfy some property Q. Unfortunately, the inductive step for a simple induction would look like this:

Given: all trees t of depth n satisfy Q(t)
Prove: all trees t of depth n+ 1 satisfy Q(t)

This is usually impossible: for a tree of depth n+ 1, one subtree has depth n, but not necessarily the other.
Strong induction over the depth of the tree does work; in fact it can always be used instead of tree induction.

Note that the formalization of trees above described only full trees. However, it can be easily generalized to
describe binary trees that are not necessarily full, i.e., where every node can have 0, 1, or 2 children. The
details are easy to fill in, so we won’t go through them here.
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Induction over pairs of natural numbers

Often we need to prove properties over the Cartesian product of some given sets. The Cartesian product
of sets A and B is written A x B. It is the set of all pairs (a,b) where a€ A and beB. For example, the set
N x N is the set of all pairs of natural numbers. Such sets arise when we prove properties of functions with
two arguments, when we prove facts about all points on a grid, etc.

Let’s look at an example: the knight’s tour. We will prove that a knight starting at (0,0) can visit every
square on the unbounded nonnegative quadrant. Figure 1 shows (part of) the infinite board and illustrates
the moves a knight can make.

Figure 1: The knight’s tour, showing the “base case” squares, the possible legal moves for a knight, and the
“inductive step.”

To prove this result, we’ll need some facts about knight’s moves. In particular, we’ll need the following:
Axiom 4.9 (Knight’s Move):

If square (x+1,y+2) or (x£2,y+1) is reachable by a knight, then square (x,y) is reachable
by a knight.

We’ll also need an induction principle for pairs of natural numbers. The idea for the knight’s move proof is
to establish a region that is reachable and then to show that any square adjacent to that region is reachable;
hence the region grows to fill the unbounded quadrant. There are many ways to define the shape of this
region; we’ll use the triangular region shown in Figure 1.

Our induction principle is, informally, that if the truth of P for every pair (x’,y’) in the region “just below”
(x,y) implies the truth of P for (x,y), then P is true for all (x,y). Notice that this is a strong induction
principle.
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Axiom 4.10 (Strong Induction (Pairs)):

For any property P,
if vx,yeN

W,y eN (X +Y) < (x+y) = PX,Y)] = P(x,y)
then ¥x,y e N P(x,y).

But where is the base case? Actually, it’s there but hidden. When (x,y) = (0,0), the condition [Vx",y’eN (X' +
y) < (x+y) = P(X,y')] is vacuously true because there are no such pairs. Hence P(0,0) is part of the
premise to be proved. More generally, the “base case” is the set of (x,y) pairs for which the inductive
hypothesis does not suffice to provide a proof.

Now we are ready to prove our theorem:
Theorem 4.4: ¥x,y €N, the square (x,Y) is reachable by a knight starting at (0,0).

Proof: The proof is by strong induction over the pairs of natural numbers. Let P(x,y) be the proposition
that square (x,y) is reachable by a knight starting at (0,0).

* Base case: the propositions P(0,0), P(0,1), P(0,2), P(1,0), P(1,1), P(2,0), for which x+y < 2, must
be established separately. Each of these can be established by appropriate application of the knight’s
move axiom.

* Inductive step: prove that, for all (x,y) such that x+y > 2,
[vX,y'eN (X'+Y) < (x+y) = P(X.y)] = P(xy).

1. The inductive hypothesis states that, for all x’,y’ €N such that (X' +y') < (x+Yy), the square
(X',y’) is reachable from (0,0).

2. All the squares (x',y')=(x—2,y+1) and (x',y') = (x+ 1,y — 2) satisfy the condition (X' +Yy’) <
(X+Y).

3. For any x,yeN such that x+y > 2, at least one of these squares is on the board, i.e., satisfies
X',y" €N (proof by cases).

4. Hence, by the knight’s move axiom, (x,y) is reachable from (0,0).

Hence, by the strong induction principle for pairs, every square in the unbounded positive quadrant is reach-
able by a knight from (0,0). O

The proof could also be done by strong induction on the natural numbers using n=x+Y as the induction
variable. Which is more elegant is perhaps a matter of taste; but the important insight is the use of a suitable
notion of “smaller” on pairs of natural numbers. For some proofs, “smaller” can be defined as “at least one
of the pair is smaller and the other is no bigger”, which gives rectangular regions that, stepwise, fill up the
quadrant. In the knight’s tour problem, however, some of the required moves violate this ordering.

Well-founded induction

Looking at all the induction principles we have seen so far, one recurring theme stands out: from properties
of “smaller” elements, we prove properties of a “larger” element. n is smaller than n+ 1; s is smaller than
a-s; t; and to are smaller than t; ety; and so on.

The strong induction principle for pairs, stated in the preceding section, gives a clue as to how to formalize
this idea into a general induction principle. We simply supply a generalized notion of “smaller than” instead
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of using <. We denote this relation <, which is assumed to be defined on whatever set X we are interested in
(natural numbers, sets, trees, pairs, strings, lists, airline schedules, etc.). For induction to work, we require
that < have the property of well-foundedness:

Definition 4.1 (Well-founded): A relation < on X is well-founded if there can be no infinite decreasing
sequences of elements of X related by <.

Given this, we can state the principle of well-founded induction, of which all our other principles are
special cases:

Axiom 4.11 (Well-Founded Induction):

For any property P, and any wellfounded relation < on X,
ifvxeX [[WyeX y<x = P(y)] = P(x)]
then ¥x e X P(x).

As with induction over pairs, the well-founded induction principle includes the requirement for establishing
the “base case”—that is, proving P(x) independently for all those x where the inductive hypothesis does not
suffice.

The property of well-foundedness is easy to see for all the cases we have covered. There is also a generalized
equivalent of well-ordering:

Definition 4.2 (Well-ordering): A set X is well-ordered by the relation < iff every nonempty subset of X
has at least one minimal element with respect to <.

The following very general theorem can be proved:
Theorem 4.5: A relation < on X is well-founded iff X is well-ordered by <.

Although this seems very abstract and useless, it is in fact used all the time by programmers who write
recursive functions that do complex things to their arguments. Consider the following recursive skeleton:

f(x) = if B(x) then k else f(g(x))

This will terminate iff g(x) < x for some well-ordering of X with minimal element(s) satisfying B(x). Thus,
the programmer must be sure that repeated application of g cannot generate an infinite sequence of values
that do not satisfy B.

Sometimes, “smaller” can be surprisingly nonobvious. Consider the following function on the natural num-
bers:

f0)=1, f(1)=1
if n> 1iseventhen f(n) = f(n/2), else f(n) = f(3n+1).

The Collatz conjecture states that Yne N f(n) = 1. You may wish to check this out for various values of n.
No proof is known.
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