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RSA algorithm
proof
observation: there are enough primes to make it relatively easy to find two of them; there 
are approximately x/(ln x) primes between 1 and x

1 in 20 SIDs are prime
observation: encryption function and decryption function can be applied in either order

authentication
situation: message isn't necessarily secret, but you want to make sure you know who 
authored it
Alice creates a digital signature S for her message M: S = M^d mod n, where (d,n) is 
Alice's private key; she then might encrypt it using Bob's public key
Bob, on receiving the message, would unencrypt it using his private key, then apply 
Alice's public key to it to make sure it came from her and wasn't tampered with
actually what usually happens is that Alice signs a digest of the message M, formed by 
applying a hash function h to M, then appends the signed shorter version of the message 
to the actual M; Bob then applies the same hash function h to M to get the digest, then 
applies Alice's public key to the signature and compares the result with h(M)

note that Alice is essentially signing every message that hashes to the same digest; 
this is a security risk
recently SHA-1, a common hash function for this purpose, was compromised; a 
simpler function that delivers the same SHA-1 hash value was found

a certificate provides assurance that Alice's public key is correct; it adds a signature (e.g. 
of Verisign) to the public key that verifies its authenticity
there are also time-stamp authorities to verify the time that a message was composed/
sent

practical uses of RSA
private-key algorithms are much faster (~1000 times)

in general, the public exponent is usually much smaller than the private exponent, 
meaning that decrypting a msg is faster than encrypting and verification of a signature 
is faster than signing; that's OK because signing and encrypting are only done once, 
while verifying a given signature may happen many times

RSA is usually used to encode a key that can then be used with a private key system
ssh
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ssh

the ssh-keygen program generates a public/private key pair by randomly selecting large 
primes; this takes a couple of minutes on nova.cs
Your private key is stored in .ssh2/id_dsa_2048_a; your public key is stored in .ssh2/
id_dsa_2048_a.pub
Login procedure from account A to account B: ssh on A sends a signed session identifier 
(known only to client and server, encrypted with A's private key) to B’s ssh server. B 
makes sure A's public key is in a file named authorized_keys and is correct. If so, B’s ssh 
server allows the login to B.
ssh also maintains and checks a database containing id info for every host it's ever been 
used with; if a host changes, the user is warned
All communications back and forth are encrypted with a private-key method.

other related applications
playing poker over the Internet (“Mental Poker”, by SRA, in The Mathematical Gardner, 
edited by David Klarner, published by Wadsworth in 1981)

Alice and Bob agree on encryption/decryption functions E and D for which
EK(X) is the encrypted version of a message X under key K.
DK(EK(X)) = X for all messages X and keys K.
EK(EJ(X)) = EJ(EK(X)) for all messages X and keys J and K.
Given X and EK(X), one can’t derive K for all X and K.
Given any messages X and Y, one can’t find keys J and K 
such that EJ(X) = EK(Y).

Alice and Bob choose secret keys A and B, respectively.
Bob encrypts the fifty-two messages “2 of clubs”, “3 of clubs”, …, “ace of spades” with 
his secret key B. He then randomly rearranges the encrypted deck and sends it all to 
Alice.
Alice selects five cards (messages) at random and sends them back to Bob, 
unencrypted (they were already encrypted by Bob). Bob decrypts these messages to 
find out what his hand is.
Now Alice selects five other messages, encrypts them with her secret key A, and 
sends them to Bob. Each of these messages is now doubly encrypted, once by Bob, 
once by Alice. Bob decrypts them (using commutativity of the encryption/decryption 
function), then sends them back to Alice. After decrypting those messages, Alice 
knows what her cards are.
At the end of the game, both players reveal their secret keys. Now either player can 
check that the other was “actually dealt” the cards he or she claimed to have during 
play. It’s computationally difficult to reveal the wrong key.

fingerprinting
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other related applications

fingerprinting
Suppose we want to transmit a file to the moon. There are occasional bit errors.  We'd 
like to verify that our file got there correctly.  We could of course re-send the file a 
second time, but bandwidth to the moon is very expensive, so it'd be nice to have a 
better solution.
Solution: Fingerprinting.  Suppose we know we'll want to send a message x of length 
n bits.  We agree in advance on a random prime p chosen randomly from the primes 
up to n3. Write x as a number 0 ≤ x < 2n in the obvious way. Then our fingerprint is 
Fp(x) = x mod p.  We send Fp(x) along with x.  Note that Fp(x) has length 3 lg n bits, so 
is much shorter than x.
What's the probability a random transmission error goes undetected?  Well, suppose 
the receiver receives (y,c) instead of (x,Fp(x)), and suppose y is different from x. Then 
the probability a bit error goes undetected is the probability the fingerprint c looks 
valid:
  Pr[Fp(y) = c]
    = Pr[p | y-c]

    ≤ (# prime divisors of y-c) / (# primes < n3)
    ≤ n / (# primes < n3)
     ~ n / (n3 /( ln n3))
    ≤ 1/n.
So the error probability is pretty low -- and this is true even no matter how many errors 
in the transmission there might be.  Note that this is also very fast: O(n lg n) time to 
compute the fingerprint, and O(lg n) extra bits sent along with the n bit message.


