CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner HW 7

Due Saturday, March 19

Coverage: This assignment involves topics from the lectures of March 1, 8, and 10, and from Rosen
section 2.6.

Administrative reminders.  We will accept only unformatted text files or PDF files for homework sub-
mission. Include your name, login name, section number, and partner list in your submission. Give the
command submit hw7 to submit your solution to this assignment.

We advise you to work with a partner. If you haven’t yet switched partners, you should do so for this
assignment.

Question 1 is a programming assignment. You should work on your own for the programming assignment
(but you may work with a partner for the rest of the questions, as usual).

Homework exercises:

1. (24pts) Implementing RSA
You are to complete a program (either in Scheme or in Java) to generate a public/private key pair and
encrypt and decrypt messages. In Scheme, this involves completing the functions key-component-l1ist,
inverse, and mod-power in the framework file rsa.scm. The analogous task in Java is to com-
plete the methods createKeys, inverse, and modPower in the framework file RSA. jJava.
Don’t change any of the code provided in the file other than what’s specified.

The Scheme functions will be tested in stk. The Java code will be tested both witha RSAtester. java
class that has access to the methods you are to provide, and with a shell script that calls the main
method. Command-line arguments to the RSA program are as follows.

 The first argument is either —e, specifying that an ASCII string is to be encrypted, or —d, speci-
fying that a big integer is to be decrypted.

» The second argument is the string (enclosed in double quotes) or the big integer. If the second
argument is —, i.e. a single hyphen, the string or big integer is read from standard input; this
allows easy chaining of an encryption with a decryption or vice versa.

» The third argument is only relevant for an encryption. If provided, it specifies the name of a file
that contains a public key. If the third argument is not provided, the file public-key in your
working directory is used.

Initialization code provided in both programs reads or create files in your working directory named
private-key and publ ic-key if they don’t yet exist; each should contain a single line contain-
ing two numbers.

[EnY

CS 70, Spring 2005, HW 7



Scheme and Java both have built-in support for large integers. You are not allowed to use Scheme’s
expt-mod function. Java provides in the class Java.math.Biglnteger enough support to
complete this assignment with hardly any code. Thus, you may not use the following methods in
jJava.math.Biglnteger:

» gcd (Biglnteger)

e IsProbablePrime (int)

« modInverse (Biglnteger)

 modPow (Biglnteger, Biglnteger)

* pow (int)

» probablePrime (int, Random)

You are also forbidden to use any other RSA or bignum library, whether part of Java or external.

The class Jjava.util .Random provides a random number generator that you may find useful when
generating keys. The Scheme counterpart is the random function; given an integer argument n, it
returns a random integer between 0 and n — 1, inclusive.

Framework files are in the directory ~“cs70/code.

The directory “cs70/publ i c-keys will contain files named aa, ab, etc.; file xy will contain the
public key for user cs70-xy in the format described above. Each file initially will contain the pair

3 6682189

(the corresponding private key is 4451347 6682189). These files are writable; we encourage you
to update your file with more reasonable values for the public key, to allow other students to test their
code by sending you messages.

2. (6pts) Thinkingabout n
Suppose someone chose a value for n that was not a product of two primes, i.e., n = pgq with p > 1,
g > 1, and q is composite. It would obviously be easier to factor, thus posing a security risk. But
would the encrypting and decrypting operations still work with this n? Defend your answer.

3. (6pts) Euclid’'sargument
Consider the following result, first proved many centuries ago.

Theorem 1 (Euclid) There exist infinitely many primes.

Proof: Assume to the contrary that there exist finitely many primes. Let these primes (in increasing
order) be p1=2,p2=3, p3=5, ..., Pk- Let gk = p1p2p3--- px+ 1. Note that gy is a new number
not in the list of primes p1,...,pk. At the same time, it is not divisible by p; for any i, since qx =
pP1P2P3---pk+1 =1 (mod p;), which would mean that qy is a new prime different from py,..., px,
which is a contradiction. This completes the proof. O

Let p1,..., pk represent the first k primes. Are we guaranteed that pyp2ps--- px+ 1 is always prime
for all k > 1? Is the above proof valid? Explain.

4. (24 pts) String matching

CS 70, Spring 2005, HW 7 2



(a) Consider again the fingerprint Fo(w) = w mod p, where we identify the integer w = 2" w1 +
-+ 2w +Wp € N with the n-bit bitstring w = (wo, w1, ..., Wn_1).
Fix n,m € N with n <m. Let X be a m-bit string (Xo,X1,...,Xm-1). Let X denote the n-bit
substring (Xi,Xi;1,...,Xitn-1) Of X that starts at position i, or equivalently, the integer X =
2" % n 1+ -+ 211+ % € N. For example, if m=5, n=4, and X = (0,1,1,0,1), then
X0 = (0,1,1,0) =6 and X(1) = (1,1,0,1) = 11.
Show how to efficiently compute Fy (X)) from Fp(X(i11)).

(b) Suppose we are given a m-bit string X and a n-bit string Y, and we want to test whetherY appears
as a substring of X. Consider the following naive algorithm:

NAIVESTRINGMATCH(X,Y ):
1. Fori=m—ndown to 0, do:
2. If X =Y, returni.

3. Return “No match.”

Argue that this naive algorithm has a O(mn) worst-case running time, if we count each bit
operation as one unit of time.
(c) Give a faster algorithm. (Hint: make step #2 more efficient.)

(d) Suppose your algorithm is allowed to have a small chance (say, < 1/m) of returning an erroneous
answer. Describe an algorithm with a O(mlgm) worst-case running time. Your analysis of the
running time can be somewhat informal, but be sure to show all parameter choices.

(If you cannot find an algorithm with such a provable bound on the running time, reduce the
asymptotic running time as much as you are able. Ignore constant factors.)

CS 70, Spring 2005, HW 7 3



