
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner HW 6

Due Thursday, March 10
Coverage: This assignment involves topics from the lectures of February 22 and 24 and March 1, and
from Rosen sections 2.2, 2.4, 2.5, and pages 181-185 in section 2.6.

Administrative reminders: We will accept only unformatted text files or PDF files for homework sub-
mission. Include your name, login name, section number, and partner list in your submission. Give the
command submit hw6 to submit your answers to this assignment.

Also: It is time to switch partners!

Homework exercises:

1. (14 pts.) Radix –2
Radix −2 representation is analogous to radix 2 (binary) representation. An integer n is represented
as dk dk−1 · · · d1 d0 if n = dk(−2)k +dk−1(−2)k−1 + ...d1(−2)1 +d0(−2)0 and all the d j are 0 or 1.

(a) What’s the radix −2 representation of 9?

(b) Prove that every integer n > 0 can be represented in radix −2.

(c) Is the representation unique? That is, can every integer n > 0 be represented in exactly one way
in radix −2? Prove the claim, or display a counterexample.

2. (14 pts.) Big-O notation
The purpose of this problem is to teach you Big-O notation in a careful way. First, study the following.

Formally: If f (n),g(n) are two non-negative functions of a single integer variable, the statement
f (n) ∈ O(g(n)) means that

∃N0 ∈ N. ∃C ∈ N. ∀x ∈ N. x ≥ N0 =⇒ 0 ≤ f (x) ≤C ·g(x).

In other words, O(g(n)) is the set of functions { fi(n) : ∃N0 ∈ N. ∃C ∈ N. ∀x ∈ N. x ≥ N0 =⇒ fi(x)≤
C ·g(x)}. This is the definition of Big-O notation.

Informally: f (n)∈O(g(n)) means, roughly, that f (n) grows “no faster than” g(n) (except possibly for
a constant factor), as n gets large. For instance, n2 ∈O(n2), n(n+1)/2∈O(n2), and 10000n2 ∈O(n2),
because these functions all grow at asymptotically the same rate (ignoring constant factors). Also,
n2 ∈ O(n3), because n2 grows more slowly than n3 does, as n gets large.

Some basic facts: If f (n) ∈ O(g(n)) and f ′(n) ∈ O(g′(n)), then f (n)+ f ′(n) ∈ O(g(n)+ g′(n)). If
f (n) ∈ O(g(n)) and f ′(n) ∈ O(g′(n)), then f (n)× f ′(n) ∈ O(g(n)×g′(n)).

Common notation: Instead of writing f (n)∈O(g(n)), almost everyone instead writes f (n) = O(g(n)).
Strictly speaking, this is a sloppy abuse of notation, but this practice is widespread; you are guaranteed

CS 70, Spring 2005, HW 6 1



to see it throughout your studies of computer science, so be prepared. Also, we often write something
like n2 as a shorthand for the function f (n) = n2, just to make our life easier.

Now, with that background established, do the following problems:

(a) Prove that n2 +2003 ∈ O(n3).

Hint: One possible approach is to give an example of constants N0,C that satisfy the definition.

(b) Prove that 100n2 lgn ∈ O(n3).

(c) True or false: There exists e ∈ N such that 2n ∈ O(ne). Briefly justify your answer.

(d) Prove that if f (n) ∈ O(g(n)) and g(n) ∈ O(h(n)), then f (n) ∈ O(h(n)).

(e) Critique the following argument. Is the reasoning valid? If not, why not? If there is an error,
identify the erroneous step and explain what’s wrong with it.

We have n2 = O(n4).
Also, we have n2 = O(n3).
By transitivity, it follows that O(n4) = O(n3).
This means that n4 = O(n3).

3. (10 pts.) Power detection

(a) Design an efficient algorithm for a function named ispower? that, given positive integers n and
k with k < n, tests whether n is a perfect k-th power. That is, ispower?(n,k) should return true
if and only if ∃x ∈ N . xk = n. Your algorithm should run, in the worst case, in time O((lgn)c)
for some constant c.

(b) Prove the running time bound on your algorithm from part (a).

4. (12 pts.) Binary gcd

(a) Prove that the following statements are true for all m,n ∈ N.

If m is even and n is even, gcd(m,n) = 2gcd(m/2,n/2).

If m is even and n is odd, gcd(m,n) = gcd(m/2,n).

If m,n are both odd and m ≥ n, gcd(m,n) = gcd((m−n)/2,n).

(b) Give an algorithm that computes gcd(m,n) using at most O(lgm + lgn) subtractions, halvings,
doublings, and odd/even tests.

5. (10 pts.) Diophantine equations
Given positive integers a,b,c, you are to find an integer solution (for x,y,z) to the equation ax+by+
cz = 1.

(a) Design an efficient algorithm to find such a solution, assuming that gcd(a,b) = gcd(a,c) =
gcd(b,c) = 1.

(b) Design an efficient algorithm to find such a solution, assuming only that gcd(a,b,c) = 1.

CS 70, Spring 2005, HW 6 2


