
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner HW 3

Due Thursday, February 10
Coverage: This assignment involves topics from the February 1 and 3 lectures and from sections 3.4
through 3.6 of Rosen.

Administrative reminders: We will accept only unformatted text files or PDF files for homework sub-
mission. Include your name, login name, section number, and partner list in your submission. Give the
command submit hw3 to submit your answers to this assignment.

Homework exercises:

1. (14 pts.) Fibonacci numbers
The Fibonacci numbers are defined as follows:

F0 = 0

F1 = 1

Fn = Fn−2 +Fn−1 for n > 1

(a) List the first ten Fibonacci numbers (F0 through F9).

(b) Consider the following Scheme procedure that, given n, returns Fn.

(define (fib n)
(cond
((= n 0) 0)
((= n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2)))) ) )

Let Tn be the number of addition operations required in the computation of (fib n). List the
values T0 through T9.

(c) State and prove a relationship between the T numbers and the F numbers.

(d) Prove that Fn+1Fn−1 −F2
n = (−1)n.

CS 70, Spring 2005, HW 3 1



2. (6 pts.) Chocolate chopping
Chocolate often comes in rectangular bars marked off into smaller squares. It is easy to break a larger
rectangle into two smaller rectangles along any of the horizontal or vertical lines between the squares.
The figure below shows an example.

Suppose I have a bar containing k squares and wish to break it down into its individual squares. Prove
that no matter which way I break it, it will take exactly k−1 breaks to do this.

CS 70, Spring 2005, HW 3 2



3. (17 pts.) A buggy search
A CS 70 student, attempting to write a guessing game, implements the following pseudocode.

print ”Think of an integer between 1 and 100 (inclusive), and I will guess it.”;
lowestPossible = 1;
highestPossible = 100;
while (we’re not done)

mid = b(lowestPossible+highestPossible)/2c;
print ”Is it ”, mid, ”?”;
if user says yes, we’re done
otherwise

print ”Is it bigger than ”, mid, ”?”;
if user says yes, set lowestPossible to mid
otherwise set highestPossible to mid;

(a) The CS 70 student is intending to maintain the following loop invariant: the number to be
guessed is somewhere in the interval [lowestPossible,highestPossible]. Is this invariant main-
tained in each iteration of the loop? Explain why or why not.

(b) List all numbers between 1 and 100, inclusive, that the algorithm fails to guess, and describe
what happens for each.

(c) Suppose we make two changes in the algorithm: first, initialize highestPossible to 101; second,
update lowestPossible to mid + 1 if the user’s value is bigger than mid. The modified code
maintains a loop invariant that is stronger than the invariant described in part a. Describe the
loop invariant in the modified code, and briefly explain your answer.

(d) Using your updated invariant, give an induction proof that the modified algorithm works cor-
rectly.

CS 70, Spring 2005, HW 3 3



4. (8 pts.) Max-min computation
Given a set of N numeric values, we can find the maximum element using N − 1 comparisons and
then find the minimum element using N −2 more comparisons (skipping the maximum element), for
a total of 2N −3 comparisons. Consider the following algorithm:

if there are two elements in the set, then
with one comparison determine the larger and the smaller,

and store them in variables larger and smaller;
return the pair [larger,smaller];

otherwise
divide the set of elements in half;
make a recursive call to find the largest and smallest elements in the first half;
make a recursive call to find the largest and smallest elements in the second half;
set larger to the larger of the two largest elements (found with one comparison);
set smaller is the smaller of the two smallest elements (found with one comparison);
return the pair [maximum,minimum];

(a) Prove that, for N a power of 2, that the above algorithm always requires less than 3N/2 compar-
isons (ignoring whatever comparisons are necessary to divide the set in half).

(b) Identify the reason that this algorithm works faster than the straightforward method outlined
above.

5. (15 pts.) Leaf analysis
A rooted binary tree either is empty, or consists of a root and zero, one, or two disjoint subtrees (which
are also rooted binary trees). A leaf is a rooted binary tree with a root and no subtrees.

(a) Prove that, in a rooted binary tree with L leaves, that

L

∑
k=1

2−d(k) ≤ 1

where d(k) is the depth of leaf k. The depth of the root of a tree is 0, and the depth of any other
node is 1 plus the depth of its parent.

(b) Completely describe all trees for which

L

∑
k=1

2−d(k) = 1

and prove your claim. This will involve two proofs, one that verifies that the trees you describe
satisfy the equality, and one that shows that for all other trees, the given sum is less than 1.

CS 70, Spring 2005, HW 3 4


