
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner HW 2

Due Thursday, February 3
Coverage: This assignment involves topics from the January 25 and 27 lectures and from sections 3.1
through 3.3 of Rosen.

Administrative reminders: We will accept only unformatted text files or PDF files for homework sub-
mission. Your homework submission should include the following information:

Your full name
Your login name
Homework assignment 2
Your section number
Your list of partners

To submit your answers to this homework assignment, create a directory named hw2, copy your answer file
to that directory, cd to that directory, and then give the command

submit hw2

Homework exercises:

1. (6 pts.) Propositional proof practice
Prove the proposition

(P ⇒ (Q ⇒ (P∧Q))) ⇒ (¬(P∧Q) ⇒ (P ⇒¬Q))

Your proof may involve subsidiary proofs, or lemmas (similar to “helper functions” in Scheme). It
may also involve two kinds of assumptions. If you’re trying to show an implication E1 ⇒ E2, then
one valid proof strategy is to assume E1 and then use this assumption to prove E2 (but you are only
allowed to assume E1 for purposes of proving the implication; the assumption E1 is not allowed to
survive past the body of the proof that E1 ⇒ E2). Also, if you’re trying to show an expression E, you
may assume ¬E and then use this assumption to prove E (but again, this assumption must not survive
past the body of the proof of E).

Your proof may use only the following inference rules.

* Modus ponens: from the expressions E1 and (E1 ⇒ E2), you can infer E2.

* Modus tollens: from the expression ¬E2 and (E1 ⇒ E2), you can infer ¬E1.

* Implication construction: from the expression E2, you can infer (E1 ⇒ E2) for any expression
E1.

CS 70, Spring 2005, HW 2 1

* Contradiction: from the expressions E and ¬E, you can infer any expression.

* And-elimination: from the expression E1 ∧E2, you can infer E1 (or E2).

* Logical equivalence: from the expression E1, you can infer the expression E2 if E1 ≡ E2 (if E1

and E2 are logically equivalent, as defined in Lecture Notes 1 or in Rosen).

Here are some examples.

Theorem: P ⇒ (¬P ⇒ R)
Proof:
1. Assume P (allowed for the purposes of proving P ⇒ (¬P ⇒ R))
2. Lemma: ¬P ⇒ R

Proof:
2.1 Assume ¬p (allowed for the purposes of proving ¬P ⇒ R)
2.2 ¬P ⇒ R (contradiction resulting from steps 1 and 2.1)
QED.

3. P ⇒ (¬P ⇒ R) (implication construction applied to step 2)
QED.

Theorem: (((P ⇒ Q) ⇒ Q) ⇒ ((Q ⇒ P) ⇒ P))
1. Assume ((P ⇒ Q) ⇒ Q) (allowed for the purposes of proving (((P ⇒ Q) ⇒ Q) ⇒ ((Q ⇒ P) ⇒ P)))
2. Lemma: (Q ⇒ P) ⇒ P

Proof:
2.1 Assume (Q ⇒ P) (allowed for the purposes of proving (Q ⇒ P) ⇒ P)
2.2 Lemma: P

Proof:
2.2.1 Assume ¬P (allowed for the purposes of proving P)
2.2.2 ¬Q (modus tollens applied to steps 2.2.1 and 2.1)
2.2.3 6 (P ⇒ Q) (modus tollens applied to steps 2.2.2 and 1)
2.2.4 Lemma: P ⇒ Q

Proof:
2.2.4.1 Assume P (allowed for the purposes of proving P ⇒ Q)
2.2.4.2 P ⇒ Q (contradiction resulting from steps 2.2.4.1 and 2.2.1)
QED.

2.2.5 P (contradiction resulting from steps 2.2.4 and 2.2.3)
QED.

2.3 (Q ⇒ P) ⇒ P (implication construction applied to step 2.2)
QED.

3. ((P ⇒ Q) ⇒ Q) ⇒ ((Q ⇒ P) ⇒ P) (implication construction applied to step 2)

2. (4 pts.) Simple induction
Prove that 2n < n! for all integers n ≥ 4.

3. (8 pts.) Another way to multiply
Consider the following Scheme code.

(define (product a1 a2)
(product-helper a1 a2 0))

CS 70, Spring 2005, HW 2 2

(define (product-helper n1 n2 so-far)
(cond
((= n1 1) (+ so-far n2))
((odd? n1) (product-helper (- n1 1) n2 (+ so-far n2)))
(else (product-helper (/ n1 2) (* 2 n2) so-far))))

The result returned by product, given two natural numbers as arguments, is the product of the two
numbers. Since it only involves addition, subtraction, doubling, and halving, the algorithm provides
a practical procedure for multiplication of two integers1 by hand.

An equivalent specification of the algorithm in pseudocode would be the following:

Algorithm product(a1,a2):
1. Return product-helper(a1,a2,0).

Algorithm product-helper(n1,n2,s):
1. If n1 = 1, then return n2 + s.
2. If n1 is odd, then return product-helper(n1 −1,n2,n2 + s).
3. Otherwise, return product-helper(n1/2,2n2,s).

(a) Find a formula that relates the values of n1, n2, and so-far at the start of each call to
product-helper to the product of the a1 and a2, the original arguments of the product
procedure.

(b) Using your invariant relation, prove that product returns the product of its two nonnegative
integer arguments.

4. (8 pts.) Reversal of fortune
Consider the following Scheme code. A call to reverse with a list as argument returns the result of
reversing the list.

(define (reverse L)
(reverse-helper ’() L))

(define (reverse-helper so-far L)
(if (null? L) so-far
(reverse-helper (cons (car L) so-far) (cdr L))))

Prove that reverse works. You will need some formal definitions: if L = (a0 a1 a2 ...), then

(car L) = a0,(cdr L) = (a1 a2 ...),(cons x L) = (x a0 a1 a2 ...).

You then are to prove that if L = (x0 x1 x2 ... xN), (reverse L) returns (xN xN−1 ... x1 x0).

5. (8 pts.) Sprouting forever?
Sprouts is a two-player game played with paper and pencil. Several dots are drawn on the paper. Then
the players take turns, each doing the following:

1Donald Knuth, in The Art of Computer Programming, volume 2, notes that this algorithm was used as early as 2000 BC in
Egypt. It is described as ”Russian peasant multiplication” since Western visitors to Russia in the nineteenth century found the
method in wide use there.

CS 70, Spring 2005, HW 2 3

* drawing a line that connects two dots or connects a dot to itself but doesn’t touch or cross any
other line;

* putting a new dot on this new line, thus separating it into two lines.

No dot can have more than three lines attached to it. The last player that can make a legal move wins.

The figure below shows a sample game.

(a) Prove that any Sprouts game consists of a finite number of moves before someone loses.

(b) Give as good an upper bound as you can on the worst-case number of moves in a Sprouts game
that starts with n dots, and prove your answer.

6. (8 pts.) A floor show
Prove by induction that ∑n

i=1bi/2c = bn2/4c. (Recall that bxc is the largest integer less than or equal
to x.)

7. (6 pts.) A pizza proof
Working at the local pizza parlor, I have a stack of unbaked pizza doughs. For a most pleasing
presentation, I wish to arrange them in order of size, with the largest pizza on the bottom. I’m able
to place my spatula under one of the pizzas and flip over the whole stack above the spatula (reversing
their order). The figure below shows two sample flips.

This is the only move I can do to change the order of the stack; however, I am willing to keep repeating
this move until I get the stack in order. Is it always possible for me to get the pizzas in order? Prove
your answer.

CS 70, Spring 2005, HW 2 4

8. (12 pts.) You be the grader
Assign a grade of A (correct) or F (failure) to each of the following proofs. If you give a F, please
explain exactly everything that is wrong with the structure or the reasoning in the proof. You should
justify all your answers (remember, saying that the claim is false is not a justification).

(a) Theorem 0.1: For every n ∈ N, n2 +n is odd.
Proof: The proof will be by induction.
Base case: The natural number 1 is odd.
Inductive step: Suppose k ∈ N and k2 + k is odd. Then,

(k +1)2 +(k +1) = k2 +2k +1+ k +1 = (k2 + k)+(2k +2)

is the sum of an odd and an even integer. Therefore, (k +1)2 +(k +1) is odd. By the Principle
of Mathematical Induction, the property that n2 +n is odd is true for all natural numbers n. 2

(b) Theorem 0.2: For all x,n ∈ N, if nx = 0 and n > 0, then x = 0.
Proof: The proof will be by induction.
Base case: If n = 1, then the equation nx = 0 implies x = 0, since nx = 1 · x = x in this case.
Induction step: Fix k > 0, and assume that kx = 0 implies x = 0. Suppose that (k + 1)x = 0.
Note that (k +1)x = kx+ x, hence we can conclude that kx+ x = 0, or in other words, kx = −x.
Now there are two cases:

Case 1: x = 0. In this case, kx = −x = −0 = 0, so kx = 0. Consequently, the inductive hypoth-
esis tells us that x = 0.

Case 2: x > 0. In this case, −x < 0 (since x > 0). At the same time, kx ≥ 0 (since k,x ≥ 0). But
this is impossible, since we know kx = −x. We have a contradiction, and therefore Case 2
cannot happen.

In either case, we can conclude that x = 0. This completes the proof of the induction step. 2

(c) Theorem 0.3: For all x,y,n ∈ N, if max(x,y) = n, then x = y.
Proof: The proof will be by induction.
Base case: Suppose that n = 0. If max(x,y) = 0 and x,y ∈ N, then x = 0 and y = 0, hence x = y.
Induction step: Assume that, whenever we have max(x,y) = k, then x = y must follow. Next
suppose x,y are such that max(x,y) = k+1. Then it follows that max(x−1,y−1) = k, so by the
inductive hypothesis, x−1 = y−1. In this case, we have x = y, completing the induction step.
2

(d) Theorem 0.4: ∀n ∈ N. n2 ≤ n.
Proof: The proof will be by induction.
Base case: When n = 0, the statement is 02 ≤ 0 which is true.
Induction step: Now suppose that k ∈ N, and k2 ≤ k. We need to show that

(k +1)2 ≤ k +1

Working backwards we see that:

(k +1)2 ≤ k +1

k2 +2k +1 ≤ k +1

k2 +2k ≤ k

k2 ≤ k

So we get back to our original hypothesis which is assumed to be true. Hence, for every n ∈ N
we know that n2 ≤ n. 2

CS 70, Spring 2005, HW 2 5

