
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 9
Lecturer: David Wagner February 25, 2003

Notes 9 for CS 170

1 Hashing

We assume that all the basics about hash tables have been covered in 61B.
We will make the simplifying assumption that the keys that we want to hash have been

encoded as integers, and that such integers are in the range 1, . . . , M . We also assume that
collisions are handled using linked lists.

Suppose that we are using a table of size m, that we have selected a hash function
h : {1, . . . , M} → {0, . . . , m − 1} and that, at some point, the keys y1, . . . , yn have been
inserted in the data structure, and that we want to find, or insert, or delete, the key x.
The running time of such operation will be a big-Oh of the number of elements yi such that
h(yi) = h(x).

No matter what h does, if M > m(n + 1), there will always be a worst-case situation
where y1, . . . , yn, x are all mapped by h into the same bucket, and then the running time of
find, insert and delete will be Θ(n). However, in practice, hash tables work well. In order
to explain the real behavior of hash tables we need to go beyond a worst-case analysis, and
do a probabilistic analysis.

A simple analysis can be done assuming that the keys to be inserted in the table come
from the uniform distribution over {1, . . . , M}. It is not hard to come up with a function
h : {1, . . . , M} → {0, . . . , m − 1} with the property that if y1, . . . , yn, x are uniformly and
independently distributed over {1, . . . , M}, then h(y1), . . . , h(yn), h(x) are uniformly (or
almost uniformly) distributed over {0, . . . , m − 1}, and then argue that, on average, the
number of yi such that h(x) = h(yi) is about n/m, and so an operation on x can be
performed in O(1) time assuming that, say, m = 2n.

In practice, however, inputs do not come from a uniform distribution, and choices of h
that make the above proof work may or may not work well if the inputs come from different
distributions.

A much more sound approach is to consider the behavior of the data structure on arbi-
trary (worst-case) inputs, but to let randomness come in the definition of the hash function
h. Then we will look at the average running time of find, insert and delete operations, but
this time the average will be over the randomness used by the algorithm, and there will be
no assumption on the way the input is distributed. This kind of analysis is the object of
today’s lecture.

2 Universal Hashing

We want to consider hash functions whose definition involves random choices. Equivalently,
we consider families of functions, and consider the randomized process of selecting at random
a function from the family.

Notes number 9 2

A collection H of hash functions h : {1, . . . , M} → {0, . . . , m−1} is said to be 2-universal

if for every two different x, y ∈ {1, . . . , M} we have

Prh∈H [h(x) = h(y)] ≤
1

m

(Note that the CLR/CLRS definition has ’=’ instead of ’≤’.)
Consider the following construction. Fix a prime p > M . It is known that there is at

least one (in fact, there are usually several) prime between M and 2M . A procedure for
finding such a p could be to generate at random a number between M and 2M and then
test for primality. (There is an efficient randomized algorithms for testing primality, but
we will probably not see it in this course.)

Then define, for every a ∈ {1, . . . , p − 1} and every b ∈ {0, . . . , p − 1}, the function

ga,b(x) = ax + b mod p.

For each such g we define a hash function

ha,b(x) = ga,b(x) mod m.

In other words, define

H = {ha,b(x) : a ∈ {1, . . . , p − 1}, b ∈ {0, . . . , p − 1}} .

We will prove that H is 2-universal. (It is essential that the case a = 0 is excluded.)

Lemma 1

For every fixed two distinct values x, y ∈ {0, . . . , m− 1}, the number of pairs a, b such that

ha,b(x) = ha,b(y) is at most p(p − 1)/m.

Proof: Each collision ha,b(x) = ha,b(y) must arise from some pair s, t ∈ {0, . . . , p − 1} so
that s = t (mod m), ga,b(x) = s, and ga,b(y) = t. Consequently, we will start by counting
the number of such pairs.

However, before we do any counting, notice that ga,b(x) 6= ga,b(y). (Why? If ax + b =
ay + b (mod p), then a(x − y) = 0 (mod p), and since a 6= 0 (mod p), this would
imply that x = y (mod p); but this contradicts the assumption that x 6= y, hence we can
conclude that ga,b(x) 6= ga,b(y).) As a consequence, we should exclude from our count any
pair (s, t) with s = t.

Say that a pair (s, t) with s, t ∈ {0, . . . , p − 1} is a valid pair if s = t (mod n) and
s 6= t. How many valid pairs are there? There are p choices for s. Once we fix s, there
are dp/me values of t ∈ {0, . . . , p− 1} with s = t (mod n); however, we have to remember
that the choice t = s is excluded, so this gives dp/me − 1 choices of t for each choice of s.
Multiplying, we see that the total number of valid pairs (s, t) is p(dp/me − 1).

Notice that dp/me ≤ (p+m−1)/m, hence p(dp/me−1) ≤ p× [(p+m−1)/m+m/m] ≤
p× [(p−1)/m]. This means that the total number of valid pairs (s, t) is at most p(p−1)/m.

Next, for any given valid pair (s, t), we will count how many pairs (a, b) there are such
that ga,b(x) = s (mod p) and ga,b(y) = t (mod p). In other words, we are asking how
many values a, b ∈ {0, . . . , p − 1} there are that satisfy the following system

{

ax + b = s (mod p)
ay + b = t (mod p)

Notes number 9 3

This is a system of 2 linear equations in 2 unknowns. Algebra tells us that, if p is prime,
the solution to this system is unique, and it is easy to verify that this solution satisfies
a 6= 0. This means that for each valid pair (s, t), there is exactly one pair of values (a, b)
such that ga,b(x) = s and ga,b(y) = t. Consequently, the number of pairs (a, b) for which
ha,b(x) = ha,b(y) is at most p(p − 1)/m. 2

Since there are p(p− 1) functions in our family, the probability that ha,b(x) = ha,b(y) is
at most 1/m, and so our family is indeed 2-universal.

3 Hashing with 2-Universal Families

Suppose now that we pick at random h from a family of 2-universal hash functions, and
we build a hash table by inserting elements y1, . . . , yn. Then we are given a key x that we
want to find, insert or delete from the table. What will the expected number of collisions
between x and y1, . . . , yn be?

Lemma 2

Let H be a 2-universal family of hash functions mapping {1, . . . , M} into {0, . . . , m − 1},
and let x, y1, . . . , yn be elements of {1, . . . , M}.

If we pick h at random from H, then the average number of elements yi such that

h(x) = h(yi) is at most n/m; in symbols

E[|{i : h(x) = h(yi)}|] ≤ n/m

Proof: Call C the random variable (depending on the choice of h) that counts the number
of collisions between h(x) and h(y1), . . . , h(yn). In other words, C = |{j : h(yj) = h(x)}|.

Call Cy the random variable (depending on the choice of h) that is 1 if h(x) = h(y),
and 0 otherwise.

Then for every y

E[Cy] = 0 · Pr[h(x) 6= h(y)] + 1 · Pr[h(x) = h(y)]

= Pr[h(x) = h(y)] ≤
1

m

Since C =
∑n

i=1
Cyi

, we have E[C] = E[
∑n

i=1
Cyi

] =
∑n

i=1
E[Cyi

] ≤ n/m 2

So, if we choose m = Θ(n), each operation has O(1) average running time.

