
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 20
Lecturer: David Wagner April 17, 2003

Notes 20 for CS 170

1 Duality

As it turns out, the max-flow min-cut theorem is a special case of a more general phe-
nomenon called duality. Basically, duality means that a maximization and a minimization
problem have the property that any feasible solution of the min problem is greater than
or equal any feasible solution of the max problem (see Figure 1). Furthermore, and more
importantly, they have the same optimum.

Consider the network shown in Figure 1 below, and the corresponding max-flow problem.
We know that it can be written as a linear program as follows (fxy ≥ 0 in the last line is
shorthand for all 5 inequalities like fs,a ≥ 0, etc.):

P :































































max fsa +fsb

fsa ≤ 3
fsb ≤ 2

fab ≤ 1
fat ≤ 1

fbt ≤ 3
fsa −fab −fat = 0

fsb +fab −fbt = 0
fxy ≥ 0

Consider now the following linear program (where again yxy ≥ 0 is shorthand for all
inequalities of that form):

D :















































min 3ysa +2ysb +yab +yat +3ybt

ysa +ua ≥ 1
ysb +ub ≥ 1

yab −ua +ub ≥ 0
yat −ua ≥ 0

ybt −ub ≥ 0
yxy ≥ 0

This LP describes the min-cut problem! To see why, suppose that the uA variable is
meant to be 1 if A is in the cut with S, and 0 otherwise, and similarly for uB (naturally,
by the definition of a cut, S will always be with S in the cut, and T will never be with S).
Each of the y variables is to be 1 if the corresponding edge contributes to the cut capacity,
and 0 otherwise. Then the constraints make sure that these variables behave exactly as
they should. For example, the first constraint states that if A is not with S, then SA must

be added to the cut. The third one states that if A is with S and B is not (this is the only
case in which the sum −uA +uB becomes −1), then AB must contribute to the cut. And so

Notes number 20 2

1

3

1S T

A

B

3

2

Figure 1: A simple max-flow problem.

on. Although the y and u’s are free to take values larger than one, they will be “slammed”
by the minimization down to 1 or 0 (we will not prove this here).

Let us now make a remarkable observation: These two programs have strikingly sym-
metric, dual, structure. Each variable of P corresponds to a constraint of D, and vice-
versa. Equality constraints correspond to unrestricted variables (the u’s), and inequality
constraints to restricted variables. Minimization becomes maximization. The matrices
are transposes of one another, and the roles of right-hand side and objective function are
interchanged. Such LP’s are called dual to each other.

By the max-flow min-cut theorem, the two LP’s P and D above have the same optimum.
In fact, this is true for general dual LP’s! This is the duality theorem, which can be stated
as follows.

Theorem 1 (Duality Theorem)
Consider a primal LP problem written in standard form as “maximize c ∗ x subject to
A · x ≤ b and x ≥ 0”. We define the dual problem to be “minimize b ∗ y subject to AT y ≥ c
and y ≥ 0”. Suppose the primal LP has a finite solution. Then so does the dual problem,

and the two optimal solutions have the same cost.

The theorem has an easy part and a hard part. It is easy to prove that for every feasible
x for the primal and every feasible y for the dual we have c ∗ x ≤ b ∗ y. This implies that
the optimum of the primal is at most the optimum of the dual (this property is called weak

duality. To prove that the costs are equal for the optimum is the hard part.
Let us see the proof of weak duality. Let x be feasible for the primal, and y be feasible

for the dual. The constraint on the primal impose that a1 ∗ x ≤ b1, a2 ∗ x ≤ b2, . . . ,
am ∗ x ≤ bm, where a1, . . . , am are the rows of A and b1, . . . , bm the entries of b.

Now, the cost of y is y1b1 + · · · + ymbn, which, by the above observations, is at least
y1(a1 ∗ x) + · + ym(am ∗ x), that we can rewrite as

m
∑

i=1

n
∑

j=1

ai,jyixj . (1)

Each term
∑m

i=1
ai,jyj is at least cj , because this is one of the constraints of the dual, and

so we have that Expression (1) is at least
∑

i xici, that is the cost of the primal solution.

Notes number 20 3

T

Al

Bob

Charlie

Dave

Eve

Fay

Grace

Helen

S

(all capacities are 1)

Figure 2: Reduction from matching to max-flow.

2 Matching

2.1 Definitions

A bipartite graph is a (typically undirected) graph G = (V, E) where the set of vertices can
be partitioned into subsets V1 and V2 such that each edge has an endpoint in V1 and an
endpoint in V2.

Often bipartite graphs represent relationships between different entities: clients/servers,
people/projects, printers/files to print, senders/receivers . . .

Often we will be given bipartite graphs in the form G = (L, R, E), where L, R is already
a partition of the vertices such that all edges go between L and R.

A matching in a graph is a set of edges that do not share any endpoint. In a bipartite
graph a matching associates to some elements of L precisely one element of R (and vice
versa). (So the matching can be seen as an assignment.)

We want to consider the following optimization problem: given a bipartite graph, find
the matching with the largest number of edges. We will see how to solve this problem by
reducing it to the maximum flow problem, and how to solve it directly.

2.2 Reduction to Maximum Flow

Let us first see the reduction to maximum flow on an example. Suppose that the bipartite

graph shown in Figure 2 records the compatibility relation between four straight boys and
four straight girls. We seek a maximum matching, that is, a set of edges that is as large as
possible, and in which no two edges share a node. For example, in the figure below there is
a perfect matching (a matching that involves all nodes).

To reduce this problem to max-flow we do this: We create a new source and a new sink,
connect the source with all boys and all girls with the sinks, and direct all edges of the
original bipartite graph from the boys to the girls. All edges have capacity one. It is easy
to see that the maximum flow in this network corresponds to the maximum matching.

Well, the situation is slightly more complicated than was stated above: What is easy
to see is that the optimum integer-valued flow corresponds to the optimum matching. We
would be at a loss interpreting as a matching a flow that ships .7 units along the edge
Al-Eve! Fortunately, what the algorithm in the previous section establishes is that if the

capacities are integers, then the maximum flow is integer. This is because we only deal

Notes number 20 4

with integers throughout the algorithm. Hence integrality comes for free in the max-flow

problem.
In general, given a bipartite graph G = (L, R, E), we will create a network G′ = (V, E′)

where V ′ = L ∪ R ∪ {s, t}, and E ′ contains all directed edges of the form (s, u), for u ∈ L,
(v, t), for v ∈ R, and (u, v), for {u, v} ∈ E. All edges have capacity one.

2.3 Direct Algorithm

Let us now describe a direct algorithm, that is essentially the composition of Ford-Fulkerson
with the above reduction.

The algorithm proceeds in phases, starting with an empty matching. At each phase, it
either finds a way to get a bigger matching, or it gets convinced that it has constructed the
largest possible matching.

We first need some definitions. Let G = (L, R, E) be a bipartite graph, M ⊆ E be a
matching. A vertex is covered by M if it is the endpoint of one of the edges in E.

An alternating path (in G, with respect to M) is a path of odd length that starts with
a non-covered vertex, ends with a non-covered vertex, and alternates between using edges
not in M and edges in M .

If M is our current matching, and we find an alternating path with respect to M , then
we can increase the size of M by discarding all the edges in of M which are in the path,
and taking all the others.

Starting with the empty matching, in each phase, the algorithm looks for an alternating
path with respect to the current matching. If it finds an alternating path, it updates, and
improves, the current matching as described above. If no alternating path is found, the
current matching is output.

It remains to prove the following:

1. Given a bipartite graph G and a matching M , an alternating path can be found, if it
exists, in O(|V | + |E|) time using a variation of BFS.

2. If there is no alternating path, then M is a maximum matching.

We leave part (1) as an exercise and prove part(2).
Suppose M is not an optimal matching, that is, some other matching M ∗ has more

edges. We prove that M must have an alternating path.
Let G = (L, R, E′) be the graph where E ′ contains the edges that are either in M or in

M∗ but not in both (i.e., E ′ = M ⊕ M∗).
Every vertex of G has degree at most two. Furthermore if the degree is two, then one

of the two incident edges is coming from M and the other from M ∗.
Since the maximum degree is 2, G is made out of paths and cycles. Furthermore the

cycles are of even length and contain each one an equal number of edges from M and form
M∗.

But since |M∗| > |M |, M∗ must contribute more edges than M to G, and so there must
be some path in G where there are more edges of M ∗ than of M . This is an augmenting
path for M .

Notes number 20 5

This completes the description and proof of correctness of the algorithm. Regarding the
running time, notice that no matching can contain more than |V |/2 edges, and this is an
upper bound to the number of phases of the algorithm. Each phase takes O(|E| + |V |) =
O(|E|) time (we can ignore vertices that have degree zero, and so we can assume that
|V | = O(|E|)), so the total running time is O(|V ||E|).

