UC Berkeley—CS 170 Problem Set 4
Lecturer: David Wagner Due on February 20 at 3:30 p.m.

Problem Set 4 for CS 170

Note

When asked for an algorithm you must give (1) a brief informal description of the algorithm,
(2) a precise description using pseudo-code, (3) an informal argument for termination and
correctness of the algorithm, and (4) an analysis of the running time of the algorithm. Be
clear about what the input to the algorithm is, how you measure the size of the input, and
what constitutes a “step” in your running-time analysis.

Problem 0. [Any questions?] (5 points)

What’s the one thing you’d most like to see explained better in lecture or discussion sections?
A one-line answer would be appreciated.

(Sometimes we botch the description of some concept, leaving people confused. Some-
times we omit things people would like to hear about. Sometimes the book is very confusing
on some point. Here’s your chance to tell us what those things were.)

Problem 1. [Drawing Graphs| (20 points)

For parts (a) and (b), draw a graph with five vertices or fewer, and indicate the source
where Dijkstra’s algorithm will be started from. (The graders will be grateful for answers
that are as simple as possible.)

(a) Draw a graph with at least two negative weight edges for which Dijkstra’s Algorithm
produces the wrong answer.

(b) Draw a graph with at least one negative weight edge for which Dijkstra’s Algorithm
produces the correct answer.

Problem 2. [Negative Weight Dijkstra’s] (35 points)

As we saw in Problem 1, Dijkstra’s Algorithm doesn’t always work on graphs with negative
weight edges. However, for graphs with only a few number of negative edges, we can patch
up Dijkstra’s Algorithm to work without too much slowdown. This exercise asks you to
justify this claim.

Design a shortest path algorithm based on Dijkstra’s Algorithm that runs in O(2*|E|log |V|)
time, where k is the number of negative weight edges in the graph. You may assume that
the graph given to you has no negative-weight cycles.

Problem set 4 due on February 20 at 3:30 p.m. 2

Problem 3. [Atta cephalotes] (40 points)

Consider a biologist studying a colony of leaf-cutter ants. She hypothesizes that the ants
exhibit n different behaviors, B = {b1,...,by,}; each behavior describes an ant’s activity,
for example, foraging, tending the brood, or guarding the nest. Periodically throughout
the day, the ants switch from their current behavior to some other behavior. Assume that
there are T" times at which ants switch behaviors, t1,t2, ..., . The probability of switching
from behavior b; to b; at time ¢ is represented by p; .. Naturally, Pt = 1; it does not
necessarily hold that). p;;; = 1, though. We can assume that all ants start the day in a
sleep behavior, b;.

An ant’s sequence s = (s, s1,...,s7) is a list of behaviors that the ant performed that
day in order, where s; € B denotes the behavior performed between time t; and t;41, and
so = b1 denotes the initial sleep behavior. Hence the probability of a sequence s is

Pr[s] = Pso,s1,t1 X Ps1,s0,t2 X * 77 X Psp_q,sp,tp-

Write an algorithm that takes the transition probabilities p;;; as input and outputs
the most common ant behavior sequence. In other words, your algorithm should output a
sequence s that maximizes Pr[s]. Make your algorithm as efficient as possible. Don’t forget
to state and justify the running time of your algorithm.

