UC Berkeley—CS 170 Problem Set 1
Lecturer: David Wagner Due on January 28 at 3:30 p.m.

Problem Set 1 for CS 170

Note

When asked for an algorithm you must give (1) a brief informal description of the algorithm,
(2) a precise description using pseudo-code, (3) an argument for termination and correctness
of the algorithm, and (4) an analysis of the running time of the algorithm. Be clear about
what the input to the algorithm is, how you measure the size of the input, and what
constitutes a “step” in your running-time analysis.

Problem 0. [Any questions?] (5 points)

What’s the one thing you’d most like to see explained better in lecture or discussion sections?
A one-line answer would be appreciated.

(Sometimes we botch the description of some concept, leaving people confused. Some-
times we omit things people would like to hear about. Sometimes the book is very confusing
on some point. Here’s your chance to tell us what those things were.)

Problem 1. [Asymptotic order of growth] (20 points)

Here is a list of functions of one variable, n.

5

n® o
100

T+ 2218 p21gn, n? 4 27n, 2"
n

.5, (Ign)?,

Place them in a list from left to right, so that if f(n) is any function in the list and g(n)
any function to its right, we have f(n) = O(g(n)). You do not need to prove your answer.

(For instance, if the list were 5n,23,n2, the correct answer would be 23,5n,n2, since
23 = O(5n) and 5n = O(n?).)

Note added 1/23: The notation lgn refers to the binary logarithm (base 2), i.e., lgn =
log, n. For example, 1g16 = 4.

Problem 2. [Big-O notation] (20 points)

For each of the following statements, say whether they are true or false. If true, give a proof
of the statement; if false, give a disproof of the statement.

(a) True or false? If f : N — N and g : N — N are two positive functions satisfying
f(n) = O(g(n)) and g(n) = O(h(n)), then f(n) = O(h(n)).

(b) True or false? If f : N — N is any positive function, then either (1) there exists a
constant ¢ > 0 so that f(n) = O(n), or (2) there exists a constant o > 1 so that

F(n) = Q(a").

Here N = {1,2,...} represents the set of natural numbers.



Problem set 1 due on January 28 at 3:30 p.m. 2

Note added 1/24: Problem 2 was changed to consider positive-valued functions only,
since CLR’s definition of big-O notation doesn’t apply to functions that may be negative.
(One person proposed f(z) = —1 as a counterexample to 2(b), and I hope this revision
makes clear that I'm not going to accept that proposal.)

Problem 3. [Recurrence relations] (25 points)

Give asymptotically tight solutions for T'(n). (In other words, find an explicit formula f(n)
so that T'(n) = O(f(n)), and prove it.)

(a) Use a recursion tree (CLRS Exercise 4.2-4) to guess a solution, and prove your guess
by induction:
T(n) = T(n—d)+T(d)+c-2"

for constants d > 1 and ¢ > 0. Assume that T'(n) = O(1) for n < d.

(b) Use a recursion tree (CLRS Exercise 4.2-4) to guess a solution, and prove your guess
by induction:
T(n) = T(|n/3])+T(|2n/3])+¢

for constant ¢ > 0. Assume that 7'(n) = ©(1) for n < 10.

Problem 4. [Algorithm design] (30 points)

You are given an array A[l..n] of pairwise distinct integers. Give an algorithm that finds the
second smallest element in A using n+ O(logn) many comparisons between array elements.

Bonus question: With how many comparisons can you find the third smallest element in A7



