
�

The SCADS Toolkit
Nick Lanham, Jesse Trutna

(it’s catching…)



SCADS Overview

� SCADS is a scalable, non-relational datastore for highly 
concurrent, interactive workloads.

� Scale Independence - as new users join

� No changes to application� No changes to application

� Cost per user doesn’t increase

� Request latency doesn’t change

� Key Innovations

1. Performance safe query language

2. Declarative performance/consistency tradeoffs

3. Automatic scale up and down using machine learning



Toolkit Motivation

� Investigated other open-source distributed key-value stores

� Cassandra, Hypertable, CouchDB

� Monolithic, opaque point solutions

� Make many decisions about how to architect the system a-prori� Make many decisions about how to architect the system a-prori

� Want set of components to rapidly explore the space of 

systems’ design 

� Extensible components communicate over established APIs

� Understand the implications and performance bottlenecks of 

different designs



SCADS Components



Component Responsibilities

� Storage Layer

� Persist and serve data for a specified key responsibility

� Copy and sync data between storage nodes

� Data Placement Layer� Data Placement Layer

� Assign node key responsibilities

� Manage replication and partition factors

� Provide clients with key to node mapping

� Provides mechanism for machine learning policies

� Client Library

� Hides client interaction with distributed storage system

� Provides higher-level constructs like indexes and query language



Storage Layer

� Key-value store that supports range queries built on BDB

� API

Record get(NameSpace ns, RecordKey key)
list<Record> get_set(NameSpace ns, RecordSet rs)list<Record> get_set(NameSpace ns, RecordSet rs) 
bool put(NameSpace ns, Record rec) 
i32 count_set(NameSpace ns, RecordSet rs) 
bool set_responsibility_policy(NameSpace ns,RecordSet policy) 
RecordSet get_responsibility_policy(NameSpace ns) 
bool sync_set(NameSpace ns, RecordSet rs, Host h, ConflictPolicy

policy) 
bool copy_set(NameSpace ns, RecordSet rs, Host h) 
bool remove_set(NameSpace ns, RecordSet rs) 



Storage Layer



Storage Layer



Storage Layer: Synchronize

� Replicas may diverge during network partitions (in order to 

preserve availability).

� Need way to resolve divergence when connectivity is 

restored.restored.

� But, nodes may store arbitrarily large quantities of data

� So...

� Need efficient way to determine set difference between 

nodes (key-value pairs with differing values or the presence 

of new pairs) 

� Sounds like a job for: Merkle Trees!



Merkle Tree

� Merkle Tree (a.k.a Hash Tree)

� Tree that computes a signature for a file by recursively hashing 

the nodes of the tree.

� Can quickly determine which portions of a file are different� Can quickly determine which portions of a file are different

� Quick How-to:

� Take a file of length n



Merkle Tree: Construction



Merkle Tree: Inserts



Merkle Tree: Sync



Storage Engine

� Alas, Merkle Tree relies on known quantity of data. :(

� We have a key-value store, may have inserts or deletions on one side 

and not the other...  Need a dynamic data structure.

� Furthermore, we can't use a regular B-Tree.

� Insertions may occur in different orders

� Re-balancing the root would result in entirely different hash for 

the tree.

� We need a tree that has a deterministic structure, given a set of key-

value pairs

� Trie!



Trie (a.k.a Prefix Tree)

� Edges labeled 

with 

characters

� Key is path to 

leaf

� Compute 

hashes up this 

tree



Patricia Trie

� Optimization:

� Collapse any node that has only one child



0.4000

0.4500

0.5000

0.5500

Sync Time

Sync: performance

(100 MB)

0.000% 0.001% 0.010% 0.100% 1.000% 10.000
%

100.00
0%

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500

0.4000

Merkle

Scan

divergence (% of total dataset)

Ti
m

e 
(s

ec
)



Sync Conclusion

� Merkle Trees areTiger Hash are often called Tiger Trees.

� We are using the Tiger Hash Algorithm

� Thus, we are using a “Patricia Merkle Tiger Trie”� Thus, we are using a “Patricia Merkle Tiger Trie”

� Awesome.



Data Placement & Client Library

� Data Placement Layer

� Maintains global view of data placement in cluster via node to key 
range mappings

� Orchestrates transfer of data and changes in node responsibility � Orchestrates transfer of data and changes in node responsibility 
polices without interruption in data availability

� Client Library

� Receives requests from client applications

� Caches key to node mappings received from DP layer

� Current implementation: ROWA

� Coordinates get_set() requests to nodes to satisfy client



Mechanics of Data Movement

� Machine learning: “move data from node A to node B”

� Copy data from A to B

� Map data assignments to A and B� Map data assignments to A and B

� Assign B’s responsibility policy

� Update A’s responsibility policy

� Sync A and B

� Remove old data from A



SCADr

� Goal
� Gain experience with how application developers use SCADS

� See what performance problems arise

� Twitter clone written in RoR by undergraduates
� Use SCADS instead of ActiveRecord

� DEMO!
� http://scadr.radlab.net

• Use it!



Performance Tests: GREP

Load 
times

Task 
times



Performance Tests: Storage Layer

Num 
clients
1
22



Performance Tests: Storage Layer

Num 
clients
1
22



Performance Tests: Data Placement



Performance Tests: More Nodes



Future Work

� Predicting system performance

� X-Trace track requests through system components

� Built into Thrift protocol layer


