
Parallel
Applications

Parallel
Hardware

Parallel
Software IT industry

(Silicon Valley)
Users

1 CS 262b Presentation

Kevin Klues, Barret Rhoden, David Zhu

Overview

  Problem: Current operating systems are not
 designed for manycore architectures
 Do not scale well in a multi-core environment
 Do not support high performance parallel applications

  Our idea: Structure the operating system
 asymmetrically
  Provide an asynchronous syscall interface to users
  Service syscalls on dedicated kernel cores

  Solution:
  Built an OS from scratch
  Implemented asynchronous remote syscalls
  Compared them to traditional approach

2

Outline

  Architecture
  Implementation
  Evaluation Methodology
  Results
  Conclusion
  Future Work

3

Architecture

  Asymmetric OS on symmetric hardware

4

Asynchronous Remote Syscall Interface

  Syscall interface
  Regular syscall marshaled in a structure and copied into

 shared memory Xen-style ring buffer
  Kernel polls for new requests and user process polls for

 responses
 Notification via IPI in the future

  User level library
  Library calls (eg. printf_async) provide descriptors that the

 user program can wait on
  Single library call can contain many syscalls
 Wait on a group of syscall descriptors

5

Asynchronous Remote Syscall Interface

  Advantages
  Less contention on shared data structure
 No cache interference between kernel and user level

 programs
  Saves the cost of switching between user and kernel mode
  Batching and reordering of system calls

  Disadvantages
 Higher latency for a single call
  Potentially more copying to maximize asynchrony

6

Evaluation Methodology

  Compare to traditional
 synchronous syscalls
 Null syscall
  Cache contending syscall
  User process interference

  Measure
  Latency
  Throughput

7

Nehalem Intel Core i7

Evaluation - Null Syscall Latency

  SYSENTER 4x faster compared to interrupt-based
 implementation

  Our implementation is comparable

8

0!

100!

200!

300!

400!

500!

600!

700!

800!

900!

1 !

(Cold Cache)!

1 !

(Warm Cache)!

10! 100! 1000! 10000!

T
im

e
 P

e
r

It
e
ra

ti
o

n
 (

n
s
)!

Number of Iterations!

Null() Syscall Measurements!

SYS_ENTER Based Syscall!

Remote Syscall!

Interrupt Based Syscall!

Evaluation – Cache Contending Syscall

  Designed a syscall that writes to many cache lines to
 investigate cache contention

  Simulates a kernel intensive workload (e.g. file system)

9

Cache Contending Syscall Internals

  What does it cost to run the cache contending
 syscall? Local vs. Remote

  Expected: Poor performance with multiple cores
 servicing kernel calls due to cache contention

  Surprise: average service time comparable

10

St
d

De
vi

at
io

n
!

Num Cache Lines (64 Bytes Per Line) !

Std Deviation of Service Time!

Remote Syscalls!

Local Syscalls!

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

#" *" #(" %$" (&" #$*" $'(" '#$" #!$&" $!&*" &!+(" *#+$"

S
e
rv

ic
e
 T

im
e
 (

n
s
/C

a
c
h

e
 L

in
e
)!

Num Cache Lines (64 Bytes Per Line)!

Average Service Time

Remote Syscalls!

Local Syscalls!

Evaluation – Throughput Comparison

11

  Remote locked syscalls
 generally have higher
 throughput

  Remote syscalls do not
 interfere with user
 progress

Conclusions

  Effect of cache contention was not as significant as
 initially thought
  Cache contending syscall may not be representative of real

 workload

  Cost of code shipping may be higher than the cost
 of context switching and cache contentions

  Kernel processing on a remote core allows user
 processes to make more progress

12

Future Work

  Profiling different stages of both asynchronous
 remote syscall and synchronous syscall

  Performance counters for cache misses and other
 specific events

  Macrobenchmarks and a real kernel workload (file
 system, network stack, etc)

  Experiment with different architectures
 More cores
 No globally shared L3 cache

  Asynchronous notification through Interprocessor
 Interrupts

  Multiple kernel cores and load balancing issues
13

Questions?

14

This slide is intentionally left blank

  This slide is intentionally left blank

15

