
Tornado: Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System

Ben Gamsa� Orran Kriegery Jonathan Appavoo� Michael Stumm�

�Department of Electrical and Computer Engineering
University of Toronto, Toronto, Canada
fben,jonathan,stummg@eecg.toronto.edu

yIBM T.J. Watson Research Center
Yorktown Heights, New York
okrieg@us.ibm.com

Abstract

We describe the design and implementation of Tornado, a
new operating system designed from the ground up specifically
for today’s shared memory multiprocessors. The need for im-
proved locality in the operating system is growing as multipro-
cessor hardware evolves, increasing the costs for cache misses
and sharing, and adding complications due to NUMAness. Tor-
nado is optimized so that locality and independence in applica-
tion requests for operating system services—whether from mul-
tiple sequential applications or a single parallel application—
are mapped onto locality and independence in the servicing of
these requests in the kernel and system servers. By contrast,
previous shared memory multiprocessor operating systems all
evolved from designs constructed at a time when sharing costs
were low, memory latency was low and uniform, and caches
were small; for these systems, concurrency was the main per-
formance concern and locality was not an important issue.

Tornado achieves this locality by starting with an object-
oriented structure, where every virtual and physical resource
is represented by an independent object. Locality, as well as
concurrency, is further enhanced with the introduction of three
key innovations: (i) clusteredobjects that support the partition-
ing of contended objects across processors, (ii) a protected pro-
cedure call facility that preserves the locality and concurrency
of IPC’s, and (iii) a new locking strategy that allows all lock-
ing to be encapsulated within the objects being protected and
greatly simplifies the overall locking protocols. As a result of
these techniques, Tornado has far better performance character-
istics, particularly for multithreaded applications, than existing
commercial operating systems. Tornado has been fully imple-
mented and runs both on Toronto’s NUMAchine hardware and
on the SimOS simulator.

1 Introduction

Traditional multiprocessor operating systems, including
those commercially available today (e.g., IBM’s AIX,
Sun’s Solaris, SGI’s IRIX, HP’s HP/UX), all evolved
from designs when multiprocessors were generally small,
memory latency relative to processor speeds was compar-
atively low, memory sharing costs were low, memory ac-
cess costs were uniform, and caches and cache lines were

small.1 The primary performance concern for these sys-
tems was to maximize concurrency, primarily by identi-
fying contended locks and breaking them up into finer-
grained locks.

Modern multiprocessors, such as Stanford’s Dash and
Flash systems, Toronto’s NUMAchine, SGI’s Origin,
HP/Convex Exemplar, and Sun’s larger multiprocessors,
introduce new serious performance problems because
of (i) higher memory latencies due to faster processors
and more complex controllers, (ii) large write sharing
costs, (iii) large secondary caches, (iv) large cache lines
that give rise to false sharing, (v) NUMA effects, and
(vi) larger system sizes, that stress the bottlenecks in the
system software and uncover new ones. These character-
istics all require that the system software be optimized for
locality, something that was not necessary in the past. In
addition to maximizing temporal and spatial locality as
required for uniprocessors, optimizing for locality in the
context of modern multiprocessors also means:

� minimizing read/write and write sharing so as to
minimize cache coherence overheads,

� minimizing false sharing, and

� minimizing the distance between the accessing pro-
cessor and the target memory module (in the case of
NUMA multiprocessors).

To understand the importance of locality in modern
multiprocessors, consider a simple counter (for example,
a performance counter or a reference count) with multiple
threads concurrently updating it. Figure 1 shows the per-
formance of different implementations of such a counter
(in cycles per update) when run on SimOS simulating a
16 processor, 4 processor-per-node NUMA multiproces-
sor. In these experiments, sufficient delays are introduced
between counter updates to ensure that the counter is not
contended. The shared counter scales well if a system
is simulated with hardware parameters set to those typ-
ical of ten years ago (third curve from the bottom), but it

1In fact, most of these systems evolved from uniprocessor operating
system designs.



1 2 4 8 12 16

Processors

10

100

1000

10000

C
yc

le
s

array
shared
shared (old arch)
padded array
clustered object

Figure 1: Cycles per update of a counter (log scale).

performs orders of magnitude worse when simulating a
modern shared memory multiprocessor, such as NUMA-
chine (top-most curve).2 The counter performs no better
when the counter is converted to an array with each pro-
cessor updating its own counter individually (complicat-
ing the extraction of the total counter value) because of
false sharing. Good performance can be achieved only
by additionallypadding each array entry to the secondary
cache line size, or by applying the clustered object tech-
niques described later in this paper (bottom two curves).

In general, data structures that may have been efficient
in previous systems, and might even possess high levels
of concurrency, are often inappropriate in modern sys-
tems with high cache miss and write sharing costs. More-
over, as the counter example above demonstrates, a sin-
gle poorly constructed component accessed in a critical
path can have a serious performance impact. While the
importance of locality has been recognized by many im-
plementors of shared memory multiprocessor operating
systems, it can be extremely difficult to retrofit locality
into existing operating system structures. The partition-
ing, distribution, and replication of data structures as well
as the algorithmic changes needed to improve locality are
difficult to isolate and implement in a modular fashion,
given a traditional operating system structure.

The fact that existing operating system structures have
performance problems, especially when supporting par-
allel applications, is exemplified in Figure 2, which
shows the results of a few simple micro-benchmarks run
on a number of commercial multiprocessor operating sys-
tems.3 For each commercial operating system consid-
ered, there is a significant slowdown when simple op-
erations are issued in parallel that should be serviceable
completely independently of each other.

In this paper, we describe the design and implemen-
tation of Tornado, a new shared memory multiproces-
sor operating system that was designed from the ground
up with the primary overriding design principle of map-
ping any locality and independence that might exist in
OS requests from applications to locality and indepen-

2Also, although not shown, the numberof cycles required per update
varies greatly for the different threads due to NUMA effects.

3While micro-benchmarks are not necessarily a good measure of
overall performance, these results do show that the existing systems can
have performance problems.

1 2 4 8 12 16
1

10

100 page faults

1 2 3 4 

1

10

1 2 4 8 12 16 
1

10

100

Sl
ow

 D
ow

n fstats

1 2 3 4 

1

10

1 2 4 8 12 16
Processors 

1

10

100 thread creations

sgi
convex
ibm
sun
tornado

1 2 3 4 

1

10

Figure 2: Normalized cost (log scale) of simultaneously per-
forming on n processors: n in-core page faults (top), n fstats
(middle), and n thread creations/deletions (bottom) for 5 com-
mercial shared memory multiprocessor operations systems and
for Tornado. A full description of these experiments can be
found in Section 7.

dence in the servicing of these requests in the operating
system kernel and servers. More specifically, Tornado is
designed to service all OS requests on the same proces-
sor they are issued on, and to handle requests to different
resources without accessing any common data structures
and without acquiring any common locks. As a result,
Tornado does not exhibit the difficulties of the aforemen-
tioned systems (see Figure 2). Moreover, we found that
we could achieve this by using a small number of rela-
tively simple techniques in a systematic fashion. As a re-
sult, Tornado has a simpler structure than other multipro-
cessor operating systems, and hence can be more easily
maintained and optimized.

Tornado uses an object-oriented approach, where ev-
ery virtual and physical resource in the system is repre-
sented by an independent object, ensuring natural local-
ity and independence for all resources. Aside from its
object-orientedstructure, Tornado has three additional in-
novations that help maximize locality (as well as concur-
rency). First, Clustered Objects allow an object to be par-
titioned into representative objects, where independent
requests on different processors are handled by different
representatives of the object in the common case. Thus,
simultaneous requests from a parallel application to a sin-
gle virtual resource (i.e., page faults to different pages of
the same memory region) can be handled efficiently pre-
serving as much locality as possible.

Second, the Tornado Protected Procedure Call facil-
ity maps the locality and concurrency in client requests
to the servicing of these requests in the kernel and sys-



tem servers, and yet performs competitively with the best
uniprocessor IPC facilities. Thus, repeated requests to
the same server object (such as a read for a file) are ser-
viced on the same processor as the client thread, and con-
current requests are automatically serviced by different
server threads without any need for data sharing or syn-
chronization to start the server threads.

Finally, Tornado uses a semi-automatic garbage collec-
tion scheme that facilitates localizing lock accesses and
greatly simplifies locking protocols. As a matter of prin-
ciple, all locks are internal to the objects (or more pre-
cisely their representatives) they are protecting, and no
global locks are used. In conjunction with clustered ob-
ject structures, the contention on a lock is thus bounded
by the clients of the representative being protected by the
lock. With the garbage collection scheme, no additional
(existence) locks are needed to protect the locks internal
to the objects. As a result, Tornado’s locking strategy
results in much lower locking overhead, simpler lock-
ing protocols, and can often eliminate the need to worry
about lock hierarchies.

The foundation of the system architecture is Tornado’s
object-oriented design strategy, described in Section 2.
This is followed by a description of the three key com-
ponents discussed above: clustered objects (Section 3),
locking (Section 5), and protected procedure calls (Sec-
tion 6), with a short interlude to consider memory alloca-
tion issues in Section 4. Although we focus primarily on
the Tornado kernel, it is important to note that these com-
ponents are also used in the implementation of the Tor-
nado system servers.

Tornado is fully implemented (in C++), and runs on
our 16 processor NUMAchine [14, 31] and on the SimOS
simulator [27]; it supports most of the facilities (e.g.,
shells, compilers, editors) and services (pipes, TCP/IP,
NFS, file system) one expects. Experimental results that
demonstrate the performance benefits of our design are
presented in Section 7, followed by an examination of re-
lated work in Section 8 and concluding remarks in Sec-
tion 9.

2 Object-oriented structure

Operating systems are driven by the requests of appli-
cations on virtual resources such as virtual memory re-
gions, network connections, threads, address spaces, and
files. To achieve good performance on a multiprocessor,
requests to different virtual resources should be handled
independently; that is, without accessing any shared data
structures and without acquiring any shared locks. One
natural way to accomplish this is to use an object-oriented
strategy, where each resource is represented by a different
object in the operating system.

As an example, Figure 3 shows, in a slightly simpli-
fied form, the key objects used for memory management
in Tornado. On a page-fault, the exception is delivered to
the Process object for the thread that faulted. The Process

Figure 3: The key memory managementobject relationships in
Tornado.

object maintains the list of mapped memory regions in the
process’s address space, which it searches to identify the
responsible Region object to forward the request to. The
region translates the fault address into a file offset, and
forwards the request to the File Cache Manager (FCM)
for the file backing that portion of the address space. The
FCM checks if the file data is currently cached in mem-
ory. If it is, then the address of the corresponding physi-
cal page frame is returned to the Region, which makes a
call to the Hardware Address Translation (HAT) object to
map the page, and then returns. Otherwise, the FCM re-
quests a new physical page frame from the DRAM man-
ager, and asks the Cached Object Representative (COR)
to fill the page from a file. The COR then makes an upcall
to the corresponding file server to read in the file block.
The thread is re-started when the file server returns with
the required data.

This example illustrates the advantage of employing
an object-oriented approach. In the performance criti-
cal case of an in-core page fault, all objects invoked are
specific to either the faulting process or the file(s) back-
ing that process; the locks acquired and data structures
accessed are internal to the objects. Hence, when dif-
ferent processes are backed by (logically) different files,
there are no potential sources of contention. Also, for
processes running on different processors, the operating
system will not incur any communication misses when
handling their faults. In contrast, many operating systems
maintain a global page cache or a single HAT layer which
can be a source of contention and offers no locality.

Localizing data structures in the Tornado fashion re-
sults in some new implementation and policy tradeoffs.
For example, without a global page cache, it is difficult
to implement global policies like a clock replacement al-
gorithm in its purest form. Memory management in Tor-
nado is based on a working set policy (similar to that em-
ployed by NT [10]), and most decisions can be made local
to FCMs.

In Tornado, most operating system objects have multi-
ple implementations, and the client or system can choose
the best implementation to use at run time. The imple-
mentation can be specific to the degree of sharing, so
implementing an object with locking protocols and data
structures that scale is only necessary if the object is
widely shared. As a result, a lower overhead implementa-
tioncan be used when scalability is not required. We have
found the object-oriented structure of Tornado to greatly
simplify its implementation, allowing us to initially im-
plement services using only simple objects with limited



concurrency, improving the implementation only when
performance (or publication) required it. In the future we
expect to be able to dynamically change the objects used
for a resource.

Although our object-oriented structure is not the only
way to get the benefits of locality and concurrency, it is
a natural structuring technique and provides the founda-
tion for other Tornado features such as the clustered ob-
ject system [24] and the building block system [1].

3 Clustered Objects

Although the object-oriented structure of Tornado can
help reduce contention and increase locality by map-
ping independent resources to independent objects, some
components, such as a File Cache Manager (FCM) for
a shared file, a Process object for a parallel program, or
the system DRAM Manager, may be widely shared and
hence require additional locality enhancing measures.

Common techniques used to reduce contention for
heavily shared components include replication, distribu-
tion, and partitioning of objects. For example, for the
(performance) counter discussed in the introduction, full
distribution of the counter is used to ensure each proces-
sor can independently update its component, at the cost
of making the computation of the true current value (i.e.,
the sum of all elements) more complicated. As another
example, consider the thread dispatch queue. If a sin-
gle list is used in a large multiprocessor system, it may
well become a bottleneck and contribute significant ad-
ditional cache coherency traffic. By partitioning the dis-
patch queue so that each processor has a private list, con-
tention is eliminated.4

These types of optimizations have been applied before
in other systems, but generally in an ad hoc manner, and
only to a few individual components. The goal of Tor-
nado’s clustered object system is to facilitate the applica-
tion of these techniques as an integral part of a system’s
overall design [24].

3.1 Overview

A clustered object presents the illusion of a single object,
but is actually composed of multiple component objects,
each of which handles calls from a specified subset of the
processors (see Figure 4). Each component object repre-
sents the collective whole for some set of processors, and
is thus termed a clustered object representative, or just
rep for short. All clients access a clustered object using a
common clustered object reference (that logically refers
to the whole), with each call to the clustered object auto-
matically directed to the appropriate local representative.

The internal structure of a clustered object can be de-
fined in a variety of ways. One aspect of this variety

4However, it too has complications, due to the difficulty of ensuring
good load balancing and respecting system-wide priorities.

Figure 4: An abstract depiction of a clustered object.

is the degree of clustering. There might be one rep for
the entire system, one rep per processor, or one rep for
a cluster of neighboring processors. For example, in the
case of the memory management subsystem of Tornado,
the Cached Object Representative (COR) has a single rep
that is shared across all processors (thus acting as a regu-
lar shared object) since it is read-mostly and only invoked
when file I/O is required (which occurs relatively infre-
quently). The Region is also read-mostly, but is on the
critical path for all page faults, and hence can benefit from
partial replication, with one rep per cluster of processors.
On the other hand, the FCM maintains the state of the
pages of a file cached in memory, and hence can benefit
from a partitioning strategy, where the hash table for the
cache is distributed across a number of reps (at least for
files that are being widely shared).

With multiple reps per object, it is necessary to keep
them consistent. A variety of strategies are possible, in-
cluding invalidation and update protocols. Coordination
between reps of a given object can occur either through
shared memory or a form of remote execution in Tor-
nado called remote PPCs (described later in Section 6).
Although shared memory is generally more efficient for
fine-grained operations, it can sometimes be cheaper to
incur the cost of the remote execution facility and per-
form the operation local to the data, if there is the pos-
sibility of high contention, or if there is a large amount of
data to be accessed. With an efficient remote execution
facility, the tradeoff point can be as low as a few tens of
cache misses.

The use of clustered objects has several benefits. First,
it facilitates the types of optimizationscommonly applied
on multiprocessors, such as replication or partitioning of
data structures and locks. Second, it preserves the strong
interfaces of object-oriented design so that clients need
not concern themselves with the location or organization
of the reps, and just use clustered object references like
any other object reference. All complexity resides in the
internal implementation of the clustered objects and the
clustered object system.

Third, clustered objects enable incremental optimiza-
tions. Initially, a clustered object might be implemented
with just one rep serving requests from all processors.
This implementation would be almost identical to a corre-
sponding non-clustered implementation. If performance
requirements demand it, then the clustered object can be



successively optimized independently of the rest of the
system.

Fourth, several different implementations of a clus-
tered object may exist, each with the same external inter-
face, but each optimized for different usage patterns.

Finally, the clustered object system supports dynamic
strategies where the specific type of representative can be
changed at run time based on the type and distribution of
requests.

3.2 Application of Clustered Objects

In our implementation, large-grain objects, like FCM,
Region, and Thread objects, are candidates for clustered
objects, rather than smaller objects like linked lists. One
example that illustrates many of the benefits of our ap-
proach is the Process object.

Because a Process can have multiple threads running
on multiple processors and most of the Process object ac-
cesses are read-only, the Process clustered object is repli-
cated to each processor the process has threads running
on. On other processors, a simple rep is used that redi-
rects all calls to one of the full reps. Some fields, like the
base priority, are updated by sending all modifications to
the home rep and broadcasting an update to all the other
reps. Other components, like the list of memory Regions
in the process, are updated on demand as each rep ref-
erences the Region for the first time, reducing the cost
of address space changes when Regions are not widely
shared. If threads of the program are migrated, the cor-
responding reps of the Process object are migrated with
them to maintain locality.

As an illustration of some of the tradeoffs with clus-
tered objects, consider Figure 5(a) which shows the per-
formance of page fault handling for a multithreaded pro-
gram (more details on the experiments are provided in
Section 7). With multiple reps for the Process object, the
Region list is replicated and page faults can be processed
with full concurrency, compared to the simple shared
case where a lock on the Region list creates a bottleneck.
The clustered object structure effectively splits the Pro-
cess lock among the representatives, allowing each rep
to lock its copy independently, thus eliminating both the
write-sharing of the lock and its contention. Although it
would appear that a similar effect could be achieved with
a reader-writer lock protecting a single shared Process
object, the lock is normally held for such a short duration
that the overheads of the reader-writer lock (including the
write-sharing it entails) would overshadow any concur-
rency benefits.

However, by replicating the Process object, other oper-
ations, such as deleting a memory Region, become more
expensive (see Figure 5(b)) because of the need to keep
the Process object reps consistent. This tradeoff is gener-
ally worthwhile for the Process object, since page faults
are much more common than adding or deleting regions.

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

a) Page Fault Handling

1 rep
multi rep

1 2 4 8 12 16
Processors

5

1

b) Region Deletion

Figure 5: Comparison of the performance of a Process clus-
tered object with one rep vs. a Process clustered object with n
reps (one per processor) for (a) in-core page fault handling and
(b) Region destruction

3.3 Clustered Object implementation

The key to the implementation of clustered objects is the
use of per-processor translation tables. For each clustered
object the tables maintain a pointer to the rep responsible
for handling method invocations for the local processor.
A clustered object reference is just a pointer into the table,
with the extra level of indirection through the local table
providing the mechanism for locating the local rep. (A
clustered object call thus requires just one extra instruc-
tion.) By having each per-processor copy of the table lo-
cated at the same virtual address, a single pointer into the
table will refer to a different entry (the rep responsible for
handling the invocation) on each processor.

Because it is generally unknown a priori which reps
will be needed when and where, reps are typically created
on demand when first accessed. This is accomplished
by requiring each clustered object to define a miss han-
dling object5 and by initializing all entries in the transla-
tion tables to point to a special global miss handling ob-
ject (see Figure 6). When an invocation is made for the
first time on a given processor, the global miss handling
object is called. Because it knows nothing about the in-
tended target clustered object, it blindly saves all regis-
ters and calls the clustered object’s miss handler to let it
handle the miss. The object miss handler then, if neces-
sary, creates a rep and installs a pointer to it in the trans-
lation table; otherwise, if a rep already exists to handle
method invocations from that processor, a pointer to it is
installed in the translation table. In either case, the object
miss handler returns with a pointer to the rep to use for the
call. The original call is then restarted by the global miss
handler using the returned rep, and the call completes as
normal, with the caller and callee unaware of the miss
handling work that took place. This whole process re-
quires approximately 150 instructions,6 which although
non-negligible, is still inexpensive enough to be used as
a general purpose mechanism for triggering dynamic ac-
tions beyond just inserting a rep into the table.7

5Default miss handlers are provided for the common cases.
6All references to instructions in the paper are for MIPS instructions,

which should be comparable to most other RISC processors. Results
from full experimental tests are presented in Section 7.

7The entry can also be pre-filled to avoid the cost of the miss, should
the rep structure be known in advance.



Figure 6: Overview of clustered object implementation. Clus-
tered object i has been accessedon P0 and P1, where reps have
been installed; P2 has not yet accessed object i.

Miss handling requires that all public methods of a
clustered object be virtual and that a standard error code
type be returned to allow the global miss handler to return
an error when necessary. This restriction has not been
a problem for us, since Tornado uses an object-oriented
structure, and since most clustered objects have abstract
base classes to allow different implementations.

To allow the global miss handler to locate the clustered
object, the clustered object miss handler is installed at
creation time in a global miss handling object table. This
table is not replicated per-processor, but instead is parti-
tioned, with each processor receiving a fraction of the to-
tal table. The global miss handler can then use the ob-
ject reference that caused the miss to locate the clustered
object’s miss handler. This interaction with the clustered
object system adds approximately 300 instructions to the
overhead of object creation and destruction. Again, al-
though significant, we feel the various benefits of clus-
tered objects make this cost reasonable, especially if the
ratio of object calls to object creation is high, as we ex-
pect it to be.

Finally, the translation tables are likely to be sparsely
populated, because (i) there can be a large number
of clustered objects (tens of thousands per processor),
(ii) the translation table on each processor has to be large
enough to handle all objects created anywhere in the sys-
tem, and (iii) many clustered objects are only accessed on
the processor on which they are created. As a result, the
translation tables reside in virtual memory (even in the
kernel), with pages only allocated when needed. How-
ever, instead of paging out pages when memory runs low,
our implementation simply discards victim pages, since
the table is really just a cache of entries, with the miss
handlers of the clustered objects keeping track of the ex-
istence and location of the reps (i.e., they maintain the
backing copy).8

8As an optimization, it would make sense to compress the victim
pages to a fixed size compression table (i.e., second-level cache), since
many of the pages are sparsely populated, but we have not yet imple-
mented this.

4 Dynamic Memory Allocation

For the clustered object approach to be effective, it re-
quires a facility that supports processor-local memory al-
location. The memory allocator must be efficient, highly
concurrent, and maximize locality both in its internal de-
sign and in the memory it returns on allocation.

Tornado’s initial memory allocation facility used pools
of memory per processor to support locality in memory
allocations, using a design similar to that of [23]. How-
ever, we found that per-processor pools were not suffi-
cient due to cache line false sharing problems that occur
with small block allocations. We addressed this by pro-
viding a separate per-processor pool for small blocks that
are intended to be accessed strictly locally.9 Additionally,
to address NUMA locality issues, the Tornado allocator
partitions the pools of free memory into clusters. Al-
though this requires an extra check on each free to deter-
mine the home cluster of the target block, this adds only
three instructions to the critical path, most of which can
be hidden in super-scalar processors. Finally, to support
user-level allocations, instead of disabling interrupts, we
use an optimized locking protocol that takes advantage of
the common availability of load-linked/store-conditional
instructions in today’s processors to reduce locking over-
head to just four instructions.

The allocator requires only 16 instructions for common
case allocation, and 21 instructions for the common case
deallocation (including checks for remote frees and over-
full free lists), while providing locality, concurrency, and
efficiency.10

5 Synchronization

There are two kinds of locking issues in most systems:
those related to concurrency control with respect to mod-
ifications to data structures, which we refer to simply as
locking, and those related to protecting the existence of
the data structures; i.e., providing existence guarantees
to ensure the data structure containing the variable is not
deallocated during an update. We discuss each in turn.

5.1 Locking

One of the key problems with respect to locking is its
overhead. In addition to the basic instruction overhead
of locking, there is the cost of the extra cache coherence
traffic due to the intrinsic write-sharing of the lock. With
Tornado’s object-oriented structure it is natural to encap-
sulate all locking within individual objects. This helps re-
duce the scope of the locks and hence limits contention.

9Another approach would been to make the minimum block size of
the allocator the same as the cache line size, but at 128 bytes, this can
increase internal fragmentation considerably.

10Although difficult to accurately measure on a super-scalar out-of-
order processor, on a MIPS R10000 processor the cost of a malloc/free
pair was about 7 cycles over and above that of a null function call.



Moreover, the use of clustered objects helps limit con-
tention further by splitting single objects into multiple
representatives thus limiting contention for any one lock
to the number of processors sharing an individual repre-
sentative. This allows us to optimize for the uncontended
case. We use highly efficient spin-then-block locks, that
require only two dedicated bits11 from any word (such
as the lower bits of an aligned pointer), at a total cost of
20 instructions for a lock/unlock pair in the uncontended
case.12

5.2 Existence guarantees

Providing existence guarantees is likely the most diffi-
cult aspect of concurrency control. The traditional way
of eliminating races between one thread trying to lock an
object and another deallocating it, is to ensure that all ref-
erences to an object are protected by their own lock, and
all the references are used only while holding the lock on
the reference. The disadvantage of this approach is that
the reference lock in turn needs its own protector lock,
with the pattern repeating itself until some root object that
can never be deallocated. This results in a complex global
lock hierarchy that must be strictly enforced to prevent
deadlock, and it encourages holding locks for long peri-
ods of time while operations on referenced objects (and
their referenced objects) are performed. For example, in
the page fault example, the traditional approach would re-
quire holding a lock on the process object for the duration
of the page fault, solely to preserve the continued exis-
tence of the Regions it references.13

For Tornado, we decided to take a somewhat differ-
ent approach, using a semi-automatic garbage collection
scheme for clustered objects. With this approach, a clus-
tered object reference can be safely used at any time,
whether any locks are held or not, even as the object is
being deleted. This simplifies the locking protocol, often
eliminating the need for a lock completely (for example,
for read-only objects). It also removes the primary rea-
son for holding locks across object invocations, increas-
ing modularity and obviating the need for a lock hierar-
chy in most cases.

5.3 Garbage collection implementation

The key idea in the implementation of our semi-
automatic garbage collection scheme is to distinguish

11One bit indicates if the lock is held and the other indicates if there
are queued threads. A separate shared hash table is used to record the
list of waiting threads.

12We measured the lock time on an R10000 processor in a manner
similar to memory allocation, and found it cost about 10 cycles over the
cost of a pair of null function calls.

13A different approachaltogether is to use lock-free concurrencycon-
trol. However, practical algorithms often require additional instructions
not currently found on modern processors, and they have their own dif-
ficulties in dealing with memory deallocation [15, 18]

between what we call temporary references and persis-
tent references. Temporary references are all clustered
object references that are held privately by a single
thread, such as references on a thread’s stack; these
references are all implicitly destroyed when the thread
terminates. In contrast, persistent references are those
stored in (shared) memory; they can be accessed by
multiple threads and might survive beyond the lifetime
of a single thread.

The distinction between temporary and persistent ref-
erences is used to divide clustered object destruction into
three phases. In the first phase, the object ensures that all
persistent references to it have been removed. This is part
of the normal cleanup procedure required in any system;
when an object is to be deleted, references to the object
must be removed from lists and tables and other objects.

In the second phase, the clustered object system in-
sures that all temporary references have been eliminated.
To achieve this, we chose a scheme that is simple and ef-
ficient. It is based on the observation that the kernel and
system servers are event driven and that the service times
for those events are relatively short. In describing our
scheme, first consider the uniprocessor case. The num-
ber of operations (i.e., calls to the server from some exter-
nal client thread) currently active is maintained in a per-
processor counter; the counter is incremented every time
an operation is started and decremented when the opera-
tion completes. Thus, when the count is zero, we know
there can be no live temporary references to any object
on that processor, and phase two ends.14 A concern with
this approach is that there is no guarantee that the count
of live threads will ever actually return to zero, which
could lead to a form of starvation. However, since sys-
tem server calls tend to be short, we do not believe this to
be a problem in practice.15

For the multiprocessor case, we need to also consider
threads runningon other processors with temporary refer-
ences to the object. Each clustered object can easily know
which set of processors can access it, because the first ac-
cess to an object on a processor always results in a trans-
lation table miss, and any reference stored in an object
can be accessed only by the set of processors that have
already made an access to the object. Hence, the set of
processors can be determined when cleaning up the per-
sistent references by determining which processors have
objects with a persistent reference to the target clustered
object and forming the union of the set. We use a circu-
lating token scheme to determine that the per-processor
counters have reached zero on each processor of the tar-
get processor set, with the token visiting each processor

14This is a much stronger requirement than actually required; it
would, for example, suffice to ensure that all threads have completed
that were active when object destruction was initiated, but that would
require keeping track of much more information that just a raw count.

15One approach under consideration is to swap the active count vari-
able periodically, so that the countof new calls is isolated from the count
of previous calls. More careful investigation is still required.



that potentially holds references to the object being de-
stroyed. When a processor receives the token it waits un-
til its count of active threads goes to zero, before passing
it on to the next processor. When the token comes back to
the initiating processor it knows that the active count has
gone to zero on all processors since it last had the token.16

Finally, when all temporary references have been elim-
inated, the clustered object can be destroyed (i.e., its reps
can be destroyed, their memory released, and the clus-
tered object entry freed).

Unfortunately, we have not yet tuned this code, so it
currently requires approximate 270 instructions to fully
deallocate an object once it has been handed to the
cleanup system.

6 Interprocess communication

In a microkernel system like Tornado that relies on client-
server communication, it is important to extend the lo-
cality and concurrency of the architecture beyond the in-
ternal design of individual components to encompass the
full end-to-end design. For example, in the memory man-
agement subsystem, each page fault is an implicit call
from the faulting thread to the process object; each call
by the Cached Object Representative (COR) to its cor-
responding file object in the file system is another cross-
process object call; and each call from the file system to
the device driver object is another. Concurrency and lo-
cality in these communications are crucial to maintaining
the high performance that exists within the various Tor-
nado subsystems and servers.

Tornado uses a Protected Procedure Call (PPC)
model [13], where a call from a client object to a server
object acts like a clustered object call that crosses from
the protection domain of the client to that of the server,
and then back on completion. The key advantages of
the PPC model are that: (i) client requests are always
serviced on their local processor; (ii) clients and servers
share the processor in a manner similar to handoff
scheduling; and (iii) there are as many threads of control
in the server as client requests. This also means that
any client-specific state maintained in the server can
be held local to the client, reducing unnecessary cache
traffic. For example, for page faults to memory-mapped
files that require I/O, all of the state concerning the
file that the client has mapped can be maintained in
data structures local to the thread that is accessing the
mapped file. In some sense, this is like extending the
Unix trap-to-kernel process model to all servers (and
the kernel for Tornado), but without needing to dedicate
resources to each client, as all clients use the same port
to communicate to a given server, including the kernel.
The PPC model is thus a key component to enabling
locality and concurrency within servers.

16To deal with scalability, there can be multiple tokens circulating,
covering different subsets of processors.

To support cross-process clustered object calls, a stub
generator is provided that generates stubs based on the
public interface of a clustered object. The clustered ob-
ject system also includes support in the way of a few ex-
tra bits in the object translation table that identify those
clustered objects that can accept external calls. To en-
sure references invoked from an external source are valid,
the PPC subsystem checks to ensure they fall within the
translation table, are properly aligned, and pass the secu-
rity bits check. This makes it easy to use clustered object
references, in conjunction with the identity of the target
server, as a global object reference. As a result, cross-
process clustered object calls are made directly to the lo-
cal rep of the target object, providing the same locality
and concurrency benefits for cross-process calls as for in-
process calls.

The PPC facility also supports cross-processor com-
munication among clustered objects. Remote PPCs are
used primarily for device interactions, for function ship-
ping between the reps of a clustered object to coordi-
nate their state where preferred over shared memory ac-
cess (i.e., data shipping), and for operating on processor-
local exception-level state (such as the per-processor PPC
thread cache).

6.1 PPC implementation

The implementation of our PPC facility involves on-
demand creation of server threads to handle calls and the
caching of the threads for future calls. To maximize per-
formance in a multiprocessor environment, state infor-
mation about a PPC endpoint (a Tornado port), including
a cache of ready threads, is maintained on a per-processor
basis. This allows a full call and return to be completed
without the need for any locks (beyond disabling inter-
rupts as normally happens as part of the PPC trap) or ac-
cesses to shared data (in the common case that the port
cache is not empty).

For each server that has previously been accessed on a
processor, the processor maintains a list of worker threads
to handle calls,which grows and shrinks according to the
demand on the server on the processor. A PPC call in-
volves just a trap, a couple of queue manipulations to de-
queue the worker and enqueue the caller on the worker,
and a return-from-trap to the server, with a similar se-
quence for a return PPC call. Parameter passing registers
are left untouched by the call sequence and hence are im-
plicitly passed between client and server.

On first use, as well as for the uncommon case of there
being no workers available on the port, the call is redi-
rected to a special MetaPort, whose sole purpose is to
handle these special cases. The workers for this port have
resources pre-reserved for them so that these redirected
calls will always succeed.

Although the design is primarily targeted at maximiz-
ing concurrency, a common case call and return requires
only 372 instructions, including 50 instructions for user-
level register save and restore, 14 for stubs, 49 for the



clustered object security checking code, and 30 instruc-
tions for debugging. Stacks can optionally be mapped
dynamically among all threads, which adds 62 instruc-
tions to the base latency, but allows the memory to be
reused across servers, minimizing the cache footprint.
This leaves 167 instructions for the core cost of a PPC
call and return, which compares favorably to the corre-
sponding cost of 158 instructions for two one-way calls
for one of the fastest uniprocessor IPC systems running
on the same (MIPS R4000 based) processor [20]. In addi-
tion, up to 8KB of data can be exchanged between client
and server (in both directions) through remapping a re-
gion for an additional cost of only 82 instructions.

The final component of the PPC system, remote PPCs,
are like regular PPCs with a pair of remote interrupts on
the call and return to connect the two sides. One key dif-
ference, however, is that a full context switch is required
on both sides for both the call and return. One natural
optimization we have not yet applied would be to have
the caller spin in the trap handler for a few microseconds
before calling the scheduler in case the remote PPC call
completes quickly, avoiding the overhead of the two con-
text switches on the calling side. Still more expensive
than we would like, the remote PPC call/return pair re-
quires approximately 2200 instructions (including 1300
for two remote interrupt exchanges), plus the cost of four
cache transfers (a pair for each of the remote PPC call and
return exchanges).17

7 Experimental results

The results presented in this paper are based on both hard-
ware tests on a locally developed 16 processor NUMA-
chine prototype [14, 31] and the SimOS simulator from
Stanford [27]. The NUMAchine architecture consists of
a set of stations (essentially small, bus-based multipro-
cessors) connected by a hierarchy of rings. It uses a novel
selective broadcast mechanism to efficiently handle in-
validations, as well as broadcast data. The test machine
has 4 stations, each with 4 processors and a memory mod-
ule (for a total of 16 processors), connected by a single
ring. The final machine will have 48 processors with a
two-level hierarchy of rings. The processors are 150MHz
MIPS R4400 processors with 16K I/D L1 cache and 1MB
L2 cache, all direct mapped. The bus and rings are 64
bits wide and clocked at 40MHz,18 giving a bandwidth
of 320MB/s for each link. The key latencies for the sys-
tem are: 15 cycles for the secondary cache, 270 for local
memory, and approximately 370 cycles for remote mem-
ory.

Although the simulator does not model precisely the
same architecture as our hardware (in particular the in-
terconnect and the coherence protocol implementation

17We expect to reduce this to about 600 instructions when optimiza-
tions already applied to the local case are applied to the remote call path.

18The final version will run at 50MHz.

1 2 3 4 6 8 

Processors

0

50

100

C
yc

le
s

numa pfault 1 rep
simos pfault 1 rep
numa pfault multi rep
simos pfault multi rep
numa stat
simos stat

Figure 7: Comparison of SimOS vs. NUMAchine for various
benchmarks.

are different), it does model a similar NUMA architec-
ture based on the MIPS R4400 processor with compo-
nent sizes, latencies, and bandwidths configured similar
to those of NUMAchine. In addition, the simulator has
been validated by previous researchers and by ourselves
using both micro- and macro-benchmarks. For example,
Figure 7 shows the results of a number of different tests
run on SimOS and our hardware. (The tests are discussed
in more detail below.) Although the exact cycle counts
are not identical, the general trends match closely, allow-
ing us to reasonably evaluate the effect of various trade-
offs in the Tornado architecture.

In this section we examine the performance of the indi-
vidual components presented in this paper, and then look
at some higher level microbenchmarks run under both
Tornado and other current multiprocessor systems.

7.1 Component results

Figure 8(a) shows the results of a number of concurrent
stress tests on the components described in this paper;
namely, dynamic memory allocation (n threads malloc
and free), clustered object miss handling (n threads in-
voke independent clustered objects not in the table), clus-
tered object garbage collection (n threads trigger garbage
collection), and protected procedure calling (n threads
call a common clustered object in another address space).
Results are collected over a large number of iterations and
averaged separately for each thread. Figure 8(a) includes
the average time in cycles across all threads, as well as
range bars indicating the range of thread times.

These results show that memory allocation and miss
handlingperform quite well although there is a lot of vari-
ance across the threads for the garbage collection and
PPC tests. As the number of processors increases, the
range remains consistent, but the overall average slowly
increases. If we compare the results from NUMAchine
to those on SimOS, shown in Figure 8(b), we see the
same sort of trend (except that it is worse under SimOS).
However, running the same tests with SimOS set to sim-
ulate the caches with 4-way associativity, the results be-
come almost perfectly uniform and flat (see Figure 8(c)).
This indicates that the cause of the variability is local



1 2 4 8 12 16
Processors

500

1000

1500

2000

2500
C

yc
le

s

a) NUMAchine

gc
ppc
miss
malloc

1 2 4 8 12 16
Processors

500

1000

1500

2000

2500
b) NUMAchine/SimOS

numa gc
numa ppc
numa miss
numa malloc
simos gc
simos ppc
simos miss
simos malloc

1 2 4 8 12 16
Processors

500

1000

1500

2000

2500
c) SimOS

simos4way gc
simos4way ppc
simos4way miss
simos4way malloc

Figure 8: Nanobenchmarks: Garbage collection (gc), Protected Procedure Calls (ppc), in-core page miss handling (miss), and
dynamic memory allocation (malloc), run under Tornado on NUMAchine (numa) and under Tornado on SimOS (simos). The left
figure (a) shows the average number of cycles required on NUMAchine for n threads with range bars indicating the range over all
threads. The middle figure (b) shows the average cycles requiredon NUMAchine and SimOS. The right figure (c) shows the average
cycles required on SimOS configured with 4-way set associative caches.

cache conflicts—caused by multiple data structures oc-
casionally mapping to the same cache block on some
processors—and is not due to some unforeseen sharing.

7.2 Microbenchmarks

To evaluate the effectiveness of the Tornado design at
a level above the individual components, we ran a few
multiprocessor operating system stress tests. The micro-
benchmarks are composed of three separate tests: thread
creation, in-core page faults, and file stat, each with n

worker threads performing the operation being tested:

Thread Creation Each worker successively creates
and then joins with a child thread (the child does
nothing but exit).

In-Core Page Fault Each worker thread accesses a set
of in-core unmapped pages in independent (separate
mmap) memory regions.

File Stat Each worker thread repeatedly fstats an inde-
pendent file.

Each test was run in two different ways; multithreaded
and multiprogrammed. In the multithreaded case, the test
was run as described above. In the multiprogrammed
tests, n instances of the test were started with one worker
thread per instance. In all cases, the tests were run multi-
ple times in succession and the results were collected af-
ter a steady state was reached. Although there was still a
high variability from run to run and between the different
threads within a run, the overall trend was consistent.

Figure 9(a) shows normalized results for the different
tests on NUMAchine. Because all results are normalized
against the uniprocessor tests, an ideal result would be a
set of perfectly flat lines at 1. Overall, the results demon-
strate good performance, since the slowdown is usually
less than 50 percent. However, as with the component
tests, there is high variability in the results, which ac-
counts for the apparent randomness in the graphs.

Similar results are obtained under SimOS. Figure 9(b)
shows the raw times in microseconds for the multi-
threaded tests run under NUMAchine and SimOS. As

System OS # Cpus Legend
UofT NUMAchine Tornado 16 numa

SimOS NUMAchine Tornado 16 simos
SimOS 4waya Tornado 16 simos4way

SUN 450 UltraSparc II Solaris 2.5.1 4 sun
IBM G30 PowerPC 604 AIX 4.2.0.0 4 ibm

SGI Origin 2000 IRIX 6.4 40b sgi
Convex SPP-1600 SPP-UX 4.2 32c convex

asimulated 4-way set associative cache
bMaximum used in experiments is 16
cMaximum used in experiments is 8

Table 1: Platforms on which micro-benchmarks where run.

Operation Thread Creation Page Fault File Stat

NUMAchine 15 46 5
Sun 178 19 3
IBM 691 43 3
SGI 11 21 2
Convex 84 56 5

Table 2: Base costs, in microseconds, for thread creation,page
fault handling, and file stating, with a single processor.

with the component tests, setting SimOS to simulate 4-
way associative caches smooths out the results consider-
ably (Figure 9(c)).19

To see how existing systems perform, we ran the same
tests on a number of systems available to us (see Ta-
ble 1, Table 2, and Figure 10). The results demonstrate
a number of things. First, many of the systems do quite
well on the multiprogrammed tests, reflecting the effort
that has gone into improving multi-user throughput over
the last 10–15 years. However, the results are some-
what mixed for the multithreaded tests. In particular, al-
thoughSGI does extremely well on the multiprogrammed

19There is still an anomaly involving a single thread taking longer
than the others that we have yet to track down. This pulls up the average
at two processors, but has less effect on the average when there are more
threads running.



1 2 4 8 12 16
Processors

3

1

Sl
ow

 D
ow

n

a)

stat mt
pagefault mt
thread mt
stat mp
pagefault mp
thread mp

1 2 4 8 
Processors

0

20

40

60

M
ic

ro
se

co
nd

s

b)

numa stat mt
simos stat mt
numa pagefault mt
simos pagefault mt
numa thread mt
simos thread mt

1 2 4 8 
Processors

3

1

Sl
ow

 D
ow

n

c)

stat mt
pagefault mt
thread mt

Figure 9: Microbenchmarks: Cost of thread creation/destruction (thread), in-core page fault handling (pagefault), and file
stat (stat) with n worker threads running either in one process (mt) or in n processes with one thread per process (mp). The left
figure (a) shows slowdown relative to the uniprocessor case. The middle figure (b) shows the raw times in microseconds for the
multithreaded tests on NUMAchine and SimOS, and the right figure (c) shows the slowdown of the multithreaded tests run on SimOS
configured with 4-way set associative caches.

tests, it does quite poorly on the multithreaded tests.
This is particularly interesting when compared to results
on an older bus-based, 6-processor SGI Challenge run-
ning IRIX 6.2 (not shown), where the multiprogrammed
results are slightly worse and the multithreaded results
are quite a bit better. Overall, Sun performs quite well
with good multithreaded results and respectable multi-
programmed results; however, we only had a four proces-
sor system, so it is hard to extrapolate the results to larger
systems.

One possible reason for poor performance is load bal-
ancing at a very fine granularity. For example, we sus-
pect that the poor performance of AIX in the multipro-
grammed thread creation experiment is due to a shared
dispatch queue resulting in frequent thread migration.
While load balancing is important, for most workloads
systems like IRIX deal with it at a large granularity that
does not require a shared dispatch queue.

7.3 Summary of results

While Tornado is still very much an active research
project, the performance results obtained so far demon-
strate the strengths of our basic design. The cycle counts
provided throughout this paper for the costs of various
operations demonstrates base performance competitive
with commercial systems, which is important since scal-
ability is of limited value if the base overhead is too large.
In Section 7.1 we saw that the infrastructure of our sys-
tem is highly scalable, including the IPC, clustered ob-
ject, and the memory allocation facilities, providing the
foundation for scalable system services. In Section 7.2
we saw that, for simple microbenchmarks, our system ex-
hibits much better scalability than commercial systems.
While microbenchmark results are generally considered a
poor metric for comparison, the nearly perfect scalability
of Tornado compares favorably to the large (e.g., 100X
on 16 processors) slowdown for the commercial systems
on the multithreaded experiments. It seems unlikely that
this kind of a slowdown in the performance of such fun-
damental operations as page faults, thread creation, and

file state does not have a large impact on application per-
formance.

The disparity between the performance of the multi-
threaded and multiprogrammed results for the commer-
cial systems suggests that locality and locking overhead
on the operating system structures that represent a pro-
cess is a major source of slowdown. The process is only
a single example of a shared object, and we expect that
experimentation will demonstrate that commercial sys-
tems exhibit slowdown (for even multiprogrammed ex-
periments) when resources such as files or memory re-
gions are shared. In our future work we will investi-
gate the performance of Tornado when other resources
are shared, and study the performance of our system for
real applications.

8 Related work

A number of papers have been published on performance
issues in shared-memory multiprocessor operating sys-
tems, mostly in the context of resolving specific prob-
lems in a specific system [5, 6, 9, 22, 26, 28]. These sys-
tems were mostly uniprocessor or small-scale multipro-
cessor systems trying to scale up to larger systems. Other
work on locality issues in operating system structure were
mostly either done in the context of earlier non-cache-
coherent NUMA systems [8], or, as in the case of Plan 9,
were not published [25]. Two projects that were aimed
explicitly at large-scale multiprocessors were Hive [7],
and the precursor to Tornado, Hurricane [30]. Both inde-
pendently chose a clustered approach by connecting mul-
tiple small-scale systems to form either, in the case of
Hive, a more fault tolerant system, or, in the case of Hur-
ricane, a more scalable system. However, both groups
ran into complexity problems with this approach and both
have moved on to other approaches: Disco [4] and Tor-
nado, respectively.

Clustered objects. Concepts similar to clustered ob-
jects have appeared in a number of distributed systems,



1 2 4 8 12 16

Processors

1

10

Sl
ow

 D
ow

n
a) page faults

sgi
convex
ibm
sun
numa

n threads in 1 process 

1 2 4 8 12 16

Processors

1

10

b) fstats

1 2 4 8 12 16

Processors

1

10

c) threads creations

1 2 4 8 12 16
Processors

5

1

Sl
ow

 D
ow

n

d) page faults

n threads in n processes

1 2 4 8 12 16
Processors

5

1

e) fstats

1 2 4 8 12 16
Processors

5

1

f) thread creations

Figure 10: Microbenchmarks across all tests and systems. The top row (a–c) depicts the multithreaded tests with n threads in one
process. The bottom row (d–f) depicts the multiprogrammed tests with n processes, each with one thread. The leftmost set (a,d)
depicts the slowdown for in-core page fault handling, the middle set (b,e) depicts the slowdown for file stat, and the rightmost set
depicts the slowdown for thread creation/destruction. The systems on which the tests were run are: SGI Origin 2000 running IRIX
6.4, Convex SPP-1600 running SPP-UX 4.2, IBM 7012-G30 PowerPC 604 running AIX 4.2.0.0, Sun 450 UltraSparc II running
Solaris 2.5.1, and NUMAchine running Tornado.

most notably in Globe [19] and SOS [21]. In all these
cases (including Tornado’s clustered objects) the goal is
to hide the distributed nature of the objects from the users
of the objects while improving performance over a more
naive centralized approach. However, the issues faced in
a tightly coupled shared-memory multiprocessor are very
different from those of a distributedenvironment. For ex-
ample, communication is cheaper, efficiency (time and
space) is of greater concern, direct sharing is possible,
and the failure modes are simpler. Hence, the Tornado
clustered object system is geared more strongly towards
maximizing performance and reducing complexity than
the other systems.

Dynamic memory allocation. Our dynamic memory
allocation design borrows heavily from McKenney and
Slingwine’s design [23], which is one of the few pub-
lished works on multiprocessor memory allocation, in
particular for kernel environments. A survey paper by
Wilson et al [33] covers many of the other schemes,
but does not address multiprocessor or caching issues.
Grunwald et al examined cache performance of alloca-
tion schemes [16] and suggest a number of techniques
they felt would be most effective in dealing with local-
ity issues. Most of these techniques can be found in the
McKenney and Slingwine memory allocator (with a few

additions in our own adaptation).

Synchronization. The topic of locking and concur-
rency control in general has a long history, as does
garbage collection [32]. The relationship between lock-
ing and garbage collection is evident in some of the is-
sues surrounding memory management for lock-free ap-
proaches [18]. Our garbage collection scheme is in some
sense a hack, but works reasonably well in our environ-
ment. Although it is somewhat similar to IBM’s patent
4809168, their scheme appears to target uniprocessors
only and is less general than ours. The benefits for our
locking protocol are particularly evident in large, com-
plex software systems, where there are many developers
with varying skill and experience in dealing with concur-
rency control.

Protected procedure call. The majority of research
on performance conscious inter-process communication
(IPC) is for uniprocessor systems. Excellent results have
been reported for these systems, to the point where it has
been argued that the IPC overhead has become largely ir-
relevant [2].20 Although many results have been reported

20We do not agree with these arguments.



over the years on a number of different platforms, the
core cost for a call-return pair (with similar functionality)
is usually between 100 and 200 instructions [11, 12, 17,
20]. However, the Tornado PPC facility goes beyond the
standard techniques used to optimize IPC performance,
by optimizing for the multiprocessor case by eliminating
locks and shared data accesses, and by providing concur-
rency to the servers.

The key previous work done in multiprocessor IPC
was by Bershad et al [3], where excellent results were ob-
tained on the hardware of the time. However, it is inter-
esting that the recent changes in technology lead to de-
sign tradeoffs far different from what they used to be.
The Firefly multiprocessor [29] on which Bershad’s IPC
work was developed has a smaller ratio of processor to
memory speed, has caches that are no faster than main
memory (used to reduce bus traffic), and uses an updating
cache consistency protocol. For these reasons, Bershad
found that he could improve performance by idlingserver
processes on idle processors (if they were available), and
having the calling process migrate to that processor to ex-
ecute the remote procedure. This approach would be pro-
hibitive in today’s systems with high cost cache misses
and invalidations.

9 Concluding Remarks

Tornado was built on our experience with the Hurricane
operating system [30]. Hurricane employed a course
grained approach to scalability, where a single large scale
SMMP was partitioned into clusters of a fixed number
of processors. Each cluster ran a separate instance of a
small scale SMMP operating system, cooperatively pro-
viding a single system image. This approach is now be-
ing used in one form or another by several commercial
systems, for example in SGI’s Cellular IRIX. However,
despite many of the positive benefits of this approach, we
found that: (i) the traditional within-cluster structures ex-
hibit poor locality which severely impacts performance
on modern multiprocessors, (ii) the rigid clustering re-
sults in increased complexity as well as high overhead or
poor scalability for some applications, and (iii) the tradi-
tional structures as well as the clustering strategy make it
difficult to support the specialized policy requirements of
parallel applications.

Tornado does not have these problems. The object-
oriented nature of Tornado and its clustered objects al-
low any available locality and independence to be ex-
ploited, allow the degree of clustering to be defined on a
per-object basis, and make it easier to explore policy and
implementation alternatives. Moreover, the fine-grained,
in-object locking strategy of Tornado has much lower
complexity, lower overhead, and better concurrency.

As the adage goes, “any problem in computer science
can be solved by an extra level of indirection.”21 In Tor-

21In a private communication, Roger Needham attributes this to

nado, the clustered object translation table provides this
level of indirection, which we have found useful for sev-
eral purposes. For example, it includes clustered ob-
ject access control information for implementing IPC se-
curity, helps track accesses to objects in support of the
garbage collection system, and supplants the need for
many other global tables by allowing clients to directly
use references to server objects, rather than using an iden-
tifier that must be translated to the target object on each
call.

The Tornado object-oriented strategy does not come
without cost, however. Overheads include: (i) virtual
function invocation, (ii) the indirection through the trans-
lation table, and (iii) the intrinsic cost of modularity,
where optimizations possible by having one component
of the system know about the details of another are not
allowed. Our experiences to-date suggest that these costs
are low compared to the performance advantages of lo-
cality, and will over time grow less significant with the in-
creasing discrepancy between processor speed and mem-
ory latency. However, more experimentation is required.

Our primary goal in developing Tornado was to de-
sign a system that would achieve high performance on
shared-memory multiprocessors. We believe that the per-
formance numbers presented in this paper illustrate that
we have been successful in achieving this goal. A result
that is just as important that we did not originally target
was ease of development. The object-oriented strategy
coupled with clustered objects makes it easier to first get a
simple correct implementation of a new service and then
incrementally optimize its performance later. Also, the
locking protocol has made it much easier for inexperi-
enced programmers to develop code, both because fewer
locks have to be acquired and because objects will not
disappear even if locks on them are released.

Tornado currently runs on SimOS and on a 16 pro-
cessor prototype of NUMAchine. It supports most of
the facilities (e.g., shells, compilers, editors) and services
(pipes, TCP/IP, NFS, file system) one expects. We are
starting to explore scalability issues, work on policies
for parallel applications, and study how to clusterize ob-
jects in a semi-automated fashion. A sister project, the
Kitchawan operating system at IBM T.J.Watson Research
Center, employs many of the ideas from Tornado, and
is additionally exploring fault containment, availability,
portability and some of the other issues required for an
industrial strength operating system.

Acknowledgments

Rob Ho implemented most of the microbenchmarks. Ron Un-
rau and Tarek Abdelrahmen helped run the performance ex-
periments. Many helped with the implementation of Tornado,
in particular: Derek DeVries, Daniel Wilk, and Eric Parsons.
Comments by Marc Auslander, Paul Lu, Karen Reid, Ron Un-

David Wheeler.



rau, and our shepherd Rob Pike helped improve the paper. Fi-
nally, this work was funded in part by IBM Corp. and the Nat-
ural Sciences and Engineering Research Council (NSERC).

References

[1] M. Auslander, H. Franke, O. Krieger, B. Gamsa, and
M. Stumm. Customization-lite. In 6th Workshop on Hot
Topics in Operating Systems (HotOS-VI), pages 43–48,
1997.

[2] B. Bershad. The increasing irrelevance of IPC perfor-
mance for microkernel-based operating systems. In Proc.
USENIX Workshop on Micro-Kernels and Other Kernel
Architectures, pages 205–212, 1992.

[3] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M.
Levy. Lightweight remote procedure call. ACM Trans.
Computer Systems, 8(1):37–55, February 1990.

[4] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum.
Disco: running commodity operating systems on scal-
able multiprocessors. ACM Trans. on Computer Systems,
15(4):412–447, November 1997.

[5] M. Campbell et al. The parallelization of UNIX system
V release 4.0. In Proc. USENIX Technical Conference,
pages 307–324, 1991.

[6] J. Chapin, S. A. Herrod, M. Rosenblum, and A. Gupta.
Memory system performance of UNIX on CC-NUMA
multiprocessors. In Proc. ACM SIGMETRICS Intl. Conf.
on Measurement and Modelling of Computer Systems,
1995.

[7] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri, D. Teo-
dosio, and A. Gupta. Hive: Fault containment for shared-
memory multiprocessors. In Proc. of the 15th ACM Symp.
on Operating Systems Principles (SOSP), pages 12–25,
1995.

[8] E. M. Jr. Chaves, P. C. Das, T. J. Leblanc,B. D. Marsh, and
M. L. Scott. Kernel-kernel communication in a shared-
memory multiprocessor. Concurrency: Practice and Ex-
perience, 5(3):171–191, May 1993.

[9] D. R. Cheriton and K. J. Duda. A caching model of oper-
ating system kernel functionality. In Proc. Symp. on Oper-
ating Systems Design and Implementation (OSDI), pages
179–193, 1994.

[10] H. Custer. Inside Windows NT. Microsoft Press, 1993.
[11] D. R. Engler, M. F. Kaashoek, and Jr. O’Toole J. Exoker-

nel: an operating system architecture for application-level
resource management. In Proc. 15th ACM Symp. on Op-
erating Systems Principles, pages 251–266, 1995.

[12] B. Ford and J. Lepreau. Evolving Mach 3.0 to a migrat-
ing thread model. In Proc.USENIXTechnicalConference,
pages 97–114, 1994.

[13] B. Gamsa, O. Krieger, and M. Stumm. Optimizing
IPC performance for shared-memory multiprocessors. In
Proc. ICPP, pages 208–211, 1994.

[14] A. Grbic et al. Design and implementation of the NUMA-
chine multiprocessor. In Proceedings of the 35rd DAC,
pages 66–69, 1998.

[15] M. Greenwald and D.R. Cheriton. The synergy between
non-blocking synchronizationand operating system struc-
ture. In Symp. on Operating System Design and Imple-
mentation, pages 123–136, 1996.

[16] D. Grunwald, B. G. Zorn, and R. Henderson. Improving
the cache locality of memory allocation. In Proc. Conf.

on Programming Language Design and Implementation
(PLDI), pages 177–186, 1993.

[17] G. Hamilton and P. Kougiouris. The Spring nucleus: A
microkernel for objects. In Proc. USENIX Summer Tech-
nical Conference, 1993.

[18] M. Herlihy. A methodology for implementing highly con-
current data objects. ACM Trans. on Programming Lan-
guages and Systems, 15(5):745–770, November 1993.

[19] P. Homburg, L. van Doorn, M. van Steen, A. S. Tanen-
baum, and Wi. de Jonge. An object model for flexible dis-
tributed systems. In Proc. of the 1st Annual ASCI Confer-
ence, pages 69–78, 1995.

[20] T. Jaeger et al. Achieved IPC performance. In 6th Work-
shop on Hot Topics in Operating Systems (HotOS-VI),
1997.

[21] M. Makpangou, Y. Gourhant, J.P. Le Narzul, and
M. Shapiro. Fragmented objects for distributed abstrac-
tions. In T. L. Casavantand M. Singhal, editors, Readings
in Distributed Computing Systems, pages 170–186. IEEE
Computer Society Press, 1994.

[22] D. McCrocklin. Scaling Solaris for enterprise computing.
In Spring 1995 Cray Users Group Meeting, 1995.

[23] P. E. McKenney and J. Slingwine. Efficient kernel mem-
ory allocation on shared-memory multiprocessor. In Proc.
USENIX Technical Conference, pages 295–305, 1993.

[24] E. Parsons, B. Gamsa, O. Krieger, and M. Stumm.
(De-)clustering objects for multiprocessor system soft-
ware. In Proc. Fourth Intl. Workshop on Object Orien-
tation in Operating Systems (IWOOS95), pages 72–84,
1995.

[25] R. Pike. Personal communication.
[26] D. L. Presotto. Multiprocessor streams for Plan 9. In Proc.

Summer UKUUG Conf., pages 11–19, 1990.
[27] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Her-

rod. Using the SimOS machine simulator to study com-
plex computer systems. ACM Trans. on Modeling and
Computer Simulation, 7(1):78–103, Jan. 1997.

[28] J. Talbot. Turning the AIX operating system into an MP-
capable OS. In Proc. USENIX Technical Conference,
1995.

[29] C. P. Thacker and L. C. Stewart. Firefly: a multiprocessor
workstation. In Proc.2nd Intl. Conf. on ArchitecturalSup-
port for ProgrammingLanguages and Operating Systems
(ASPLOS), pages 164–172, 1987.

[30] R. Unrau, O. Krieger, B. Gamsa, and M. Stumm. Hier-
archical clustering: A structure for scalable multiproces-
sor operating system design. Journal of Supercomputing,
�(1/2):105–134, 1995.

[31] Z. Vranesic et al. The NUMAchine multiprocessor. Tech-
nical Report CSRI-324, Computer Systems Research In-
stitute, University of Toronto, 1995.

[32] P. R. Wilson. Uniprocessorgarbage collection techniques.
In Intl. Workshop on Memory Management. Springer-
Verlag, 1992.

[33] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles.
Dynamic storage allocation: A survey and critical review.
In Intl. Workshop on Memory Management. Springer-
Verlag, 1995.


