
1

7/13/2007AIIT Summer Course - D# 1

Wireless Embedded
Systems and Networking

Lab Day 5:
Part 1: TinyOS Programming on

Open Source Distribution
Jaein Jeong

University of California, Berkeley

7/13/2007AIIT Summer Course - D# 2

How to get TinyOS open source dist.
• Latest version of TinyOS is TinyOS 2.x and

available in several formats.
• Linux Platform

– XubunTOS Live CD (To be used in this lab):
» Bootable Linux, no installation needed.
» Recommeded for classroom environment.

– Debian or Ubuntu Linux:
» Easy installation using TinyOS Debian package.
» Recommended for development environment.

– Other Linux:
» Manual installation is needed.

• Windows Platform
– Manual installation is needed.

2

7/13/2007AIIT Summer Course - D# 3

Organization of Lab 5
• Run TinyOS live CD on each machine.

– Insert a live CD in the CD drive and boot the machine with it.

• Copy the skeleton projects.
– Skeleton projects will be distributed electronically.
– Copy each of skeleton projects in directory $TOSROOT/apps

• Build the skeleton projects and try them.
– Go to the directory of each skeleton project.
– Type 'make telosb install' for building an image.
– Type 'make telosb reinstall.<node id>' for program loading.
– Optionally, run java client for user interaction.

• Produce solutions based on skeleton projects and
idea for extension.

7/13/2007AIIT Summer Course - D# 4

Key Ideas of Each Project

TinyOS Concept Start Produce

1 module, configuration, command, event 1_Push 1_Toggle

2 generics, virtualized services 2_Blink 2_Count

3 network debugging 3_PrintSerial

4 sensing, split-phase, parameterized 4_Single 4_Dual

5 post, task 5_Raw 5_Smooth

6 sending radio message 6_Counts 6_Readings

7 receiving radio message 7_Request 7_RequestSample

8 sending / receiving radio message 8_CountToRadio 8_RadioToCount

9

10

3

7/13/2007AIIT Summer Course - D# 5

Project 1: Push and Toggle
Push - a minimal TinyOS 2.0 application
Behavior: While the user button is pressed the red LED (led0) lights.
Concepts Illustrated:

module - the implementation of a functional element that can be composed
into a larger elements through configurations. This file, with a name

ending in 'M' is an example module. Modules contain state (variables),
internal functions, functions that implement one side of an interface,
and tasks that provide logical concurrency (not shown here). The
implementation of a component is in terms of the namespace

provided
by its interfaces.

configuration - a component that composes a set of components by wiring
together their interfaces.

commands - externally accessible functions that can be called across an
interface between components, typically to initiate actions.

events - externally accessible handlers that can be signaled across and
interface between components, typically to notify of an occurance.

interfaces - bidirectional collections of typed function signatures for
commands and envents. This module uses three interfaces provided
by lower level subsystems. See $TOSROOT/tinyos/tos/interfaces/

7/13/2007AIIT Summer Course - D# 6

Project 1: Push and Toggle
• Push

– Behavior: While the user button is pressed the red LED (led0)
lights.

• Toggle
– Behavior: When the user button is pressed, the red LED (led0)

is toggled.

• Key point
– Notify.notify() event is triggered whenever the user button is

either pressed or released. Change the logic of the event
handler so that red LED is toggled each time the user button is
pressed.

4

7/13/2007AIIT Summer Course - D# 7

Project 2: Blink and Count
• Blink

– Behavior: Pressing the user button toggles the red LED (led0).
Green LED (led1) blinks every second.

• Count
– Behavior: Pressing the user button rotates a counter among 0,

1, 2 and 3.
– At 0, no timer is fired.

At 1, Timer 0 with period 1s is fired.
At 2, Timer 0 and Timer 1 (period 2s) are fired.
At 3, Timer 0, Timer 1, Timer 2 (period 4s) are fired.

– Timer 0 toggles led0, Timer 1 toggles led1, Timer 2 toggles
led2.

• Concepts Illustrated
– Timer – a critical subsystem – TEP102
– Virtualized resource provided as a parameterized interface.

7/13/2007AIIT Summer Course - D# 8

Project 2: Blink and Count
• Key Point

– Instantiating a virtualized resource.
» “interface Timer<TMilli> as Timer0;” instantiates a milli-

second timer among different timer types.
– Instantiating multiple interfaces.

» interface Timer<TMilli> as Timer0;
interface Timer<TMilli> as Timer1;
interface Timer<TMilli> as Timer2;

» Access each timer as Timer0, Timer1, or Timer2.

5

7/13/2007AIIT Summer Course - D# 9

Project 3: PrintSerial

PrintSerial - A TinyOS application that shows the concept of
network debugging.

Behavior: When the user button is pressed, a counter variable
is set to (counter + 1) mod 10. After that, a debugging
message "Hello <counter>\n" is sent over
the serial port (UART).

In order to see the debugging message, plug the mote to
a serial port and run the listen client by typing
'source ./run.sh'. The listen client reads a message from
the serial port and prints it on console.

Concepts Illustrated:

Mote-PC serial communication - TEP113
Tinyos 2.0 tutorial lesson 4

7/13/2007AIIT Summer Course - D# 10

Project 4: Single and Dual
Single - A TinyOS application that shows the concept of sending.
Behavior: On boot, a timer of 1s period is started.

Each time the timer is fired, sampling of the node voltage
is requested. When the node voltage reading is available,
this program sends the voltage reading over serial port.
This program also allows sending an error message and
the temperature reading (to be used at 'Dual' application).
This program samples only node voltage.
If you want to extend this program to sample node internal
temperature as well, wire DemoTemperatureSensorC.nc module
to configuration module (SingleAppC.nc).
In order to see the debugging message, plug the mote to
a serial port and run the listen client by typing
'source ./run.sh'. The listen client reads a message from
the serial port and prints it on console.

Concepts Illustrated:
ADC and split-phase - TEP101

- Tinyos 2.0 tutorial lesson 5
Mote-PC serial communication - TEP113

- Tinyos 2.0 tutorial lesson 4

6

7/13/2007AIIT Summer Course - D# 11

Project 4: Single and Dual
• Key Points

– Sampling sensor value is handled in a split transaction in
TinyOS.

» At first step, the application requests the sampling by
calling read().

» When sampling is done, the system notifies the sensor
reading as readDone() event.

– When sampling multiple sensor readings, cascade the sensing
request and event processing.

7/13/2007AIIT Summer Course - D# 12

Project 5: Raw and Smooth
Raw - A TinyOS application that shows the concept of task.
Behavior: This program samples node voltage whenever timer is fired. When

MAX_READINGS samples are collected, this program report the
samples

over the serial port. The sampled data can be further processed in a
task.

'Smooth' application extends this application as follows:
(1) calculates the statistics: 'Smooth' calculates the minumum,
maximum and mean for sampled data in raw_reading[].
(2) smoothens the sampled data: 'Smooth' calculates the exponential
moving average of raw_reading[] into smooth_reading[].
In order to see the debugging message, plug the mote to a serial port

and run the listen client by typing 'source ./run.sh'. The listen client
reads a message from the serial port and prints it on console.

Concepts Illustrated:
Schedulers and Tasks - TEP106

- Tinyos 2.0 tutorial lesson 2
ADC and split-phase - TEP101

- Tinyos 2.0 tutorial lesson 5
Mote-PC serial communication - TEP113

- Tinyos 2.0 tutorial lesson 4

7

7/13/2007AIIT Summer Course - D# 13

Project 5: Raw and Smooth
• Key Points

– Calculating statistics and exponential moving average can take
time.

– It is recommended to process a time consuming job in a task
rather than to process directly in the event handler.

7/13/2007AIIT Summer Course - D# 14

Project 6: Counts and Readings
Counts - A TinyOS application that shows the concept of sending

a radio message.
Behavior: 'Counts' program starts a timer at an interval of 1s.

Each time the timer is triggered, this program sends
a radio message that contains its node ID and counter
variable. The counter variable is incremented each time
the timer is triggered.
'Readings' extends this program by sampling the node voltage as well.
In order to see the debugging message, a base station
node needs be prepared. A base station node is a node
that is programmed with 'BaseStationCC2420' program, which
forwards all its received radio messages to and from the serial port.
Try program multiple nodes with 'Counts' program and see the
behavior with a base station node and java client application.
You can see the debugging messages from multiple sensor nodes.

Concepts Illustrated:
Mote-mote communication - TEP111, TEP116

- Tinyos 2.0 tutorial lesson 3

8

7/13/2007AIIT Summer Course - D# 15

Project 6: Counts and Readings
• Key Points

– Wire DemoSensorC to the application and get the sensor
reading using the previous lessons.

7/13/2007AIIT Summer Course - D# 16

Project 7: Request and RequestSample
Request - A TinyOS application that shows the concept of receiving

a radio message.
Behavior: When 'Request' program receives a radio message

Receive.receive() event is triggered. Depending on the contents of
the received message, the program can take an appropriate action.
Our program simply fills in the reply message with the node id and
send it.
The exercise in this lesson is to extend this simple version of program
so that it fills the contents of the reply message in response to the
user request. The request message can choose any combinations
of counter, voltage reading and temperature reading. For this,
you need to parse the received message in Receive.receive().
In order to send a message and receive the reply message, a base
station needs be prepared. A base station node is a node that is
programmed with 'BaseStationCC2420' program, which forwards
all its received radio messages to and from the serial port.
Try program multiple nodes with 'Request' program and
see the behavior with a base station node and java client
application. You can see the debugging messages
from multiple sensor nodes.

9

7/13/2007AIIT Summer Course - D# 17

Project 7: Request and RequestSample
• Key Points

– In order to take appropriate actions to the request message,
you need to parse the incoming message in Receive,receive()
event handler.

7/13/2007AIIT Summer Course - D# 18

Project 8: CountToRadio and RadioToCount
CountToRadio - A TinyOS application that shows the concept of sending

a radio message.
Behavior: 'CountToRadio' program starts a timer at an interval of 1s.

Each time the timer is triggered, this program sends
a radio message that contains its node ID and counter
variable. The counter variable is incremented each time
the timer is triggered. LED is set to last 3-bits of the counter value.
The goal of this lesson is to write a receiver program
'RadioToCount' program that receives the counter message
and sets its LED as last 3-bits of the receiverd counter value.

Concepts Illustrated:
Mote-mote communication - TEP111, TEP116

- Tinyos 2.0 tutorial lesson 3

