
1

7/9/2007AIIT Summer Course - Tu1 TOS2 1

Wireless Embedded Systems and Networking
Foundations of IP-based Ubiquitous Sensor Networks

TinyOS 2.0 Design and Application Services

David E. Culler
University of California, Berkeley

Arch Rock Corp.
July 10, 2007

7/9/2007AIIT Summer Course - Tu1 TOS2 2

Complete Network Embedded System

Microcontroller
Abstraction

Interface

In
it/

B
oo

t

Persistent
Attributes &

Event Streams

Device
Attributes &

Event Streams

M
ot

or

Li
gh

t

B
lo

ck
s

V
ib

ra
tio

n

Lo
gs

Fi
le

s

Device
Abstraction

Interface

Core OS
Interface

Service
Interface

Flash Radio Serial Sensor / Actuator

C
om

m
an

ds

A
ttr

ib
ut

es

E
ve

nt
s

D
is

co
ve

ry

Network
Epidemics and Routing

M
es

sa
ge

s

M
an

ag
em

en
t&

 P
ow

er

Domain-Specific Application Components

N
et

 P
ro

g

Links

D
om

ai
n-

Sp
ec

ifi
c

D
ev

ic
e

D
riv

er
s

Telos micaZ imote2 other

SPI i2cuarttimersched ADC

resource

AM

2

7/9/2007AIIT Summer Course - Tu1 TOS2 3

Outline
• Key TinyOS Concepts
• TinyOS Abstraction Architecture
• A Simple Event-Driven Example
• Execution Model
• Critical system elements

– Timers, Sensors, Communication

• Service Architecture

7/9/2007AIIT Summer Course - Tu1 TOS2 4

TinyOS 2.0
• Primary Reference: http://www.tinyos.net/tinyos-

2.x/doc/
• http://www.tinyos.net/tinyos-2.x/doc/html/tutorial/

3

7/9/2007AIIT Summer Course - Tu1 TOS2 5

Key TinyOS Concepts
• Application / System = Graph of Components + Scheduler
• Module: component that implements functionality directly
• Configuration: component that composes components

into a larger component by connecting their interfaces
• Interface: Logically related collection of commands and

events with a strongly typed (polymorphic) signature
– May be parameterized by type argument
– Provided to components or Used by components

• Command: Operation performed (called) across
components to initiate action.

• Event: Operation performed (signaled) across components
for notification.

• Task: Independent thread of control instantiated within a
component. Non-preemptive relative to other task.

• Synchronous and Asynchronous contexts of execution.

7/9/2007AIIT Summer Course - Tu1 TOS2 6

TinyOS Abstraction Architecture
• HPL – Hardware Presentation Layer

– Components that encapsulate physical hardware units
– Provide convenient software interface to the hardware.
– The hardware is the state and computational processes.
– Commands and events map to toggling pins and wires

• HAL –Hardware Abstraction Layer
– Components that provide useful services upon the basic HW
– Permitted to expose any capabilities of the hardware

» Some platforms have more ADC channels, Timers, DMA
channels, capture registers, …

– Logically consistent, but unconstrained

• HIL – Hardware Independent Layer
– Components that provide well-defined services in a manner

that is the same across hardware platforms.
– Implement common interfaces over available HAL

4

7/9/2007AIIT Summer Course - Tu1 TOS2 7

Illustration

7/9/2007AIIT Summer Course - Tu1 TOS2 8

TinyOS – a tool for defining abstractions

• All of these layers are constructed with the same TinyOS
primitives.

• We’ll illustrate them from a simple application down.

• Note, components are not objects, but they have strong
similarities.

– Some components encapsulate physical hardware.
– All components are allocated statically (compile time)

» Whole system analysis and optimization
– Logically, all components have internal state, internal concurrency,

and external interfaces (Commands and Events)
– Command & Event handlers are essentially public methods
– Locally scoped

» Method invocation and method hander need not have same
name (like libraries and objects)

» Resolved statically by wiring
• Permits interpositioning

5

7/9/2007AIIT Summer Course - Tu1 TOS2 9

A simple event-driven module – BlinkM.nc

• Coding conventions: TEP3

#include "Timer.h"
module BlinkM
{

uses interface Boot;
uses interface Timer<TMilli> as Timer0;
uses interface Leds;

}
implementation
{

event void Boot.booted()
{
call Timer0.startPeriodic(250);

}

event void Timer0.fired()
{
call Leds.led0Toggle();

}

BlinkM

Timer0Boot Leds

Module

Module name

Interfaces
• Boot
• Timer
• Leds

Internal name
of external
interface

7/9/2007AIIT Summer Course - Tu1 TOS2 10

A simple event-drvien module (cont)
#include "Timer.h"
module BlinkM
{

uses interface Boot;
uses interface Timer<TMilli> as Timer0;
uses interface Leds;

}
implementation
{

event void Boot.booted()
{
call Timer0.startPeriodic(250);

}

event void Timer0.fired()
{
call Leds.led0Toggle();

}

BlinkM

Timer0Boot Leds

Two Event Handlers

Each services
external event
by calling command
on some subsystem

? ? ?

6

7/9/2007AIIT Summer Course - Tu1 TOS2 11

Simple example: Boot interface

• $tinyOS-2.x/tos/interfaces/
• Defined in TEP 107 – Boot Sequence
• Consists of a single event.
• Hardware and operating system actions prior to this

simple event may vary widely from platform to platform.
• Allows module to initialize itself, which may require

actions in various other parts of the system.

interface Boot {
/**
* Signaled when the system has booted successfully. Components can
* assume the system has been initialized properly. Services may
* need to be started to work, however.
*
* @see StdControl
* @see SplitConrol
* @see TEP 107: Boot Sequence
*/

event void booted();
}

7/9/2007AIIT Summer Course - Tu1 TOS2 12

Simple example: LEDs interface

• $tinyOS-2.x/tos/interfaces/
• set of Commands

– Cause action
– get/set a physical attribute (3 bits)

• async => OK to use even within interrupt handlers
• Physical wiring of LEDs to microcontroller IO pins may vary

#include "Leds.h"

interface Leds {
async command void led0On();
async command void led0Off();
async command void led0Toggle();
async command void led1On(); ...
/*
* @param val a bitmask describing the on/off settings of the LEDs
*/

async command uint8_t get();
async command void set(uint8_t val);

}

7

7/9/2007AIIT Summer Course - Tu1 TOS2 13

Timer

• $tinyOS-2.x/tos/lib/timer/Timer.nc
• Rich application timer service built upon lower level capabilities that may be very

different on different platform
– Microcontrollers have very idiosyncratic timers

• Parameterized by precision

interface Timer<precision_tag>
{

command void startPeriodic(uint32_t dt);
event void fired();

command void startOneShot(uint32_t dt);
command void stop();
command bool isRunning();
command bool isOneShot();
command void startPeriodicAt(uint32_t t0, uint32_t dt);
command void startOneShotAt(uint32_t t0, uint32_t dt);
command uint32_t getNow();
command uint32_t gett0();
command uint32_t getdt();

}

7/9/2007AIIT Summer Course - Tu1 TOS2 14

TinyOS Directory Structure
• tos/system/ - Core TinyOS components.

This directory's
– components are the ones necessary for TinyOS to actually run.

• tos/interfaces/ - Core TinyOS interfaces, including
– hardware-independent abstractions. Expected to be heavily used not

just by tos/system but throughout all other code. tos/interfaces
should only contain interfaces named in TEPs.

• tos/platforms/ - code specific to mote platforms, but chip-
independent.

• tos/chips/***/ - code specific to particular chips and to
chips on particular platforms.

• tos/lib/***/ - interfaces and components which extend the
usefulness of TinyOS but which are not viewed as
essential to its operation.

• apps/, apps/demos, apps/tests, apps/tutorials.

8

7/9/2007AIIT Summer Course - Tu1 TOS2 15

Timers

• Timers are a fundamental element of Embedded Systems
– Microcontrollers offer a wide range of different hardware features
– Idiosyncratic

• Logically Timers have
– Precision - unit of time the present
– Width - # bits in the value
– Accuracy - how close to the precision they obtain

• TEP102 defines complete TinyOS timer architecture
• Direct access to low-level hardware
• Clean virtualized access to application level timers

#include "Timer.h“

…
typedef struct { } TMilli; // 1024 ticks per second
typedef struct { } T32khz; // 32768 ticks per second
typedef struct { } TMicro; // 1048576 ticks per second

7/9/2007AIIT Summer Course - Tu1 TOS2 16

Example – multiple virtual timers
#include "Timer.h"

module Blink3M
{
uses interface Timer<TMilli> as Timer0;
uses interface Timer<TMilli> as Timer1;
uses interface Timer<TMilli> as Timer2;
uses interface Leds;
uses interface Boot;

}
implementation
{
event void Boot.booted()
{
call Timer0.startPeriodic(250);
call Timer1.startPeriodic(500);
call Timer2.startPeriodic(1000);

}

event void Timer0.fired()
{

call Leds.led0Toggle();
}

event void Timer1.fired()
{

call Leds.led1Toggle();
}

event void Timer2.fired()
{

call Leds.led2Toggle();
}

}

9

7/9/2007AIIT Summer Course - Tu1 TOS2 17

Composition
• Our event-driven component, Blink, may be built

directly on the hardware
– For a particular microcontroller on a particular platform

• or on a simple layer for a variety of platforms
• or on a full-function kernel

• Or it may run in a simulator on a PC,
• Or…

• As long as it is wired to components that provide
the interfaces that this component uses.

• And it can be used in a large system or
application

7/9/2007AIIT Summer Course - Tu1 TOS2 18

Configuration

• Generic components create service instances of an
underlying service. Here, a virtual timer.

• If the interface name is same in the two components, only
one need be specified.

configuration BlinkAppC
{
}
implementation
{

components MainC, BlinkM, LedsC;
components new TimerMilliC() as Timer;

BlinkM -> MainC.Boot;
BlinkM.Leds -> LedsC;
BlinkM.Timer0 -> Timer.Timer;

}

BlinkM

Timer0Boot Leds

MainC
Boot

LedsC

Leds

Timer

Timer

BlinkAppC

10

7/9/2007AIIT Summer Course - Tu1 TOS2 19

A Different Configuration

• Same module configured to utilize a very different
system substrate.

configuration blinkC{
}

implementation{
components blinkM;
components MainC;
components Kernel;

blinkM.Boot -> Kernel.Boot;
blinkM.Leds -> Kernel.Leds;
components new TimerMilliC();
blinkM.Timer0 -> TimerMilliC.Timer;

}

BlinkM

Timer0Boot Leds

TimerMillic

Timer

BlinkC

Kernel

Boot Leds

7/9/2007AIIT Summer Course - Tu1 TOS2 20

Execution Behavior
• Timer interrupt is mapped to a TinyOS event.
• Performs simple operations.
• When activity stops, entire system sleeps

– In the lowest possible sleep state

• Never wait, never spin. Automated, whole-
system power management.

11

7/9/2007AIIT Summer Course - Tu1 TOS2 21

Module state

• Private scope
• Sharing through

explicit interface only!
– Concurrency,

concurrency,
concurrency!

– Robustness, robustness,
robustness

• Static extent
• HW independent type

– unlike int, long, char

module BlinkC {

uses interface Timer<TMilli> as Timer0;

uses interface Leds;

users interface Boot;

}

implementation

{

uint8_t counter = 0;

event void Boot.booted()

{

call Timer0.startPeriodic(250);

}

event void Timer0.fired()

{

counter++;

call Leds.set(counter);

}

}

7/9/2007AIIT Summer Course - Tu1 TOS2 22

TinyOS / NesC Platform Independent Types

• Common numeric types

• Bool, …
• Network Types

– Compiler does the grunt work to map to canonical form

http://nescc.sourceforge.net

12

7/9/2007AIIT Summer Course - Tu1 TOS2 23

Events
• Call commands
• Signal events
• Provider of

interface handles
calls and signals
events

• User of interface
calls commands
and handles signals

module BlinkM {

uses interface Timer<TMilli> as Timer0;

uses interface Leds;

uses interface Boot;

provides interface Notify<bool> as Rollover;

}

implementation

{

uint8_t counter = 0;

event void Boot.booted()

{ call Timer0.startPeriodic(250); }

event void Timer0.fired()

{

counter++;

call Leds.set(counter);

if (!counter) signal Rollover.notify(TRUE);

}

}

BlinkM

Timer0Boot Leds

Rollover

Notify

7/9/2007AIIT Summer Course - Tu1 TOS2 24

Tasks
• Need to juggle many potentially

bursty events.
• If you cannot get the job done

quickly, record the parameters
locally and post a task to do it later.

• Tasks are preempted by lower level
(async) events.

– Allow other parts of the system to get the
processor.

– Without complex critical semaphores,
critical sections, priority inversion,
schedulers, etc.

/* BAD TIMER EVENT HANDLER */

event void Timer0.fired() {

uint32_t i;

for (i = 0; i < 400001; i++) {

call Leds.led0Toggle();

}

}

Hardware

Interrupts

ev
en

t
s

commands

Tasks

/* Better way to do a silly thing */

task void computeTask() {

uint32_t i;

for (i = 0; i < 400001; i++) {}

}

event void Timer0.fired() {

call Leds.led0Toggle();

post computeTask();

}

13

7/9/2007AIIT Summer Course - Tu1 TOS2 25

Split-Phase Operations
• For potentially long latency operations

– Don’t want to spin-wait, polling for completion
– Don’t want blocking call - hangs till completion
– Don’t want to sprinkle the code with explicit sleeps and yields

• Instead,
– Want to service other concurrent activities will waiting
– Want to go sleep if there are none, and wake up upon

completion
• Split-phase operation

– Call command to initiate action
– Subsystem will signal event when complete

• The classic concurrent I/O problem, but also
want energy efficiency.

– Parallelism, or sleep.
– Event-driven execution is fast and low power!

7/9/2007AIIT Summer Course - Tu1 TOS2 26

Examples
/* Power-hog Blocking Call */

if (send() == SUCCESS) {

sendCount++;

}

/* Split-phase call */
// start phase
…
call send();
…
}
//completion phase
void sendDone(error_t err) {
if (err == SUCCESS) {
sendCount++;

}
}

/* Programmed delay */

state = WAITING;

op1();

sleep(500);

op2();

state = RUNNING

state = WAITING;

op1();

call Timer.startOneShot(500);

command void Timer.fired() {

op2();

state = RUNNING;

14

7/9/2007AIIT Summer Course - Tu1 TOS2 27

Sensor Readings
• Sensors are embedded I/O devices

– Analog, digital, … many forms with many interfaces

• To obtain a reading
– configure the sensor

» and/or the hardware module it is attached to,
• ADC and associated analog electronics
• SPI bus, I2C, UART

– Read the sensor data

• Want applications to do this in a platform-
independent manner

7/9/2007AIIT Summer Course - Tu1 TOS2 28

Read Interface

• Split-phase data acquisition of typed values
• Flow-control handshake between concurrent processed

– Hardware or software

• $tinyOS-2.x/tos/interface/read.nc

interface Read<val_t> {
/* Initiates a read of the value.
* @return SUCCESS if a readDone() event will eventually come back.
*/
command error_t read();

/**
* Signals the completion of the read().
*
* @param result SUCCESS if the read() was successful
* @param val the value that has been read
*/
event void readDone(error_t result, val_t val);

}

15

7/9/2007AIIT Summer Course - Tu1 TOS2 29

Example
#include "Timer.h"
module SenseM
{
uses {
interface Boot; interface Leds; interface Timer<TMilli>;
interface Read<uint16_t>;

}
}
implementation
{
#define SAMPLING_FREQUENCY 100
event void Boot.booted() {
call Timer.startPeriodic(SAMPLING_FREQUENCY); }

event void Timer.fired()
{ call Read.read(); }

event void Read.readDone(error_t result, uint16_t data)
{
if (result == SUCCESS){ call Leds.set(data & 0x07);}

}
}

• What does it sense?

7/9/2007AIIT Summer Course - Tu1 TOS2 30

Temp example configuration
configuration TempDispAppC
{
}
implementation {

components SenseM, MainC, LedsC, new TimerMilliC() as Timer,
TempC ;

SenseM.Boot -> MainC;
SenseM.Leds -> LedsC;
SenseM.Timer -> TimerMilliC;
SenseM.Read -> TempC;

}

SenseM

Timer0Boot Leds

MainC
Boot

LedsC

Leds

Timer

Timer

TempDispAppC
Read

TempC

Read

16

7/9/2007AIIT Summer Course - Tu1 TOS2 31

Uses of tasks (???)
• High speed sampling
• Filtering
• Queueing
• Smoothing
• Detection
• Classification
• …

7/9/2007AIIT Summer Course - Tu1 TOS2 32

Sensor NETWORK
• We have a flexible, low-power, event-driven

sensor / actuator platform.
• Let’s add the network

• Send / Receive of information
• Dispatching incoming data to computation

processes that will handle it.
– Automate in a systematic fashion

• Parsing the packet
– Define the structure, let the compiler do the work.
– Handler knows what it should be receiving

17

7/9/2007AIIT Summer Course - Tu1 TOS2 33

message_t structure
• Packet - Provides the basic accessors for the message_t

abstract data type. This interface provides commands for
clearing a message's contents, getting its payload length,
and getting a pointer to its payload area.

• Send - Provides the basic address-free message sending
interface. This interface provides commands for sending a
message and canceling a pending message send. The
interface provides an event to indicate whether a message
was sent successfully or not. It also provides convenience
functions for getting the message's maximum payload as
well as a pointer to a message's payload area.

• Receive - Provides the basic message reception interface.
This interface provides an event for receiving messages. It
also provides, for convenience, commands for getting a
message's payload length and getting a pointer to a
message's payload area.

• PacketAcknowledgements - Provides a mechanism for
requesting acknowledgements on a per-packet basis.

• RadioTimeStamping - Provides time stamping information
for radio transmission and reception.

7/9/2007AIIT Summer Course - Tu1 TOS2 34

Active Messages - Dispatching messages to
their handlers
• AM type – dispatch selector

– Frame_type at link layer
– IP Protocol Field at network layer
– Port at Transport layer

• AM_address

• AMPacket - Similar to Packet, provides the basic AM
accessors for the message_t abstract data type. This
interface provides commands for getting a node's AM
address, an AM packet's destination, and an AM packet's
type. Commands are also provides for setting an AM
packet's destination and type, and checking whether the
destination is the local node.

• AMSend - Similar to Send, provides the basic Active
Message sending interface. The key difference between
AMSend and Send is that AMSend takes a destination AM
address in its send command.

18

7/9/2007AIIT Summer Course - Tu1 TOS2 35

Communication Components
• AMReceiverC - Provides the following interfaces:

Receive, Packet, and AMPacket.
• AMSenderC - Provides AMSend, Packet,

AMPacket, and PacketAcknowledgements as
Acks.

• AMSnooperC - Provides Receive, Packet, and
AMPacket.

• AMSnoopingReceiverC - Provides Receive,
Packet, and AMPacket.

• ActiveMessageAddressC - Provides commands
to get and set the node's active message
address. This interface is not for general use and
changing the a node's active message address
can break the network stack, so avoid using it
unless you know what you are doing.

7/9/2007AIIT Summer Course - Tu1 TOS2 36

HAL to HIL
• Since TinyOS supports multiple platforms, each of which

might have their own implementation of the radio drivers,
an additional, platform-specific, naming wrapper called
ActiveMessageC is used to bridge these interfaces to their
underlying, platform-specific implementations.
ActiveMessageC provides most of the communication
interfaces presented above.

• Platform-specific versions of ActiveMessageC, as well the
underlying implementations which may be shared by
multiple platforms (e.g. Telos and MicaZ) include:

– ActiveMessageC for the intelmote2, micaz, telosa, and telosb are all
implemented by CC2420ActiveMessageC.

– ActiveMessageC for the mica2 platform is implemented by
CC1000ActiveMessageC.

– ActiveMessageC for the eyesIFX platform is implemented by
Tda5250ActiveMessageC.

19

7/9/2007AIIT Summer Course - Tu1 TOS2 37

tos/types/message.h.

• Link level concept used throughout the TinyOS
research community and industry.

• How does this move forward to IP/WSN?

typedef nx_struct message_t {

nx_uint8_t header[sizeof(message_header_t)];

nx_uint8_t data[TOSH_DATA_LENGTH];

nx_uint8_t footer[sizeof(message_header_t)];

nx_uint8_t metadata[sizeof(message_metadata_t)];

} message_t;

7/9/2007AIIT Summer Course - Tu1 TOS2 38

#include <Timer.h>

#include "BlinkToRadio.h"

module BlinkToRadioC {

uses interface Boot;

uses interface Leds;

uses interface Timer<TMilli> as Timer0;

}

implementation {

uint16_t counter = 0;

event void Boot.booted() {

call Timer0.startPeriodic(TIMER_PERIOD_MILLI);

}

event void Timer0.fired() {

counter++;

call Leds.set(counter);

}

}

20

7/9/2007AIIT Summer Course - Tu1 TOS2 39

Sending a packet to the neighborhood
#include <Timer.h>

#include "BlinkToRadio.h"

module BlinkToRadioC {

uses interface Boot;

uses interface Leds;

uses interface Timer<TMilli> as Timer0;

uses interface Packet;

uses interface AMPacket;

uses interface AMSend;

uses interface Receive;

uses interface SplitControl as AMControl;

}

implementation {

uint16_t counter;

message_t pkt;

bool busy = FALSE;

event void Boot.booted() {

call AMControl.start();

}

event void AMControl.startDone(error_t err) {
if (err == SUCCESS) {

call Timer0.startPeriodic(TIMER_PERIOD_MILLI);
}

}

event void Timer0.fired() {
counter++;
if (!busy) {

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)(call
Packet.getPayload(&pkt, NULL));

btrpkt->nodeid = TOS_NODE_ID;
btrpkt->counter = counter;
if (call AMSend.send(AM_BROADCAST_ADDR,

&pkt, sizeof(BlinkToRadioMsg)) == SUCCESS) {
busy = TRUE;

}
}

}

event void AMSend.sendDone(message_t* msg, error_t err) {
if (&pkt == msg) {

busy = FALSE;
}

}

event message_t* Receive.receive(message_t* msg, void*
payload, uint8_t len){

if (len == sizeof(BlinkToRadioMsg)) {
BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;
call Leds.set(btrpkt->counter & 0x7);

}
return msg;

}
}

7/9/2007AIIT Summer Course - Tu1 TOS2 40

Receive – a network event

• Service the incoming message
– Automatically dispatched by type to the handler

• Return the buffer
– Or if you want to keep it, you need to return another one.

• Overlay a network type structure on the packet so the
compiler does the parsing.

event message_t* Receive.receive(message_t* msg, void* payload,
uint8_t len) {

if (len == sizeof(BlinkToRadioMsg)) {

BlinkToRadioMsg* btrpkt = (BlinkToRadioMsg*)payload;

call Leds.set(btrpkt->counter);

}

return msg;

}

enum { AM_BLINKTORADIO = 6, };

typedef nx_struct BlinkToRadioMsg {

nx_uint16_t nodeid;

nx_uint16_t counter;

} BlinkToRadioMsg;

21

7/9/2007AIIT Summer Course - Tu1 TOS2 41

Example TinyOS Service Architecture

Hardware
Abstraction

Layer

Basic OS
interface

Service
API

Flash Radio / Uart Sensor/Actuator

Volumes Buses & ADCsLinks

Fi
le

s

Lo
gs

R
F

Li
gh

t

So
un

de
r

O
th

er

C
om

m
an

ds

A
ttr

ib
ut

es

E
ve

nt
s

D
is

co
ve

ry

B
lo

ck
s

O
TA

 p
ro

gr
am

Network

M
es

sa
ge

s

Hardware

M
an

ag
em

en
t &

 P
w

r

Application

7/9/2007AIIT Summer Course - Tu1 TOS2 42

Generalized Application

• Application component
contains core functionality
associated with an
application domain, rather
than a specific application
instance within that domain

– Environmental monitoring
– Condition based Maintenance
– Tracking
– …

Flash Radio / Uart Sensor/Actuator

Volumes Buses & ADCsLinks

Fi
le

s

Lo
gs

R
F

Li
gh

t

S
ou

nd
er

O
th

er

C
om

m
an

ds

A
ttr

ib
ut

es

E
ve

nt
s

D
is

co
ve

ry

B
lo

ck
s

O
TA

 p
ro

g

Network

M
es

sa
ge

s

M
an

ag
em

en
t &

 P
w

r

Domain-Specific Appln

22

7/9/2007AIIT Summer Course - Tu1 TOS2 43

Permanent Data Storage
• TinyOS 2.x provides three basic storage abstractions:

– small objects,
– circular logs, and
– large objects.

• also provides interfaces the underlying storage
services and components that provide these
interfaces.

• Flash devices
– ST Microelectronics M25Pxx family of flash memories used in the

Telos family of motes (tos/chips/stm25p)
– Atmel AT45DB family of flash memories used in the Mica2/MicaZ

motes (tos/chips/at45b)
– Special pxa271p30 versions for the Intel Mote2 contributed by Arch

Rock. (tos/platforms/intelmote2)

• TEP103

7/9/2007AIIT Summer Course - Tu1 TOS2 44

Storage Interfaces and Components
• Interfaces

– BlockRead
– BlockWrite
– Mount
– ConfigStorage
– LogRead
– LogWrite
– Storage.h

Components
– ConfigStorageC - Configuration Data

» calibration, identity, location, sensing configuration, ..
– LogStorageC

» data
– BlockStorageC

» Code, …

23

7/9/2007AIIT Summer Course - Tu1 TOS2 45

Volumes
• TinyOS 2.x divides a flash chip into one or more

fixed-sized volumes that are specified at
compile-time using an XML file.

7/9/2007AIIT Summer Course - Tu1 TOS2 46

Example – blink period config
Define config storage object

chipname.xml file

Added to the TinyOS configuration

New interfaces for the module

Wire to the new interfaces

24

7/9/2007AIIT Summer Course - Tu1 TOS2 47

On boot – Mount and Read

7/9/2007AIIT Summer Course - Tu1 TOS2 48

Config data – done, write, commit

25

7/9/2007AIIT Summer Course - Tu1 TOS2 49

Network Embedded Systems

Hardware
Abstraction

Layer

Basic OS
interface

Service
API

Flash Radio / Uart Sensor/Actuator

Volumes Buses & ADCsLinks

Fi
le

s

Lo
gs

R
F

Li
gh

t

So
un

de
r

O
th

er

C
om

m
an

ds

A
ttr

ib
ut

es

E
ve

nt
s

D
is

co
ve

ry

B
lo

ck
s

O
TA

 p
ro

gr
am

Network

M
es

sa
ge

s

Hardware

M
an

ag
em

en
t &

 P
w

r

Application

7/9/2007AIIT Summer Course - Tu1 TOS2 50

IP/6LoWPAN “Kernel Component”
#include <IPv6.h>
#include <SampleEventType.h>

component BinKernel{
uses interface Boot;
uses interface Init as TimerInit;
uses interface Timer<TMilli> as TimerMilli[uint8_t id];
uses interface TaskBasic[uint8_t id];
uses interface SplitControl as RadioSplitControl; /* Radio Control */
uses interface LocalTime<TMilli>; /* Local Time */
uses interface Leds; /* Leds */

uses interface Notify<bool> as AppUserButton; /* User Button */
uses interface LocalIeeeEui64; /* EUI MAC Address */

uses interface IPv6Addresses; /* IP */
uses interface UdpSend;
uses interface UdpAppReceive as Udp_9000;

uses interface Read<uint16_t> as HumidityRead; /* Sensors */
uses interface Read<uint16_t> as TemperatureRead;
uses interface Read<uint16_t> as LightPARRead;
uses interface Read<uint16_t> as LightTSRRead;

}

26

7/9/2007AIIT Summer Course - Tu1 TOS2 51

Network Embedded Systems

Hardware
Abstraction

Layer

Basic OS
interface

Service
API

Flash Radio / Uart Sensor/Actuator

Volumes Buses & ADCsLinks

C
on

fig

Lo
gs

R
F

Li
gh

t

So
un

de
r

O
th

er

B
lo

ck
s O
TA

6LoWPAN Network

Hardware

M
an

ag
em

en
t &

 P
w

r

Application

ICMP / UDP / TCP

S
ys

ta
t

ne
ts

ta
t

Ec
ho

7/9/2007AIIT Summer Course - Tu1 TOS2 52

Discussion

